
Explainable Benchmarking through the Lense of Concept
Learning

Quannian Zhang
Faculty of Computer Science,
Electrical Engineering and

Mathematics
Data Science Group (DICE), Heinz

Nixdorf Institute, Paderborn
University

Paderborn, North Rhine-Westphalia
Germany

quannian@mail.uni-paderborn.de

Michael Röder
Faculty of Computer Science,
Electrical Engineering and

Mathematics
Data Science Group (DICE), Heinz

Nixdorf Institute, Paderborn
University

Paderborn, North Rhine-Westphalia
Germany

michael.roeder@uni-paderborn.de

Nikit Srivastava
Faculty of Computer Science,
Electrical Engineering and

Mathematics
Data Science Group (DICE), Heinz

Nixdorf Institute, Paderborn
University

Paderborn, North Rhine-Westphalia
Germany

nikit.srivastava@uni-paderborn.de

N’Dah Jean Kouagou
Faculty of Computer Science,
Electrical Engineering and

Mathematics
Data Science Group (DICE), Heinz

Nixdorf Institute, Paderborn
University

Paderborn, North Rhine-Westphalia
Germany

ndah.jean.kouagou@upb.de

Axel-Cyrille Ngonga Ngomo
Faculty of Computer Science,
Electrical Engineering and

Mathematics
Data Science Group (DICE), Heinz

Nixdorf Institute, Paderborn
University

Paderborn, North Rhine-Westphalia
Germany

axel.ngonga@upb.de

Abstract

Evaluating competing systems in a comparable way, i.e., bench-
marking them, is an undeniable pillar of the scientific method.
However, system performance is often summarized via a small
number of metrics. The analysis of the evaluation details and the
derivation of insights for further development or use remains a
tedious manual task with often biased results. Thus, this paper ar-
gues for a new type of benchmarking, which is dubbed explainable
benchmarking. The aim of explainable benchmarking approaches
is to automatically generate explanations for the performance of
systems in a benchmark. We provide a first instantiation of this
paradigm for knowledge-graph-based question answering systems.
We compute explanations by using a novel concept learning ap-
proach developed for large knowledge graphs called PruneCEL.
Our evaluation shows that PruneCEL outperforms state-of-the-art
concept learners on the task of explainable benchmarking by up to
0.55 points F1 measure. A task-driven user study with 41 partici-
pants shows that in 80% of the cases, the majority of participants
can accurately predict the behavior of a system based on our expla-
nations. Our code and data are available at https://github.com/dice-
group/PruneCEL/tree/K-cap2025.

This work is licensed under a Creative Commons Attribution 4.0 International License.
K-CAP ’25, Dayton, OH, USA

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1867-0/2025/12
https://doi.org/10.1145/3731443.3771359

CCS Concepts

• General and reference → Evaluation; • Information sys-

tems → Question answering; • Theory of computation →
Description logics.

Keywords

Benchmarks, Explainability and interpretability, Description logics

ACM Reference Format:

Quannian Zhang, Michael Röder, Nikit Srivastava, N’Dah Jean Kouagou,
and Axel-Cyrille Ngonga Ngomo. 2025. Explainable Benchmarking through
the Lense of Concept Learning. In Knowledge Capture Conference 2025 (K-

CAP ’25), December 10–12, 2025, Dayton, OH, USA. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3731443.3771359

1 Introduction

Comparable benchmarks are key for the improvement of solutions
across disciplines with quantifiable results. This insight has led
to the development of a multitude of benchmarking frameworks
and online leaderboards based thereupon in recent years. Examples
include the SEALS platform for link discovery [15], GERBIL QA
for question answering [27], HOBBIT for big linked data applica-
tions [19], and HuggingFace’s Open LLM Leaderboard1. However,
benchmarks are of little use if the results they generate do not lead
to actionable insights. Hence, some benchmarking frameworks pro-
vide insights into evaluation results [11, 13, 26], e.g., by means of
correlation analyses. While these approaches give insights within

1https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/

https://orcid.org/0009-0008-9497-3204
https://orcid.org/0000-0002-8609-8277
https://orcid.org/0009-0004-5164-4911
https://orcid.org/0000-0002-4217-897X
https://orcid.org/0000-0001-7112-3516
https://github.com/dice-group/PruneCEL/tree/K-cap2025
https://github.com/dice-group/PruneCEL/tree/K-cap2025
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731443.3771359
https://doi.org/10.1145/3731443.3771359
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/

K-CAP ’25, December 10–12, 2025, Dayton, OH, USA Quannian Zhang, Michael Röder, Nikit Srivastava, N’Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo

their respective predefined dimensions, none of these approaches
goes beyond that paradigm.

Explanation theory [14] suggests that actionable insights must
enable the explainee2 to perform better at system-relevant tasks,
i.e., using and developing the benchmarked system in the case of
benchmarking. Hence, we argue for the need for explainable bench-
marking approaches that give human-understandable insights into
when a system performs well and into when it is subpar. We instan-
tiate this novel paradigm with the two following contributions:

(1) We propose an approach for generating explanations for
benchmarking results. Internally, our approach builds a struc-
tured representation of the benchmark data and uses concept
learning to generate an explanation that is able to describe
cases in which the benchmarked system performs well, sep-
arating them from cases in which it performs subpar. We
evaluate our approach with benchmark results from the area
of knowledge-graph-based question answering (QA).

(2) We propose a new concept learning algorithm dubbed Prune-
CEL that achieves scalability by pruning the space in which
it searches for concepts. Our evaluation shows that Prune-
CEL is able to outperform several state-of-the-art concept
learning approaches on large knowledge bases.

2 Related-work

2.1 QA Benchmarking

Over the past decade, numerous QA benchmarks have been intro-
duced, e.g., by the benchmarking series QALD [29], LcQUAD [17],
and RuBQ [34].3 These benchmarks either come with evaluation
scripts or can be used in combination with benchmarking platforms
like GERBIL QA [27]. However, similar to other research areas, such
evaluations typically provide a summary of key performance indi-
cators (KPIs), e.g., the F1 measure of different evaluated QA systems
on each dataset. There are some attempts to give deeper insights
into reasons why systems might perform good or subpar during an
evaluation. For example, if provided with additional data GERBIL
QA analyzes the system’s performance in preprocessing steps of
a typical QA pipeline, e.g., the identification of named entities or
properties in the given question [27]. While these tools can help
run evaluations and analyze the results, their analysis is bound to
pre-defined features of the single tasks a system has to fulfill. To
the best of our knowledge, we are the first to propose a generic
approach for generating explanations, which avoids this limitation
by transforming information available about the benchmarking pro-
cess into a structured, generic representation and applying concept
learning, i.e., symbolic machine learning, to learn an explanation
for the benchmarking results.

While existing approaches like QED [18] utilize symbolic ma-
chine learning for post-hoc explainability in QA, they are limited
to explaining individual answer choices. Our work presents a novel
approach that instead explains a system’s overall evaluation results
on a dataset. By transforming benchmarking information into a
structured representation and applying concept learning, we move

2That is, the entity receiving the insights.
3https://qald.aksw.org/, https://github.com/AskNowQA/LC-QuAD, and https://github.
com/vladislavneon/RuBQ.

beyond explaining what a system answers to explaining where its
strengths and blindspots lie.

2.2 Concept Learning

The application of concept learning—i.e., the task of describing a set
of positive examples, separating it from a set of negative examples
based on a knowledge base using description logics—as part of
our approach led to the development of a new concept learning
algorithm called PruneCEL. Previous works use inductive logic
programming with refinement operators [12]. These approaches
start with the ⊤ concept and further refine it using a refinement
operator 𝜌 to generate new concepts. These newly created concepts
are scored with respect to a scoring function, e.g., F1 measure, and
the expression with the highest score that has not yet been refined
before is then chosen to be refined further. This is repeated until
either one of the found concepts achieves the maximum possible
score or a given budget in the form of runtime or iterations has
been consumed. Figure 3 shows an example of the search tree that
is created. While this approach seems simple, it has been proven to
be guaranteed to find a perfect solution for a given learning prob-
lem if (1) such a solution exists, and (2) the refinement operator
is weakly complete, i.e., is able to generate any concept starting
from ⊤ [37]. However, the search may take a very long time since
the search space itself is infinite, i.e., every concept created by a
weakly complete refinement operator can be further refined to cre-
ate new expressions [37]. Hence, several optimizations have been
proposed. For example, the latest version of CELOE achieves a
reduced runtime by storing the knowledge base K in a triple store
and collecting the counts necessary for scoring using SPARQL [31].
The refinement operator of DL-Foil [21] does not generate all re-
finements but a random subset, reducing the number of generated
concepts. In a similar way, Rizzo et al. [10] use a refinement opera-
tor with random sampling to generate terminological decision trees
and combine multiple of them, similar to a random forest. Another
optimization is to calculate an upper bound of the achievable per-
formance of the refinements of a concept and discard concepts with
an upper bound lower than the quality of the best solution found
so far [16]. In contrast to the previous approaches, Drill [2] does
not rely on a pre-defined scoring function to choose the expression
that should be further refined. Instead, it uses deep Q-learning to
train an agent that makes this decision. Our approach PruneCEL
shares the usage of a downward length-based refinement operator
and a pre-defined scoring function with some of these approaches.
However, our approach prunes the search space by avoiding the
generation of concepts that lead to a low performance. This prun-
ing allows us to achieve results even on larger knowledge bases,
without any pre-training.

Not all concept learning approaches rely on a refinement opera-
tor. EvoLearner [33] uses biased random walks on the knowledge
base to create a start population of concepts. After that, it uses an
evolutionary algorithm to create new concepts from this population.
NCES [23] tackles concept learning as a translation problem. It syn-
thesizes a solution by using sets of positive and negative examples
as input to a neural network.

https://qald.aksw.org/
https://github.com/AskNowQA/LC-QuAD
https://github.com/vladislavneon/RuBQ
https://github.com/vladislavneon/RuBQ

Explainable Benchmarking through the Lense of Concept Learning K-CAP ’25, December 10–12, 2025, Dayton, OH, USA

3 Preliminaries

3.1 Description Logics

Description logics are a family of languages for knowledge repre-
sentation [1]. Within this article, we focus on the description logic
ALC. Table 1 below defines the syntax and semantics of theALC
constructs.

Table 1: Syntax & semantics forALC concepts [23]. I stands

for an interpretation with domain ΔI
.

Construct Syntax Semantics

Atomic concept 𝐶 𝐶I ⊆ ΔI

Atomic role 𝑟 𝑟 I ⊆ ΔI × ΔI

Top concept ⊤ ΔI

Bottom concept ⊥ ∅
Negation ¬𝐶 ΔI \𝐶I

Conjunction 𝐶 ⊓ 𝐷 𝐶I ∩ 𝐷I

Disjunction 𝐶 ⊔ 𝐷 𝐶I ∪ 𝐷I

Existential restriction ∃𝑟 .𝐶 {𝑥 | ∃𝑏 : (𝑎, 𝑏) ∈ 𝑟 I ∧ 𝑏 ∈ 𝐶I}
Universal restriction ∀𝑟 .𝐶 {𝑎 | ∀𝑏 : (𝑎,𝑏) ∈ 𝑟 I =⇒ 𝑏 ∈ 𝐶I}

3.2 Refinement Operators

A quasi-ordering is a reflexive and transitive relation [36]. Let
(C,≼) be a quasi-ordered space. A downward refinement oper-
ator 𝜌 in such a space is a mapping from C to 2C such that ∀𝐶 ∈
C : 𝐷 ∈ 𝜌 (𝐶) =⇒ 𝐷 ≼ 𝐶 . 𝐷 is called a specialisation of 𝐶 [36].

Two quasi-orderings are often used in concept learning. Some
of the earliest approaches rely on the subsumption relation ⊑ [12].
More recent approaches (including ours) use the length of concepts,
which is defined recursively for ALC concepts as follows [22]:

𝑙 (𝐶) =


1 if 𝐶 ∈𝑁𝐶 ∪ {⊤,⊥},
1 + 𝑙 (𝑋) if 𝐶=¬𝑋,
2 + 𝑙 (𝑋) if 𝐶 ∈ {∃𝑟 .𝑋,∀𝑟 .𝑋 },
1 + 𝑙 (𝑋) + 𝑙 (𝑌) if 𝐶 ∈ {𝑋 ⊓ 𝑌,𝑋 ⊔ 𝑌 }.

(1)

3.3 Concept Learning

Let𝑁𝐼 (individuals),𝑁𝑅 (roles), and𝑁𝐶 (named concepts) be infinite,
countable and pairwise disjoint sets. A knowledge baseK = (T ,A)
over a description logic L is a pair that consists of a T-Box T and
an A-Box A. The T-Box contains subsumption axioms of the form
𝐶 ⊑ 𝐷 , where 𝐶 and 𝐷 are concepts in L, e.g., ALC (see Section
3.1). The A-Box contains assertions of the form 𝐶 (𝑎) or 𝑟 (𝑎,𝑏),
where 𝐶 is a concept in L, 𝑟 ∈ 𝑁𝑅 is a role, and 𝑎, 𝑏 ∈ 𝑁𝐼 are
individuals [23].

A concept learning problem over a knowledge baseK consists of
a pair 𝐸 = (𝐸+, 𝐸−), where 𝐸+ ⊆ 𝑁𝐼 is the set of positive examples
and 𝐸− ⊆ 𝑁𝐼 contains negative examples. The goal of concept
learning is to find a concept 𝐶 which satisfies [2]:

∀𝑒 ∈ 𝐸+ : K |=𝐶 (𝑒) ∧ ∀𝑒 ∈ 𝐸− : K ̸|=𝐶 (𝑒). (2)
Finding such a concept is not always possible. Hence, most con-

cept learners aim to maximize a quality function 𝑞 : C → [0, 1],
where C is the set of all concepts over 𝑁𝐶 and 𝑁𝑅 in L. Quality

Evaluation
Results

Dataset

2. Grouping

1. KB
Generation

K

𝐸+={✓,✓}
𝐸−={X,X}

3. Concept
Learning

𝐶 ⊓ ∃𝑟 .⊤
Explanation

1

Figure 1: Overview over the three steps of our approach.

functions, e.g., F1 measure, are commonly designed to return 1 for
inputs that satisfy Equation 2 (see [24], Definition 3).

3.4 Knowledge-Graph-based Question

Answering

A knowledge graph G is “a graph of data intended to accumulate
and convey knowledge of the real world, whose nodes represent
entities of interest and whose edges represent relations between
these entities” [3]. Given a knowledge graph G and an input ques-
tion 𝑄 in natural language, the goal of a knowledge-graph-based
question answering (QA) system 𝑓 is to derive the set of answers
𝑈 for 𝑄 using G [35]. We formalize this as:

𝑈 = 𝑓 (G, 𝑄) . (3)

4 Explainable Benchmarking

Our goal is to automatically generate explanations for benchmark-
ing results that provide users and developers with insights that
allow them to better use, or improve the benchmarked system [14].
As a running example, let’s assume there is a QA system that an-
swers questions related to geography well but others subpar. The
goal of ourwork is to give this insight into the system’s performance
in an automatic way based on evaluation results. Our approach
goes beyond previous analysis tools that have been designed for
a particular field as it does not rely on pre-defined features that
are bound to a specific use case. Instead, we transform the avail-
able information about the benchmarking process into structured
data and apply concept learning. Hence, our approach only has
the requirement that the available data can be transformed into
structured data and that the used concept learning algorithm is
expressive enough to find an explanation.

4.1 Approach

Our approach to automatically generate explanations for bench-
marking results consists of the three steps shown in Figure 1: (1) gen-
erate a knowledge base (K) comprising structured information
about the content of the benchmark dataset, (2) split the bench-
mark’s tasks, e.g., the questions of a QA dataset, into correctly (𝐸+)
and incorrectly answered tasks (𝐸−), and (3) use concept learning
to determine an expression that separates the two groups from each
other. We will explain these steps in more detail in the following.

In the first step, we generate a knowledge base comprising infor-
mation from the dataset about the examples that are used during the
benchmarking process (e.g., questions in the area of QA). The more
information can be provided about the examples, the higher is the

K-CAP ’25, December 10–12, 2025, Dayton, OH, USA Quannian Zhang, Michael Röder, Nikit Srivastava, N’Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo

dqq:Q11
"On which island
is the Indonesian
capital located?"

dqq:Q11_Tree_T8 dqb:Which

"9"ˆˆxsd:int

dqq:Q11_Tree_T4dqq:Q11_Tree_T9 dqq:Q11_Tree_T7
· · ·

dqq:Q11_Query

Java
CBD

CBD

CBD

From G (Wikidata)

"false"ˆˆxsd:boolean

Island

Indonesia

capital Located in "2.00"ˆˆxsd:decimal

· · ·

dqq: https://github.com/KGQA/QALD-10/blob/main/data/qald_10/qald_10.json#
dqb: http://w3id.org/dice-research/qa-bench# lsqv: http://lsq.aksw.org/vocab#
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# nsen: https://nlp.stanford.edu/nlp#
xsd: http://www.w3.org/2001/XMLSchema#

dqb:hasNlpParseTreeRoot
dqb:hasQuestionWord

dqb:hasLength

dqb:hasNegation

rdf:value

nsen:aux:passnsen:punct nsen:nsubj:pass ...

dqb:hasQuery

dqb:hasIRIAnswer

dqb:hasEntity

dqb:hasEntity dqb:hasProperty lsqv:joinVertexDegreeMean

...

1

Figure 2: An excerpt of the knowledge base around the ques-

tion dqq:Q11 (question 11 from QALD-10). Wikidata entities

and properties are replaced by their labels.

chance that the concept learning algorithm is going to find a good
explanation in step 3. For the application of our approach on QA
benchmarking results, we rely on the QALD datasets [4, 29], from
which we extract features based on: (1) the natural language ques-
tion (e.g., length, question word, dependency parse tree [6]), (2) the
ground truth answer(s) (e.g., type of answers, concise bounded de-
scription (CBD) [38] of entities in the answer set gathered from
G), and (3) the provided SPARQL query, that returns the ground
truth answer when used on G (e.g., LSQ [20] features, properties
and CBDs of entities used the query).4 Figure 2 shows the exam-
ple question dqq:Q11 (“On which island is the Indonesian capital
located?”) and an excerpt of the data in K connected to it.

In the second step, we separate the questions into two groups de-
pending on the ability of the question answering system to answer
the questions correctly. We determine the correctness of each ques-
tion using GERBIL QA [27] and define that a question is answered
correctly if its F1 score is 0.5 or higher. Conversely, questions with
an F1 score below 0.5 are labeled as incorrectly answered. We use
the correctly answered questions as 𝐸+ and incorrectly answered
questions as 𝐸− as defined in Section 3. In our running example, we
assume that the evaluated QA system is able to answer the ques-
tion from Figure 2 and other geography-related questions correctly.
Hence, they are part of 𝐸+ while other questions that were not
answered well are assigned to 𝐸− .

In the third step, we learn a concept that characterizes the pre-
viously identified positive examples 𝐸+ and separates them from

4Our Github project provides a more detailed description of the information.

⊤

Person Place Organisation Question . . .∃hasIriAnswer.⊤

Person ⊓ ∃hasIriAnswer.⊤ . . . ∃hasIriAnswer.Place

Classic search

⊤

Question

𝜇

. . . ∃hasIriAnswer.⊤

Question ⊓ ∃hasIriAnswer.⊤

. . .

. . . ∃hasIriAnswer.Place

𝜇 ⊓ ∃hasIriAnswer.⊤ ∃hasIriAnswer.𝜇

PruneCEL

1

Figure 3: Examples of a classic (top) and a PruneCEL (bot-

tom) search tree. The green expressions are further refined.

Expressions with a dotted frame do not have any given ex-

ample as instance. The labels on the edges are the generated

templates used to derive concepts or roles from the oracle.

the negative examples 𝐸− . This concept is used as explanation and
can be easily verbalized to be human-readable [8]. In our running
example, a learner could return the concept ∃hasIriAnswer.Place
which can be verbalized to “The system can answer questions that
have places as answers” providing insight into the QA system’s
performance in a human-readable form. In this step, any concept
learning approach can be used. However, we propose a new, scalable
approach in the following.

4.2 PruneCEL

PruneCEL is a top-down refinement-operator-based concept learn-
ing algorithm. Unlike similar approaches like CELOE or DRILL
(see Section 2), PruneCEL avoids the generation of unsatisfiable
concepts. Correspondingly, it is more time-efficient than similar
approaches. The motivation behind our approach lies in using the
monotonicity of subset inclusion, i.e., 𝐴 ⊂ 𝐵 =⇒ |𝐴| < |𝐵 |.
Hence, if 𝜌 is a downward refinement operator, then ∀𝐷 ∈ 𝜌 (𝐶) :
𝐶I ∩ (𝐸+ ∪ 𝐸−) = ∅ =⇒ 𝐷I ∩ (𝐸+ ∪ 𝐸−) = ∅. While other ap-
proaches exploit this observation by aiming not to refine concepts
𝐶 with𝐶I ∩ (𝐸+ ∪ 𝐸−) = ∅, the main idea of PruneCEL is to avoid
generating such concepts entirely.

The upper half of Figure 3 shows a typical search tree as it
would be created for our running example. The top concept is
refined to a long list of concepts. The concept with the best per-
formance ∃hasIriAnswer.⊤ is then further refined to another long
list of concepts. In practice, many of the generated concepts do
not include any of the given positive or negative examples as in-
stances. For the running example, the system may generate a con-
cept such as ∃hasIriAnswer.Person, which does not describe the
positive geography-related questions but still consumes resources
during its generation and evaluation.

PruneCEL avoids the generation of these concepts by relying on
an oracle, which provides named concepts or roles that can be used
to fill certain gaps in a template, generating concepts that have at
least one of the given examples as instance.

Explainable Benchmarking through the Lense of Concept Learning K-CAP ’25, December 10–12, 2025, Dayton, OH, USA

When refining the concept ∃hasIriAnswer.⊤ in our running ex-
ample, PruneCEL generates templates like ∃hasIriAnswer.𝜇 includ-
ing the concept to be refined and a marker 𝜇. Then, it uses an oracle
to get all named concepts or roles that can be used to replace 𝜇 to
generate new concepts. The oracle guarantees that for each gen-
erated concept 𝐷 the following holds: 𝐷I ∩ (𝐸+ ∪ 𝐸−) ≠ ∅. In our
example, the oracle suggests to replace 𝜇 with Place in to produce
a meaningful candidate concept. The lower half of Figure 3 shows
the search tree for the same example as PruneCEL would create it.

This take on concept learning leads to several changes in the
typical recursive workflow of the refinement operator. First, our
operator has to be able to generate templates. Each of them con-
tains exactly one marked position at which the oracle should insert
named concepts or roles to create a new concept. Second, we use
SPARQL queries to implement the oracle, i.e., to select named con-
cepts and roles from K . In the following, we provide a formal
definition of our refinement operator before we provide details
about PruneCEL’s oracle, scoring and extensions.

4.2.1 Refinement Operator. We define a top-down length-based
refinement operator 𝜌 : C × 2𝑁𝐼 × 2𝑁𝐼 → 2C for ALC. 𝜌 operates
in the quasi-ordered space (C, 𝑙), where 𝑙 : 𝐶 → N is the length of
a concept as defined above. Hence, 𝐷 ∈ 𝜌 (𝐶) =⇒ 𝑙 (𝐷) ≥ 𝑙 (𝐶).

Let C★ be the space of all templates that can be created when ex-
tending the ALC grammar defined in Section 3.1 with the symbol
𝜇. 𝜇 is handled like a named concept but serves as a marker of the
position within a template that has to be filled by the oracle. We
define that each template in C★ contains 𝜇 exactly once. Further,
let𝑚★ : C★ × C★ → C★ be a function that merges two given tem-
plates 𝑇1 and 𝑇2 by replacing the occurrence of 𝜇 in the template 𝑇1
with the template 𝑇2. Similarly, let𝑚 : C★ × C → C be a function
that creates a new concept by replacing the marker 𝜇 in the given
template with the given concept.

Based on the previous definitions, we define our top-down length-
based refinement operator 𝜌 to refine a given concept 𝐶 based on
the given examples 𝐸+ and 𝐸− as follows:

𝜌 (𝐶, 𝐸+, 𝐸−) =𝜌★(𝐶, 𝜇, 𝐸+, 𝐸−)∪{
(¬𝐷

��𝐷 ∈ 𝜌★(𝐶, 𝜇, 𝐸+, 𝐸−)
}
,

(4)

where 𝜌★ : C × C★ × 2𝑁𝐼 × 2𝑁𝐼 → 2C is a function that takes a
concept and a template and refines it recursively based on the given
positive and negative examples. Since Equation 4 is the start of the
recursion, the template only comprises the positional marker 𝜇. It
can also be seen that the refinement operator doubles the amount
of expressions that 𝜌★ provides by creating their negations. We

define the recursive function 𝜌★ as follows:

𝜌★(𝐶,𝑇 , 𝐸+, 𝐸−)

=



𝜌★(𝑋,𝑚★(𝑇, ∃𝑟 .𝜇), 𝐸+, 𝐸−)∪ if𝐶=∃𝑟 .𝑋,
{𝑚(𝑇,∀𝑟 .𝑋)}

𝜌★(𝑋,𝑚★(𝑇,∀𝑟 .𝜇), 𝐸+, 𝐸−) if𝐶=∀𝑟 .𝑋,
𝜌★(𝑋,𝑚★(𝑇,¬𝜇), 𝐸+, 𝐸−) if𝐶=¬𝑋 ∧ 𝑋 ∉𝑁𝐶 ,

𝜌★(𝑋,𝑚★(𝑇, 𝜇⊓𝑌), 𝐸+, 𝐸−)∪ if𝐶=𝑋⊓𝑌,
𝜌★(𝑌,𝑚★(𝑇,𝑋⊓𝜇), 𝐸+, 𝐸−)

𝜌★(𝑋,𝑚★(𝑇, 𝜇⊔𝑌), 𝐸+, 𝐸−)∪ if𝐶=𝑋⊔𝑌,
𝜌★(𝑌,𝑚★(𝑇,𝑋⊔𝜇), 𝐸+, 𝐸−)

𝑔(𝑚★(𝑇,𝐶⊓𝜇), 𝐸+, 𝐸−)∪ if𝐶∉{⊤,⊥},
𝑔(𝑚★(𝑇,𝐶⊔𝜇), 𝐸+, 𝐸−)

𝑔(𝑇, 𝐸+, 𝐸−) if𝐶=⊤ ,

(5)

where 𝑋,𝑌 ∈ C and 𝑔 is a function that generates new concepts
using the oracle and the given template. For complex concepts (the
first five cases in Equation 5), 𝜌★ calls itself recursively, focusing on
one of the parts of the given concept while the other parts of the
expression are added to the template using the merge function𝑚★.
An exception is the first case, in which ∃𝑟 .𝑋 is also refined to ∀𝑟 .𝑋 .
For all expressions except ⊤ or ⊥ (case 6), our refinement tries to
add a conjunction and a disjunction. The ⊤ expression is replaced
with named classes or roles (case 7). The two latter cases are the
base cases of the recursion and rely on the generator function 𝑔.

The generator function 𝑔 : C★×2𝑁𝐼 ×2𝑁𝐼 → 2C takes a template
and the examples as input and returns new concepts based on the
named concepts and roles derived from the oracle. We define it as
follows:

𝑔(𝑇, 𝐸+, 𝐸−) ={𝑚(𝑇, 𝐷) |𝐷 ∈ 𝑜𝑐 (𝑇, 𝐸+, 𝐸−)}∪
{𝑚(𝑇,¬𝐷) |𝐷 ∈ 𝑜¬𝑐 (𝑇, 𝐸+, 𝐸−)}∪
{𝑚(𝑇, ∃𝑟 .⊤)|𝑟 ∈ 𝑜𝑟 (𝑇, 𝐸+, 𝐸−)} ,

(6)

wherewe rely on three different functions—𝑜𝑐 ,𝑜¬𝑐 , and𝑜𝑟—provided
by the oracle. The first oracle function 𝑜𝑐 : C★ × 2𝑁𝐼 × 2𝑁𝐼 → 𝑁𝐶

takes a template and a set of positive and negative examples as
input. The output is a set comprising all named concepts that when
used to replace the marker 𝜇 in the template form a concept 𝐷 that
has at least one of the given examples as instance:

𝑜𝑐 (𝑇, 𝐸+, 𝐸−) = {𝐷 |𝑋 =𝑚(𝑇, 𝐷) ∧ 𝐷 ∈ 𝑁𝐶

∧ 𝑋 I ∩ (𝐸+ ∪ 𝐸−) ≠ ∅} .
(7)

In the same way, we define the second function 𝑜¬𝑐 : C★ × 2𝑁𝐼 ×
2𝑁𝐼 → 𝑁𝐶 , which negates the named concepts as follows:

𝑜¬𝑐 (𝑇, 𝐸+, 𝐸−) = {𝐷 |𝑋 =𝑚(𝑇,¬𝐷) ∧ 𝐷 ∈ 𝑁𝐶

∧ 𝑋 I ∩ (𝐸+ ∪ 𝐸−) ≠ ∅} .
(8)

Similarly, we define the third oracle function 𝑜𝑟 : C★ × 2𝑁𝐼 ×
2𝑁𝐼 → 𝑁𝑅 that returns roles as follows:

𝑜𝑟 (𝑇, 𝐸+, 𝐸−) = {𝑟 |𝑋 =𝑚(𝑇,∃𝑟 .⊤) ∧ 𝑟 ∈ 𝑁𝑅

∧ 𝑋 I ∩ (𝐸+ ∪ 𝐸−) ≠ ∅} .
(9)

According to [36], 𝜌 is a top-down length-based refinement op-
erator since Equation 5 guarantees that newly created concepts

K-CAP ’25, December 10–12, 2025, Dayton, OH, USA Quannian Zhang, Michael Röder, Nikit Srivastava, N’Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo

have either the same length (cases 1 and 7) or are longer (case 6)
than the given concept 𝐶 , i.e., 𝐷 ∈ 𝜌 (𝐶) =⇒ 𝑙 (𝐷) ≥ 𝑙 (𝐶). From
the list of properties of a refinement operator proposed by [36], our
refinement operator 𝜌 is finite (i.e., 𝜌 (𝐶) is finite for any concept𝐶)
and redundant (i.e., during the search, 𝜌 may return a concept that
is equivalent to a previously returned concept). However, 𝜌 is not
(weakly) complete as it is not able to generate all possible concepts
since many do not select any given example. Hence, pruning the
search space leads to the loss of the completeness of the operator.5

4.2.2 Oracle Implementation. The oracle is implemented in the
form of SPARQL queries that are sent to a triple store containing
K . Since the queries used for 𝑜𝑐 , 𝑜¬𝑐 , and 𝑜𝑟 already contain the
positive and negative examples, we extend these queries to derive
the numbers of positive and negative examples that are instances
of the newly created concepts. This further reduces the number
of SPARQL queries that our approach sends to the triple store
in comparison to previous approaches, which would derive these
counts for all created concepts one after the other.

4.2.3 Heuristic. We score a generated class expression 𝐶 by deter-
mining the number of positive 𝑝 (respectively, negative 𝑛) examples
that are instances of (respectively, ruled out by) this concept accord-
ing to K . Then, we compare these counts with the overall number
of positive and negative examples. This can be done using any qual-
ity function 𝑞 like accuracy or F1 measure. Like previous works,
e.g., [33], we assume that shorter concepts are more general and,
hence, preferred. So we include the length of the concept multiplied
by a small constant 𝜂 into our heuristic function ℎ:

ℎ(𝐶, 𝑝, 𝑛, 𝐸+, 𝐸−) = 𝑞(𝑝, 𝑛, |𝐸+ |, |𝐸− |) − 𝜂𝑙 (𝐶) . (10)

4.2.4 Extensions. Wepropose two additional extensions—PruneCEL-
S and PruneCEL-R. Both can be used together, which we name
PruneCEL-RS.

PruneCEL-S. In this mode, a newly created concept 𝐷 ∈ 𝜌 (𝐶)
is only considered for further refinement if (1) it received a better
score than 𝐶 or (2) 𝐷 has been derived from 𝐶 by adding a role.

PruneCEL-R. In this recursive mode, PruneCEL calls itself if
it found a solution for a sub-problem. Let 𝐸+′ ⊂ 𝐸+ be a set of
positive examples with |𝐸+′ | ≥ 2. If our approach has found a
concept 𝐷 , which is an exact solution for 𝐸+′, i.e., 𝐷 satisfies ∀𝑒 ∈
𝐸+′ : K ⊨ 𝐷 (𝑒) ∧ ∀𝑒 ∈ 𝐸− : K ⊭ 𝐷 (𝑒), PruneCEL calls itself
with a smaller learning problem (𝐸+\𝐸+′, 𝐸−). It spends a limited
amount of iterations on this smaller problem before it returns its
best concepts. These are combined with 𝐷 and introduced into
the search tree as additional solutions which then can be further
refined.

5 Evaluation

5.1 Experiment Setup

First, we compare the performance of different concept learners
on the knowledge bases created by our approach (Experiment I).
Finally, we use a survey to check whether our explanations are
understood by humans (Experiment II).
5A similar tradeoff is encountered by other approaches, e.g., DL-Foil [21]. The inter-
ested reader is referred to [36] for the full list of properties.

Table 2: The number of learning problems (LP), their average

number of positive and negative examples, and the features

of K for the QALD-based datasets. P = Properties.

Datasets LPs |𝑬+ | |𝑬− | Entities P Triples

QALD9+DB 3 22.7 110.3 21,518,759 918 72,737,644
QALD9+WD 2 30.5 85.5 36,565,453 826 84,345,960
QALD10 2 91.0 303.0 64,352,096 878 155,959,524

Table 3: Correctly / faulty answered questions per QA system.

DB = DBpedia, WD = Wikidata.

Systems QALD9+DB QALD9+WD QALD10

DeepPavlov – / – 26 / 90 61 / 333
gAnswer 18 / 115 – / – – / –
MST5 28 / 105 35 / 81 121 / 273
TeBaQA 22 / 111 – / – – / –

5.1.1 Experiment I. In the First experiment, we apply our approach
to the benchmarking results of the 4 QA systems DeepPavlov [9],
gAnswer [32], TeBaQA [7], and MST5 [25] on three QA datasets—
QALD 9 Plus for DBpedia and Wikidata [4], and QALD 10 [29].
We remove questions that have an empty ground truth answer
set from these QA datasets leading to 133, 116, and 394 questions,
respectively. We generate a knowledge base K for each QA dataset
as described in Section 4.1. We gather the answers generated by
the 4 QA systems for these datasets. The DBpedia-based systems
gAnswer and TeBaQA only provide answers for QALD 9 Plus
DBpedia, while the Wikidata-based system DeepPavlov provides
results for QALD 9 PlusWikidata and QALD 10. MST5 [25] provides
answers for all three QA datasets. We use the evaluation results
from GERBIL QA [27] to identify correctly and faulty answered
questions to derive 𝐸+ and 𝐸− for each QA system. Table 3 shows
the summary of this step. Table 2 summarizes the features of the
generated knowledge bases as well as the resulting concept learning
datasets dubbed QALD9+DB, QALD9+WD, and QALD10.6

On these three concept learning dataset, we apply the four con-
cept learners CELOE, Drill, EvoLearner, and NCES from the
related work. We compare their performance to PruneCEL-RS,
which showed the best performance in preliminary experiments.7
We run all approaches with their default configuration.8 Prune-
CEL-RS is executed three times using three different measures ℎ as
part of the scoring function, namely accuracy, balanced accuracy
and F1 measure. In all configurations, we set 𝜂 = 0.01. We set the
maximum runtime of all approaches for a single learning problem
to 10 minutes and compare their results using the F1-measure, the
concept length and their runtime.9

6The DBpedia and Wikidata versions that we use as G can be found at https:
//downloads.dbpedia.org/2016-10/core-i18n/en/ and [28].
7Due to the length restriction of this publication, the results of these preliminary
experiments can be found in our Github project.
8For Drill, we use the Keci embedding algorithm [5]. The embedding models
and pre-trained Drill models can be found at doi:10.5281/zenodo.14720609 and
doi:10.5281/zenodo.14720524, respectively.
9We provide the knowledge bases and learning problems at
doi:10.5281/zenodo.14720669 and doi:10.5281/zenodo.16681824, respectively.
We use an AMD EPYC 7282 with 252 GB RAM.

https://downloads.dbpedia.org/2016-10/core-i18n/en/
https://downloads.dbpedia.org/2016-10/core-i18n/en/
https://doi.org/10.5281/zenodo.14720609
https://doi.org/10.5281/zenodo.14720524
https://doi.org/10.5281/zenodo.14720669
https://doi.org/10.5281/zenodo.16681824

Explainable Benchmarking through the Lense of Concept Learning K-CAP ’25, December 10–12, 2025, Dayton, OH, USA

5.1.2 Experiment II. We conduct a survey to evaluate the quality of
our explanations.We choose two concepts learned from Experiment
I generated on two very different knowledge bases—QALD9+DB
and QALD10—that achieve the highest F1 score when compared
with a baseline that returns the concept ⊤. On both knowledge
bases, these are concepts explaining the performance of MST5,
which we verbalize using ChatGPT.10 Our approach explains the
performance of MST5 on QALD10 with the following concept:

∃hasEntityAnswer.(album ⊔ ∃copyrightStatusAsCreator.⊤⊔
profession ⊔ ∃locatedInAdministrativeTerritorialEntity.¬country⊔
∃manifestationOf.⊤) ⊔ ∃hasBooleanAnswer.⊤
which is verbalized as (naming MST5 "QAS1"):
The system "QAS1" can answer questions if:

(1) There’s an answer involving an album, a creator’s copyright

status, a profession, a location that’s not a country, or some-

thing that has a type or form.

(2) Or, it can answer questions that have a simple yes/no (boolean)

answer.

For MST5 on QALD9+DB, our approach finds the following
concept:

∃hasEntityAnswer.((¬agent⊓∃parentMountainPeak.⊤)⊔building)
⊔ (∃hasIRIAnswer.(astronaut ⊔ (¬agent ⊓ ¬spatialThing))⊓
∃hasQuestionWord.⊤)

which is verbalized as (naming MST5 "QAS2"):
The system "QAS2" can answer questions if:

(1) The answer involves either: a non-agent (not a person or entity

with intent) with a parent mountain peak, or a building.

(2) Or, if the answer involves: an astronaut, or a non-agent, non-

spatial entity (something that’s neither a person nor a physical

location), and if the question includes a question word (like

"who," "what," or "where").

For each chosen concept, we randomly choose 5 correctly and 5
faulty answered questions of MST5, which are classified correctly
by the chosen concept. In the survey, we provide these 20 questions
together with 5 or more statements fromK that would be sufficient
for a reasoner to decide whether the question with this data is
an instance of the learned concept. For each question, the survey
participants have to decide whether a QA system with the provided
explanation would be able to answer the given question. The higher
the success rate, the better do humans understand the explanation
and are able to decide whether to use the QA system for it or not.
We configure the survey to randomly order the questions for each
participant and distribute the survey to computer scientists (e.g.,
via mailing lists).

5.2 Results

5.2.1 Experiment I. Table 4 summarizes the results of the four state
of the art concept learners and PruneCEL-RS on the 7 learning
problems. PruneCEL-RS achieves significantly better F1 scores
than CELOE and Drill.11 A deeper analysis of the behavior of
CELOE and Drill shows that these approaches already need more
10The prompt for the verbalization can be found in our Github project.
11We use a Wilcoxon signed-rank test with 𝛼 = 0.05.

than the provided 10 minutes to execute 𝜌 (⊤), i.e., the first step at
the beginning of their search. EvoLearner and NCES did not give
any results on the large knowledge bases of this experiment.12

PruneCEL-RS provides significantly better F1-scores thanCELOE
and Drill for all 7 learning problems when relying on balanced
accuracy or the F1 measure during the search. Consequently, it is
also significantly better than a baseline that would always return
the concept ⊤. The usage of accuracy leads to mixed results and
seems to mislead the search when the learning problem has only a
small number of positive examples.13

5.2.2 Experiment II. 41 people participated in our survey, answer-
ing at least 1 question. Table 5 shows the survey results. For 16 out
of 20 questions (i.e., 80%), the majority of the participants was able
to correctly decide whether the described QA system would be able
to answer the given question. For all questions, except question 17,
the answers of the volunteers are significantly different to those of
a random guesser.14 A closer look at the questions that were not
classified correctly by the majority of the participants revealed two
patterns of errors. First, the verbalization generated by ChatGPT
was not always exactly explaining the given concept. For example,
in the case of MST5 on QALD10, while one of the properties has
the label "manifestation of" ChatGPT translated it into "something
that has a type or form", leading to people ignoring triples with
the "manifestation of" property in the provided data. Second, in
the case of MST5 on QALD9+DB, ChatGPT (or the participants)
relied on background knowledge that was not part of K . This led
to a misunderstanding ¬agent that was incorrectly understood as
a non-person by ChatGPT. This underlines the importance of a
well-defined ontology as basis for the concept learning and, hence,
for our approach.

6 Discussion

The results of Experiment I show that due to PruneCEL’s scalabil-
ity, it outperforms the other four approaches on knowledge bases
containing tens of millions of triples. The importance of the scala-
bility is further underlined when taking into account the sizes of
real-world knowledge graphs like DBpedia [30] or Wikidata [39].

In Experiment I, PruneCEL achieves F1 scores that are higher
than the performance of the concept ⊤ would be. This suggests
that our approach is able to provide meaningful explanations. This
is supported by the results of Experiment II which suggest that
humans can accurately predict the behavior of the benchmarked
system based on these explanations. However, future work will
have to take the two identified sources of errors into account.

7 Conclusion

We proposed an approach for generating explainations for bench-
marking results. Our approach relies on the transformation of the
benchmarking dataset into a knowledge base and on concept learn-
ing to find a concept that separates cases in which the benchmarked
system performed good from those in which it performed sub-
par. We also proposed a new, scalable concept learning algorithm

12We worked together with the authors of EvoLearner and NCES but couldn’t find a
solution before the submission deadline.
13The full set of results of PruneCEL-RS can be found in our Github project.
14Significant = a random guesser has a probability below 5% to create the answer set.

K-CAP ’25, December 10–12, 2025, Dayton, OH, USA Quannian Zhang, Michael Röder, Nikit Srivastava, N’Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo

Table 4: F1 score, length of the generated concepts (𝑙 (𝐶)), and runtime (RT, in seconds) for the learning problems (LP) of

Experiment II. For PruneCEL-RS, we report the quality measure (𝑞, A = accuracy, B = balanced accuracy, F = F1 measure)

leading to the best F1 score. The complete set of results for PruneCEL-RS can be found in the appendix.

Dataset Drill Evolearner CELOE NCES PruneCEL-RS

K LP F1 𝑙 (𝐶) RT F1 𝑙 (𝐶) RT F1 𝑙 (𝐶) RT F1 𝑙 (𝐶) RT F1 𝑙 (𝐶) RT 𝑞

QALD9+DB gAnswer 0.24 1 2299.2 – – – 0.26 3 10306.2 – – – 0.35 19 600.1 A
MST5 0.35 1 2694.5 – – – 0.35 1 10392.3 – – – 0.57 24 600.1 B
TeBaQA 0.30 3 2267.4 – – – 0.30 3 10356.7 – – – 0.44 23 650.5 F

QALD9+WD DeepPavlov 0.37 1 3793.6 – – – 0.41 3 12416.7 – – – 0.96 107 600.9 A
MST5 0.46 1 3779.8 – – – 0.50 3 12369.0 – – – 0.84 28 600.9 B

QALD10 DeepPavlov 0.27 1 3495.3 – – – 0.27 1 2326.2 – – – 0.34 10 600.8 F
MST5 0.47 1 3468.1 – – – 0.47 1 2271.3 – – – 0.56 20 602.0 B

Table 5: Survey results per question for the two learning

problems (in %, ■ Yes (Y), ■ No (N)). The MV row shows the

summary of the answers as a majority vote and the Exp row

the expected results.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Explainable Benchmarking through the Lense of Concept Learning Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: F1 score, length of the generated concepts (𝑙 (𝐶)), and runtime (RT, in seconds) for the learning problems (LP) of

Experiment II. For PruneCEL-RS, we report the quality measure (𝑞, A = accuracy, B = balanced accuracy, F = F1 measure)

leading to the best F1 score. The complete set of results for PruneCEL-RS can be found in the appendix.

Dataset Drill Evolearner CELOE NCES PruneCEL-RS

K LP F1 𝑙 (𝐶) RT F1 𝑙 (𝐶) RT F1 𝑙 (𝐶) RT F1 𝑙 (𝐶) RT F1 𝑙 (𝐶) RT 𝑞

QALD9+DB gAnswer 0.24 1 2299.2 – – – 0.26 3 10306.2 – – – 0.35 19 600.1 A
MST5 0.35 1 2694.5 – – – 0.35 1 10392.3 – – – 0.57 24 600.1 B
TeBaQA 0.30 3 2267.4 – – – 0.30 3 10356.7 – – – 0.44 23 650.5 F

QALD9+WD DeepPavlov 0.37 1 3793.6 – – – 0.41 3 12416.7 – – – 0.96 107 600.9 A
MST5 0.46 1 3779.8 – – – 0.50 3 12369.0 – – – 0.84 28 600.9 B

QALD10 DeepPavlov 0.27 1 3495.3 – – – 0.27 1 2326.2 – – – 0.34 10 600.8 F
MST5 0.47 1 3468.1 – – – 0.47 1 2271.3 – – – 0.56 20 602.0 B

For each chosen concept, we randomly choose 5 correctly and 5
faulty answered questions of MST5, which are classified correctly
by the chosen concept. In the survey, we provide these 20 questions
together with 5 or more statements fromK that would be sufficient
for a reasoner to decide whether the question with this data is
an instance of the learned concept. For each question, the survey
participants have to decide whether a QA system with the provided
explanation would be able to answer the given question. The higher
the success rate, the better do humans understand the explanation
and are able to decide whether to use the QA system for it or not.
We configure the survey to randomly order the questions for each
participant and distribute the survey to computer scientists (e.g.,
via mailing lists).

5.2 Results

5.2.1 Experiment I. Table 4 summarizes the results of the four state
of the art concept learners and PruneCEL-RS on the 7 learning
problems. PruneCEL-RS achieves significantly better F1 scores
than CELOE and Drill.11 A deeper analysis of the behavior of
CELOE and Drill shows that these approaches already need more
than the provided 10 minutes to execute 𝜌 (⊤), i.e., the first step at
the beginning of their search. EvoLearner and NCES did not give
any results on the large knowledge bases of this experiment.12

PruneCEL-RS provides significantly better F1-scores thanCELOE
and Drill for all 7 learning problems when relying on balanced
accuracy or the F1 measure during the search. Consequently, it is
also significantly better than a baseline that would always return
the concept ⊤. The usage of accuracy leads to mixed results and
seems to mislead the search when the learning problem has only a
small number of positive examples.13

5.2.2 Experiment II. 41 people participated in our survey, answer-
ing at least 1 question. Table 5 shows the survey results. For 16 out
of 20 questions (i.e., 80%), the majority of the participants was able
to correctly decide whether the described QA system would be able
to answer the given question. For all questions, except question 17,
the answers of the volunteers are significantly different to those of

11We use a Wilcoxon signed-rank test with 𝛼 = 0.05.
12We worked together with the authors of EvoLearner and NCES but couldn’t find a
solution before the submission deadline.
13The full set of results of PruneCEL-RS can be found in our Github project.

Table 5: Survey results per question for the two learning

problems (in %, Yes (Y), No (N)). The MV row shows the

summary of the answers as a majority vote and the Exp row

the expected results.

MST5 on QALD10 MST5 on QALD9+DB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

25

50

75

100

MV Y Y N Y N N N N N N Y Y N N Y N N N N N

Exp Y N Y N

a random guesser.14 A closer look at the questions that were not
classified correctly by the majority of the participants revealed two
patterns of errors. First, the verbalization generated by ChatGPT
was not always exactly explaining the given concept. For example,
in the case of MST5 on QALD10, while one of the properties has
the label "manifestation of" ChatGPT translated it into "something
that has a type or form", leading to people ignoring triples with
the "manifestation of" property in the provided data. Second, in
the case of MST5 on QALD9+DB, ChatGPT (or the participants)
relied on background knowledge that was not part of K . This led
to a misunderstanding ¬agent that was incorrectly understood as
a non-person by ChatGPT. This underlines the importance of a
well-defined ontology as basis for the concept learning and, hence,
for our approach.

6 Discussion

The results of Experiment I show that due to PruneCEL’s scalabil-
ity, it outperforms the other four approaches on knowledge bases
containing tens of millions of triples. The importance of the scala-
bility is further underlined when taking into account the sizes of
real-world knowledge graphs like DBpedia [30] or Wikidata [39].
14Significant = a random guesser has a probability below 5% to create the answer set.

7

named PruneCEL, which uses the monotonicity of subset inclusion
to prune its search tree. Our evaluation used benchmark datasets
and real-world benchmarking results from the knowledge-graph-
based Question Answering domain. Our evaluation results show
that PruneCEL significantly outperforms state-of-the-art concept
learners on the knowledge bases created by our approach due to
its scalability. A survey including the answers of 41 participants
showed that in 80% of the cases the majority of participants were
able to understand the explanations our approach generates for the
evaluation results of QA systems.

Our future work is threefold. First, we plan to apply our generic
approach to other application areas. Second, we want to further
improve existing concept learners. Third, a large scale experiment
is needed to ensure that the generated explanations cannot only be
understood be the explainee, but also support them in improving
the benchmarked system over time.

Acknowledgments

This work has been supported by the Ministry of Culture and Sci-
ence of North Rhine-Westphalia (MKW NRW) within the projects

SAIL (NW21-059D) and WHALE (LFN 1-04, under the Lamarr Fel-
low Network programme), and the European Union’s Horizon Eu-
rope research and innovation programme in the project ENEXA
(No. 101070305).

References

[1] Franz Baader. 2003. The description logic handbook: Theory, implementation and

applications. Cambridge university press.
[2] Caglar Demir and Axel-Cyrille Ngonga Ngomo. 2023. Neuro-symbolic class

expression learning. In Proceedings of IJCAI 2023. doi:10.24963/ijcai.2023/403
[3] Aidan Hogan et al. 2021. Knowledge Graphs. Number 22 in Synthe-

sis Lectures on Data. Morgan & Claypool. 1–237 pages. doi:10.2200/
S01125ED1V01Y202109DSK022

[4] Aleksandr Perevalov et al. 2022. QALD-9-plus: A Multilingual Dataset for Ques-
tion Answering over DBpedia and Wikidata Translated by Native Speakers. In
2022 IEEE 16th ICSC. IEEE, 229–234.

[5] Caglar Demir et al. 2023. Clifford Embeddings–A Generalized Approach for Em-
bedding in Normed Algebras. In Joint European Conference on Machine Learning

and Knowledge Discovery in Databases. Springer, 567–582.
[6] Christopher Manning et al. 2014. The Stanford CoreNLP Natural Language

Processing Toolkit. In Proceedings of 52nd ACL: System Demonstrations.
[7] Daniel Vollmers et al. 2021. Knowledge Graph Question Answering Using Graph-

Pattern Isomorphism. In Studies on the Semantic Web. IOS Press.
[8] Daniel Vollmers et al. 2024. Enhancing Answers Verbalization Using Large

Language Models. In Proceedings of the 20th International Conference on Semantic

Systems (Studies on the Semantic Web). IOSPress, 345–352. doi:10.3233/SSW240027
[9] Diliara Zharikova et al. 2023. DeepPavlov Dream: Platform for Building Genera-

tive AI Assistants. In Proc. of the 61st ACL (Volume 3: System Demonstrations).
[10] Giuseppe Rizzo et al. 2017. Tree-based models for inductive classification on the

Web Of Data. Journal of Web Semantics (2017). doi:10.1016/j.websem.2017.05.001
[11] Hannah Bast et al. 2022. ELEVANT: A Fully Automatic Fine-Grained Entity

Linking Evaluation and Analysis Tool. In EMNLP 2022 Demo. https://aclanthology.
org/2022.emnlp-demos.8/

[12] Jens Lehmann et al. 2011. Class expression learning for ontology engineering.
Journal of Web Semantics 9, 1 (2011), 71–81. doi:10.1016/j.websem.2011.01.001

[13] Jörg Waitelonis et al. 2016. Don’t compare Apples to Oranges: Extending GERBIL
for a fine grained NEL evaluation. In Proceedings of the 12th SEMANTiCS. ACM.

[14] Katharina J Rohlfing et al. 2020. Explanation as a social practice: Toward a
conceptual framework for the social design of AI systems. IEEE Transactions on

Cognitive and Developmental Systems 13, 3 (2020), 717–728.
[15] Mina Abd Nikooie Pour et al. 2021. Results of the Ontology Alignment Evaluation

Initiative 2021. In Proceedings of the 16th International Workshop on Ontology

Matching co-located with the 20th ISWC (ISWC 2021).
[16] Mohamed Ahmed Sherif et al. 2017. Wombat – A Generalization Approach for

Automatic Link Discovery. In The Semantic Web. Springer, 103–119.
[17] Mohnish Dubey et al. 2019. LC-QuAD 2.0: A Large Dataset for Complex Ques-

tion Answering over Wikidata and DBpedia. In The Semantic Web – ISWC 2019.
Springer, 69–78.

[18] Matthew Lamm et al. 2021. Qed: A framework and dataset for explanations in
question answering. Transactions of the ACL 9 (2021), 790–806.

[19] Michael Röder et al. 2020. HOBBIT: A platform for benchmarking Big Linked
Data. Data Science 3, 1 (2020), 15–35. doi:10.3233/DS-190021

https://doi.org/10.24963/ijcai.2023/403
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.3233/SSW240027
https://doi.org/10.1016/j.websem.2017.05.001
https://aclanthology.org/2022.emnlp-demos.8/
https://aclanthology.org/2022.emnlp-demos.8/
https://doi.org/10.1016/j.websem.2011.01.001
https://doi.org/10.3233/DS-190021

Explainable Benchmarking through the Lense of Concept Learning K-CAP ’25, December 10–12, 2025, Dayton, OH, USA

[20] Muhammad Saleem et al. 2015. LSQ: The Linked SPARQL Queries Dataset. In
The Semantic Web - ISWC 2015. Springer.

[21] Nicola Fanizzi et al. 2018. DLFoil: Class Expression Learning Revisited. In Knowl-

edge Engineering and Knowledge Management. Springer.
[22] N’Dah Jean Kouagou et al. 2022. Learning Concept Lengths Accelerates Concept

Learning in ALC. In The Semantic Web. Springer.
[23] N’Dah Jean Kouagou et al. 2023. Neural Class Expression Synthesis. In The

Semantic Web. Springer.
[24] N’Dah Jean Kouagou Jean et al. 2023. Neural class expression synthesis in

ALCHIQ (D). In Joint European Conference on Machine Learning and Knowledge

Discovery in Databases. Springer, 196–212.
[25] Nikit Srivastava et al. 2024. MST5 – Multilingual Question Answering over

Knowledge Graphs. arXiv:2407.06041 [cs.CL]
[26] Ricardo Usbeck et al. 2015. Evaluating Entity Annotators Using GERBIL. In The

Semantic Web: ESWC 2015 Satellite Events. Springer.
[27] Ricardo Usbeck et al. 2019. Benchmarking question answering systems. Semantic

Web 10, 2 (2019).
[28] Ricardo Usbeck et al. 2022. QALD-10Wikidata Dump. doi:10.5281/zenodo.7496690
[29] Ricardo Usbeck et al. 2023. QALD-10 — The 10th Challenge on Question Answer-

ing over Linked Data. Semantic Web Journal 15, 6 (2023).
[30] Sören Auer et al. 2007. DBpedia: A Nucleus for a Web of Open Data. In The

Semantic Web. Springer Berlin Heidelberg, 722–735.

[31] Simon Bin et al. 2016. Towards SPARQL-based induction for large-scale RDF
data sets. In Proceedings of ECAI 2016 (ECAI’16). IOS Press. doi:10.3233/978-1-
61499-672-9-1551

[32] SenHu et al. 2018. AnsweringNatural LanguageQuestions by SubgraphMatching
over Knowledge Graphs. IEEE Transactions on Knowledge and Data Engineering

30 (2018), 824–837. https://api.semanticscholar.org/CorpusID:4569766
[33] Stefan Heindorf et al. 2022. EvoLearner: Learning Description Logics with

Evolutionary Algorithms. In Proceedings of the ACM Web Conference 2022. ACM.
[34] Vladislav Korablinov et al. 2020. RuBQ: A Russian dataset for question answering

over Wikidata. In International Semantic Web Conference. Springer, 97–110.
[35] Yixin Ji et al. 2024. Retrieval and Reasoning on KGs: Integrate Knowledge Graphs

into Large Language Models for Complex Question Answering. In Findings of

the Association for Computational Linguistics: EMNLP 2024. ACL.
[36] Jens Lehmann and Pascal Hitzler. 2007. Foundations of refinement operators for

description logics. In Proceedings of ILP 2007. Springer.
[37] Jens Lehmann and Pascal Hitzler. 2007. A refinement operator based learning

algorithm for the ALC description logic. In Proceedings of ILP 2007. Springer.
[38] Patrick Stickler. 2005. CBD - Concise Bounded Description. W3CMember Submis-

sion. https://www.w3.org/submissions/2005/SUBM-CBD-20050603/ Accessed:
2024-10-25.

[39] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (Sept. 2014), 78–85. doi:10.1145/2629489

https://arxiv.org/abs/2407.06041
https://doi.org/10.5281/zenodo.7496690
https://doi.org/10.3233/978-1-61499-672-9-1551
https://doi.org/10.3233/978-1-61499-672-9-1551
https://api.semanticscholar.org/CorpusID:4569766
https://www.w3.org/submissions/2005/SUBM-CBD-20050603/
https://doi.org/10.1145/2629489

	Abstract
	1 Introduction
	2 Related-work
	2.1 QA Benchmarking
	2.2 Concept Learning

	3 Preliminaries
	3.1 Description Logics
	3.2 Refinement Operators
	3.3 Concept Learning
	3.4 Knowledge-Graph-based Question Answering

	4 Explainable Benchmarking
	4.1 Approach
	4.2 PruneCEL

	5 Evaluation
	5.1 Experiment Setup
	5.2 Results

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

