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Abstract. It has been recently shown that worst-case optimal joins can
significantly speed up query processing in RDF triple stores, especially
in analytical workloads. However, this increase in query speed comes at
the expense of updates being slow or not supported at all. We see this
limited compatibility with updates as a key reason for the slow adoption
of worst-case optimal joins in triple stores. In this paper, we address
this challenge by presenting a fast, incremental insertion and deletion
algorithm for the hypertrie, a worst-case optimal join data structure.
This update algorithm can be used for offline bulk updates as well as
online updates. Our evaluation on realistic update loads from DBpedia
and scaling update sizes on Wikidata shows that the online performance
of our algorithm is comparable to or better than that of traditional triple
stores.
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1 Introduction

Approaches based on worst-case optimal joins (WCOJs) for SPARQL query
processing [2, 5, 6, 12, 17] have recently been shown to significantly outperform
traditional methods using binary joins. For example, triangle queries—which
are common in SPARQL—can be answered asymptotically faster with WCOJs
compared to binary joins [3]. WCOJs rely on extensive indexing to efficiently
evaluate SPARQL queries [2,5,6,12]. However, a key limitation is the inefficiency
of updates in these underlying indices [2].

In this paper, we address the challenge of supporting efficient updates in
WCOJ-enabled RDF triple stores by proposing a fast incremental update al-
gorithm for the hypertrie, a state-of-the-art index for WCOJs. The algorithm
supports offline bulk updates at rates of up to 150k triples per second and on-
line updates at up to 33k triples per second.1 To evaluate the efficiency of the

1 We refer to online updates when a HTTP SPARQL endpoint is live, and to offline
updates otherwise.
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proposed update mechanisms, we conduct a thorough comparison of our ap-
proach’s update performance with other triple stores. To achieve this goal, we
use two benchmarks on real-world datasets: (i) DBpedia (680×106 triples) with
updates derived from actual change logs and (ii) Wikidata (5.5×109 triples)
with synthetic updates sampled from the dataset. Our results demonstrate that
the proposed algorithm achieves update performance comparable to or better
than that of conventional systems based on binary joins both in terms of update
runtime and triples processed per second, thus solving the update bottleneck
problem associated with WCOJs.

The rest of the paper is structured as follows. The related work in update
support for WCOJ-enabled triple stores is reviewed in Section 2. Section 3 in-
troduced RDF related notation. In Section 4, we provide an overview of the
hypertrie data structure. The proposed update algorithm for efficient insertion
and deletion operations on the hypertrie is detailed in Section 5 and its evalua-
tion is discussed in Section 6. Finally, we conclude and discuss future directions
in Section 7.

2 Related Work

WCOJ algorithms [16] are a class of multi-way join algorithms that eliminate a
variable at a time instead of a triple pattern at a time like binary joins when
applied in SPARQL [6]. WCOJs eliminate the influence of intermediate results
from binary joins on the runtime complexity and are bound only by worst-case
result size. For example, using binary joins to evaluate triangle query2 where the
triple patterns have n solutions is bound by O(n2) whereas a WCOJs reduce the
complexity to O(n1.5). For more details about WCOJs in triplestores we refer
the reader to [1, 2, 11,14,15].

The Ring [2] is an indexing data structure designed to store graphs with min-
imal memory overhead. It is a monolithic datastructure that supports WCOJs
without relying on additional indices. However, the Ring does not support incre-
mental updates, as any modification to the data requires a complete rebuild of
the structure. To avoid rebuilding the Ring on every update the authors suggest
to collect changes in a classical index and rebuild periodically. The hypertrie [5,6]
is another indexing data structure with native support for WCOJs, described
in more detail in Section 4. While the versions presented in [5, 6] only provide
basic loading capabilities similar to the Ring, this paper extends the hypertrie
with full support for incremental updates. In contrast to the monolithic solutions
Ring and hypertrie, triple stores like MillenniumDB [17] and Jena-LFJ [12] use
multi-indexing approaches to enable WCOJs. MillenniumDB pre-materializes
only four collation orders, falling back to binary joins when a WCOJ would re-
quire a different index. Jena-LFJ, on the other hand, materializes all possible
collation orders to maximize query performance. Both systems leverage B-trees
for indexing. Although these approaches with multiple indices enable updates,

2 E.g., SELECT * WHERE {?a :knows ?b . ?b :knows ?c . ?c :knows ?a}.
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Fig. 1. Example hypertrie. For better readability, all figures show only nodes for col-
lation order SPO. The represented graph is equivalent to solution of the triple pattern
in the root node.

they require a considerable amount of storage for the additional indices and the
updates take longer as all indices have to be updated.

3 RDF Notation

We assume a basic familiarity with RDF and SPARQL. This section introduces
the core terms and notation used throughout the paper [8, 10]. Let I denote
the set of IRIs, L the set of literals, B the set of blank nodes, and V the set
of variables. The set of RDF resources is R = I ∪ L ∪ B. An RDF triple is
a tuple (s, p, o) ∈ (I ∪ B) × I × R, where s is the subject, p the predicate,
and o the object. A triple pattern is a tuple (s, p, o) ∈ (I ∪ B ∪ V ) × (I ∪
V )× (R∪V ). A triple pattern’s solution, or simply solution, is a partial function
µ : V ⇀ R that assigns resources to variables. We write solutions as sets of pairs,
e.g., {(?s, ex:Alice), (?p, ex:knows)}. A single assignment pair in a solution is
referred to as a binding, e.g., (?s, ex:Alice). A triple (s, p, o) matches a triple
pattern (s′, p′, o′) if each position in the pattern is either a variable or equal to
the corresponding component of the triple. The resulting solution µ binds each
variable in the pattern to the matching RDF term from the triple. Given a triple
pattern tp and an RDF graph G, matching tp to G yields the set of solutions that
is derived from triples in G that match tp. For simplicity, we consistently use
?s, ?p, and ?o as variable names for subject, predicate, and object, respectively.
This does not limit generality, as the paper does not consider joins that rely on
shared variable names.

4 Hypertrie

The hypertrie [5, 6] is a data structure designed to support WCOJs over RDF
knowledge graphs. To this end, the hypertrie organizes triple patterns and their
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solutions hierarchically in a directed acyclic graph. 3 Each hypertrie node repre-
sents one or more triple patterns that share the same solution set. The cardinality
of a hypertrie node refers to the cardinality of the solution set it represents. An
example is given in Figure 1.

A hypertrie consists of three levels of nodes, organized by the number of
unbound components (i.e., the number of variables) in the corresponding triple
pattern. The root (depth-3) node represents the fully unbound pattern ?s ?p

?o. Its children (depth-2 nodes) correspond to patterns with two unbound com-
ponents, such as s1 ?p ?o, ?s p1 ?o, or ?s ?p o1. The third level (depth-1
nodes) contains patterns with one unbound component, e.g., s1 p2 ?o. Each
hypertrie node maintains a mapping for each unbound variable occurring in its
associated triple pattern. For a given unbound variable v in a triple pattern tp,
this mapping assigns each valid binding b of v a child node whose pattern is
obtained by instantiating v in tp with b, while keeping the other positions un-
changed. For example in Figure 1, in the root node’s (associated with ?s ?p ?o)
variable mapping ?s we assign s1 to a depth-2 node that represents the triple
pattern s1 ?p ?o. In depth-1 nodes, where only one variable remains unbound,
the mapping reduces to the set of valid bindings for that variable. Following
SPARQL semantics, the solution set of a child node consists of those solutions
of the parent node in which the mapping variable v is bound to b, with v re-
moved from the solution. Thus, each child node represents a projection of a
filtered subset of its parent’s solutions.

To reduce redundancies and storage overhead in the hypertrie, [5] introduced
three optimizations. (i) Node deduplication via homomorphic hashing : Nodes
representing triple patterns with identical solution sets are deduplicated reducing
the total number of nodes in the structure. For example in Figure 1 that uses this
optimization, for variable mapping ?s both s1 and s3 are assigned to the same
node because the triple patterns s1 ?p ?o and s3 ?p ?o have the same solution
set. For the deduplication each node is assigned an identifier (i in Figure 1)
that is a hash of its solution set. Homomorphic hashing enables incremental
updates to the identifier as the solution set changes, avoiding the need to sort
and rehash the entire set on each update of a node. It is also used to look up
if the node resulting from a update exists already. Since a single node may now
be reachable from multiple parents, reference counting (r in Figure 1) is used to
manage node sharing and deletion. The reference count of the root node defaults
to 1, as it spans the entire hypertrie. (ii) Singleton depth-2 nodes: If a depth-2
node represents only a single solution, it is stored as a lightweight single entry
node without any children. (iii) Singleton depth-1 nodes: If a depth-1 node would
contain only a single solution, that solution is stored in-place in the parent node’s
variable mapping.4 Unless stated otherwise, figures in this paper apply only the

3 Note that this applies only to triple patterns that do not contain a particular variable
multiple times. Such triple patterns are handled in query processing. We are not
aware of any triplestore that maintains an index for such patterns.

4 This relies on the fact that the memory slot used for the reference to a child node is
large enough to store the payload of a singleton depth-1 node.
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Fig. 2. Inserting single triples into the hypertrie of Figure 1. All insertions and deletions
in subsequent figures operate on the same hypertrie instance. Executed changes are
highlighted in all figures in orange.

first optimization (node deduplication) to simplify the representation but our
update algorithm takes all optimization into account.

5 Hypertrie Updates

This section presents our approach for performing insertions and deletions on the
hypertrie. We begin by introducing the update mechanism for individual triples,
followed by the creation and deletion of nodes, which together form the concep-
tual basis for bulk updates. We then describe how bulk updates are scheduled
and executed efficiently. This includes reference count management and the dele-
tion of unreferenced nodes. Finally, we discuss how singleton node optimizations
are integrated into the update process. Each update operation consists exclu-
sively of either insertions or removals.5 Updates that include both must be split
into two separate operations and executed consecutively.6 All examples focus on
the collation order SPO; the remaining collation orders are handled analogously.
The required changes for all collation orders are collected in the same structures.
This eliminates overhead for equivalent operations required multiple times for
the same or different collation orders and ensures that each unique operation is
executed only once.

5.1 Updates Using a Single Triple

5 We assume only new triples are inserted and only existing ones are removed.
6 This is in accordance with the SPARQL 1.1 Update specification [10].
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Fig. 3. Deleting single triples

Insertion. We begin by considering the insertion of a single triple. The process
starts at the root node, where the inserted triple contributes a new solution to the
fully unbound triple pattern ?s ?p ?o. Consequently, each variable mapping of
the root node needs to be updated by either adding a new assignment between a
resource and a child node (see Figure 2a) or update the child node of an existing
assignment (see Figure 2b).

The first scenario is illustrated in Figure 2a. Here, inserting the triple s4
p2 o1 adds the solution {(?s, s4), (?p, p2), (?o, o1)}. This requires to add the
assignment for s4 in the root node’s mapping of ?s, since it was not previously a
solution for ?s. s4 is assigned a hypertrie node representing the remaining part of
the solution, i.e., {(?p, p2), (?o, o1)}. Such a node already exists in the hypertrie,
since the triple pattern s2 ?p ?o has the same solution set. Consequently, we
increment the reference count of the now shared node. Since the the node’s
variable mappings are not modified, no further propagation is necessary.

In Figure 2b, the subject resource s2 of the inserted triple s2 p2 o2 is assigned
in the root node’s mapping of ?s. Since the assigned child node is referenced no
where else, we can update that node directly by adding the remaining part of
the solution {(?p, p2), (?o, o2)}. Again, updating the node for s2 ?p ?o requires
updating its variable mappings. For variable ?p, the node assigned to p2 must
be updated. However, since that node for the triple pattern s2 p2 ?o is still ref-
erenced elsewhere, this time we create and reference a copy instead of modifying
it in place. Since the node is a leaf node, the update is completed afterward.

Deletion. The deletion of a single triple also requires distinguishing two cases,
depending on the effect it has on the hypertrie’s structure. In particular, to
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reflect the removed solution an assignment for a variable mapping is either fully
removed (see Figure 3a) or the assigned child is reduced (see Figure 3b).

In the first case, the triple to be removed contains a resource that will no
longer be a valid binding for one of the variables in the affected triple pattern.
This is illustrated in Figure 3a for the triple s2 p2 o1. In the root node, the
subject s2 was assigned the hypertrie node representing s2 ?p ?o. Since the
triple being removed is the only solution with subject s2, this child node would
now represents an empty solution set. As a result, the assignment for s2 is
removed from the root node’s mapping for variable ?s, and the now-unreferenced
child node is deleted. Deleting the node for s2 ?p ?o, propagates reference count
decreases that are applied to its child nodes. As its previous child node with
identifier E is still referenced by other nodes, it is not deleted.

In the second case, the removed triple reduces the number of solutions in
a child node with multiple solutions, such that the resulting child retains at
least one solution. This is illustrated in Figure 3b, where the triple s3 p1 o1 is
removed. The subject s3 remains a valid binding for ?s, so its assignment in the
root node’s mapping for variable ?s is preserved but the assigned child needs
to be reduced. Note, that the s3 and s1 were orignially both assigned to the
same child node with identifier B. Consequently, node B is still referenced and
thus must not be modified in place; instead, a copy is created and updated to
reflect the removal. Specifically, its assignment for predicate p1 is removed to
form the new node B2. For all assignments of that remain unchanged between B
and B2—e.g., the assignment p2 node’s mapping for variable ?p—the reference
counts of its corresponding child nodes are incremented to reflect the additional
reference from their newly created parent node. The update terminates once all
leaf nodes have been updated accordingly.

To summarize, updates to the hypertrie for a single triple alter the root
node’s mapping for variable—either by introducing a new assignment (insertion),
removing an existing one (deletion), or modifying child node an assignment refers
to (insertion or deletion). Updates are propagated recursively to child nodes.
When modifying a child node, a copy-on-write mechanism is applied to preserve
sharing: if the node is still referenced elsewhere, it is copied before modification;
otherwise, it can be edited in place. Reference counts are adjusted to reflect node
creation, deletion, and changes in variable mappings.

5.2 Creating and Deleting Nodes

As shown in Section 5.1, adding or removing variable mappings may trigger the
creation or deletion of depth-2 and depth-1 nodes. This section briefly outlines
the steps required for creating and deleting such nodes. These steps are used for
both update operations using single triples and bulk updates (Section 5.3). The
same mechanism also applies when creating or deleting the root node. Figure 4a
illustrates the process of creating a node from a set of triple pattern solutions.
The creation proceeds in three steps: (1) If an equivalent node already exists, it
is reused by incrementing its reference count and the process terminates. (2) If
such a node does not exist, a new node is allocated. For each variable of the
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Fig. 4. Creating and deleting of nodes.

solutions, a variable mapping is populated assigning the unique resources for the
respective variable to child nodes. (3) To ensure that all assigned child nodes
exist and that they have correct reference counts, their creation is triggered
recursively as described in Section 4. Figure 4b illustrates the process of deleting
a node, which is carried out in two steps: (1) If the reference count of the node
is greater than one, it is decremented and the process terminates. (2) Otherwise,
the node is deallocated. The deletion is then recursively propagated to all child
nodes referenced by the removed node.

5.3 Bulk Updates

Database indices often suffer from write amplification when applying numerous
small updates [7]. In the hypertrie, for example, each update requires modifi-
cations to each variable mapping in the root node. By applying insertions or
deletions in bulk, this overhead is incurred only once, thereby reducing write
amplification. We generalize the single-triple update mechanism to handle mul-
tiple inserted or deleted triples at once. Technically, these triple modifications
translate to solution modifications applied to the root node and recursively prop-
agated changes to child nodes. The core idea is to group modified solutions in
the same way that variable mappings are organized in the hypertrie, and to
use these groups to update the variable mappings and child nodes. Specifically,
the following steps are taken for each variable v that is found in the triple
patterns of a hypertrie node. First, the solutions are grouped by their binding
value b for v, forming a group U for each unique resource b. Since the group
U will be used to create, delete, or update a child node, the binding for v
is removed from its solutions. For example, given the variable ?p and the so-
lutions {{(?p, p1), (?o, o1)} , {(?p, p1), (?o, o2)} , {(?p, p2), (?o, o1)}} , the solu-
tions for the grouping keys p1 and p2 are solutions {{(?o, o1)} , {(?o, o2)}} and
{{(?o, o1)}} , respectively. Bulk insertions work similarly to insertions involving
a single triple. If a resource b is not yet assigned for variable mapping v, a new
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Fig. 5. Example of a bulk insertion execution. The steps shown include updating the
root node, scheduling changes to depth-2 nodes, and applying those changes. Further
recursive propagation is omitted from the figure.

assignment is added that points to a newly created node initialized with group
U . If b is already assigned to a node X, a new node X1 is created by adding U to
X, and b is reassigned to X1. For deletions, the outcome depends on how many
solutions are removed. If the number of solutions in U equals the total number
of solutions in the child node X assigned to b (i.e., |U | = |X|), the assignment is
removed and child node deleted. Otherwise, a new node X2 is created by remov-
ing U from X, and b is reassigned to X2. Our algorithm proceeds in a level-wise
manner: for each node at the current level, it updates the variable mappings
and collects the resulting update requests for its child nodes. Once all nodes at
a particular level have been processed, the collected updates for the level below
are applied.

Planning and Scheduling Changes Planning changes targets two main ob-
jectives: (1) cache-conscious execution by applying updates originating from the
same node consecutively, and (2) reduction of memory overhead by reusing nodes
that become unreferenced.

To this end, we collect a set of changes. Each change consists of a source
node identifier, a set of affected solutions, and a target node identifier, which
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is computed from the source node identifier and the set of affected solutions.
In parallel, reference count deltas are collected per change. For each change,
a decrement is recorded for the source node and an increment for the target
node. For insertions and removals that reduce but do not delete a child node,
all three change components are recorded. If a node is newly created, the source
node identifier is omitted from the change. Node deletions and removals of all
solutions from a node are not recorded as changes, but only as reference count
decrements. Furthermore, if the target node already exists or is scheduled for
creation by another change, no change is recorded and only the corresponding
reference count deltas are collected. Once the collection is completed, changes are
scheduled as follows. Changes are executed grouped by their source node, and
reference count increments for target nodes are applied alongside each change.
The reference count decrement for a source node is applied with the final change
in its group. If the reference count of a source drops to zero, the source node
is modified in place since that is considered cheeper than copying it; otherwise,
changes are applied using copy-on-write. Finally, any remaining reference count
deltas are applied. If a reference count drops to zero as a result of this, the
respective node is deleted.

Figure 5 illustrates the planning and execution of a bulk insertion. The inser-
tion begins by adding solutions to the root node. For variable ?s, this involves
updating the child nodes associated with s1 and s3, as well as creating new
associations for the resources s4 and s5. For s1, a single solution must be in-
serted into node B. Since the resulting node B3 does not yet exist, a change is
scheduled. For s3, two new solutions are inserted into node B creating the node
B4. Both scheduled changes contribute a decrement to the reference count of B,
and an increment to the target nodes B3 and B4, respectively. For s4, a node C
is required. However, since C already exists, no new change is scheduled—only
a reference count increment is recorded. In contrast, for s5, the required node
C2 does not yet exist. A change is recorded with no source node (indicating
creation), and a reference count increment is added for C2. In the next phase,
the changes to the depth-2 nodes are applied. The first change inserts into node
B, yielding node B3. Since further operations use B as a source, the insertion
is performed via copy-on-write. The next change also inserts into B, producing
node B4, and is the last one with B as its source. As applying the reference count
delta drops B to zero, it is modified in place. Node C2 is created from scratch.
The reference count increments for B3, B4, and C2 are applied immediately dur-
ing their respective executions. Finally, the remaining reference count deltas for
nodes not involved in any scheduled change—here, only C—are applied. Further
recursive propagation into scheduling and applying depth-1 changes takes place
in the actual update process but is not shown in this example.

Figure 6 illustrates the planning and execution of a bulk removal. The process
begins by deleting solutions from the root node. For the variable mapping of ?s,
this affects the assignments for s1, s2, and s3. For s1, a single solution is removed
from child node B. Since the resulting node B2 does not yet exist, a change is
scheduled. For s3, two solutions are removed from node B, producing the node
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Fig. 6. Example of a bulk removal execution. The steps shown include updating the
root node, scheduling changes to depth-2 nodes, and applying those changes. Further
recursive propagation is omitted from the figure.

B5. Both scheduled changes contribute a decrement to the reference count of B,
and an increment to the reference counts of B2 and B5, respectively. In the case
of s2, all solutions are removed from node C and, as a result, the assignment
is removed. Ultimately, for node C, a reference count decrement is recorded;
however, no change is scheduled. In the next phase, the changes to the depth-2
nodes are applied. The first change removes a solution from B and creates node
B2 via copy-on-write, as B is still needed for the next operation. The following
change also removes solutions from B, producing node B5, and is the last one with
B as its source. Since the reference count of B drops to zero after this change, it
is edited in place to become B5. The reference count increments for B2 and B5 are
applied immediately during their respective executions. Finally, the remaining
reference count deltas for nodes not involved in any scheduled change—here,
only C—are applied. As node C becomes unreferenced, it is deleted. Again, the
further recursive propagation is omitted from the example.

Handling Singleton Optimizations The application of singleton node
optimizations—namely, single entry nodes (SENs) for depth-2 and in-place stor-
age for depth-1—requires minor adjustments in both change planning and ex-
ecution. In the following we refer to regular hypertrie nodes, which have been
covered above, as full nodes (FNs) in contrast to SENs or in-place stored nodes.
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Unlike FNs, which can be modified to represent different sets of solutions,
SENs can only be created or deleted. Accordingly, SEN creation and reference
count tracking are handled separately. Whenever a change involves both a FN
and a SEN, it is split into two self-contained operations: a FN change, and a SEN-
specific operation consisting of a reference count delta and, if necessary, a planned
SEN creation. For example, transitioning from a SEN to a FN requires adding the
SEN’s single solution to the change set for the FN. The recorded change is then a
creation, i.e., the source identifier is omitted. Conversely, transitioning from a FN
to a SEN involves computing the remaining single solution and scheduling the
creation of a new SEN from it. This is necessary since SEN changes are scheduled
after FN changes so the FN might not be available any more by the time the SEN
is actually created. As with FNs, a SEN is deleted when its reference count drops
to zero. Handling singleton depth-1 nodes follows the same principles as SENs
in relation to FNs. However, since singleton depth-1 nodes are not shared, they
can be created and deleted immediately, without requiring change scheduling or
reference counting.

Runtime Complexity A depth-d the hypertrie encoding a set of z tuples with
all optimizations from [5] requires O(z · 2d−1 · d) space. The runtime complexity
of applying (inserting or deleting) a changeset set ∆ of d-tuples to a depth-
d hypertrie is bound by the space complexity O(|∆| · 2d−1 · d) of a surrogate
hypertrie that encodes the change set changeset ∆. The proofs are provided in
the supplementary material.

5.4 Comparison to the Baseline & Implementation

Our algorithm builds on the hypertrie implementation from [5], which includes an
insertion procedure not described in the paper, but lacks support for deletions.
While that insertion algorithm also follows a top-down approach, it does not
separate phases making it unsuitable for extension to support removals. In our
algorithm, changes are planned first based on the previous state of the hypertrie
context and then executed without further consulting the hypertrie context.
This allows to re-use common sub-routines for insertion and deletion in the
implementations and makes it easier to follow as it is dividing it into clearly
separated steps.

Our implementation Tentris-ID includes our extended hypertrie implemen-
tation and the necessary changes in Tentris to support updates, i.e., adding
support for SPARQL INSERT/DELETE DATA update queries and implementing
a reader-writer lock on the hypertrie to ensure atomicity and isolation during
updates. We used the latest code versions from the repositories referenced in [5].
Since the publication of [5], the code was updated, most notably by enhancing
RDF support through the rdf4cpp7 library, and by moving from in-memory to
persistent disk-based indexing by leveraging the Metall allocator [13].

7 https://github.com/tentris/rdf4cpp
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6 Evaluation

For our evaluation, we focus on pure online update performance and hence solely
use INSERT/DELETE DATA queries. We use a real-world scenario based on DB-
pedia changelogs and a scenario based on Wikidata that tests the benchmarked
systems’ behavior with increasing update sizes. All experiments were executed
on a Debian 11 Server with an AMD EPYC 7713 CPU, 1TB DDR4 octa-channel
RAM at 2933MT/s and a 15.36TB KIOXIA CD6-R SSD with an ext4 filesys-
tem. The supplementary material includes benchmarking results confirming that
Tentris and Tentris-ID have equivalent bulk-loading performance and stor-
age efficiency.

6.1 Systems and Experimental Setup

We compare the performance of our implementation (Tentris-ID) with the
following triple stores that are freely available for benchmarking:

(i) Fuseki 5.2.0, (ii) GraphDB 10.6.2 (free version), (iii) Virtuoso 7.2.12, and
(iv) Oxigraph 0.4.7. MilleniumDB [17] and QLever [4] were excluded since they
failed or crashed on most of the updates. Jena-LFJ [12] was excluded from the
evaluation because it relies on Fuseki’s TDB backend with additional indices
enabled, which inevitably makes it slower than Fuseki. Our experiments were
carried out over HTTP, according to SPARQL’s protocol ”update via POST
directly” [9]. Before each experiment, the triple stores went through a warmup
phase for which we sent the queries from the benchmarks of [5].

6.2 DBpedia Update Logs

We start with a snapshot of DBpedia from October 2015 with 860M triples which
we date stamped to October 1st, 2015 and execute the updates reported in the
official DBpedia changelogs from October 2015. Based on the triples inserted
and deleted in each changelog entry, one INSERT DATA and one DELETE DATA

are created, resulting in a total of 15,086 updates. Figure 7 shows the update
performance of the evaluated triplestores. The top row plots the update time
per triple against the update size, while the bottom row summarizes the runtime
distribution, total runtime, and failed updates.

Overall, Tentris-ID and Oxigraph are the fastest, followed by Fuseki.
GraphDB shows longer update durations, particularly for smaller update sizes,
but improves with larger updates. All triplestores but Virtuoso perform better
with larger update sizes, likely due to the amortization of HTTP and trans-
actional overheads. Virtuoso’s performance is comparable to that of Fuseki for
update sizes up to 100 triples but slows down considerably for larger updates.
Additionally, Virtuoso rejected8 all updates exceeding 1,359 triples, resulting in
11,090 (73%) rejected updates. Oxigraph rejected 18 queries (0.12%). In terms of

8 Its SPARQL-to-SQL mapping has a hard-coded limit (see https://github.com/

openlink/virtuoso-opensource/blob/34c367/libsrc/Wi/sparql2sql.h#L1031).
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Fig. 7. The triple stores’ runtime performance at replaying DBpedia’s official update
logs. Lower values are better on all subplots as indicated by the ◀. The top plot shows
the update size versus the time spent per updated triple. The bottom row provides
summary statistics: The left panel is a standard boxplot on the update runtimes with
an additional cross for the mean. The middle panel compares the total cumulative
runtime and the right panel shows the number of failed updates per system.

mean update time, Tentris-ID consistently outperforms or matches the other
systems with a mean(± standard derivation) runtime of 0.067 (±0.081) seconds
(s). Oxigraph performs similarly with 0.074 (±0.049)s. The other triplestores
are slower, with Virtuoso at 0.12 (±0.12)s (not comparable due to 73% rejected
updates), Fuseki at 0.21 (±0.11)s, and GraphDB at 0.33 (±0.15)s. For total
runtime see Figure 7.

6.3 Wikidata

In our second evaluation, we assess scalability with update sizes up to 106 triples
using the larger Wikidata trusty dataset (November 11, 2020), which contains
5.5B triples. For this scenario, SPARQL updates were generated from randomly
sampled triples. We generated batches of 500 insert and 500 delete updates of
sizes 101, 102, 103 and 104. For the larger update sizes, we created 100 batches
of size 105 and 10 batches of size 106 for both insert and delete updates. The
triples from the insert queries were removed from the dataset before it was loaded
into the triple stores. Like in our first experiment, the queries were executed
alternating between insert and delete.
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Fig. 8. The triple stores’ runtime performance at applying updates to Wikidata with
5.5B triples. The top plot shows scaling update size from 101 to 106 triples, bands rep-
resent one standard deviation. For missing Virtuoso data see Footnote 8. The bottom
row provides summary statistics for the batch of updates of size 104. For a detailed
descriptions of the row layout see Figure 7.

The top plot of Figure 8 shows the mean update time per triple as a function
of the update size. Consistent with the findings from the DBpedia scenario,
all systems benefit from update sizes. However, this improvement plateaus, for
update sizes exceeding 103 in Oxigraph, 104 in Fuseki and 105 in GraphDB
and Tentris-ID. Virtuoso8 is again unable to process updates larger than 103.
Tentris-ID achieves the overall best performance of all systems for update sizes
of 104 or more. In particular, it is more than 5.6 times faster than Fuseki and
GraphDB on updates of size 105 and 106. For small and large updates (sizes
10, 105 and 106) Tentris-ID performs about 2 times faster than Oxigraph.
For middle-sized updates (sizes 103, 104 and 105), both systems perform similar
within a 30% range. We further compare Tentris-ID with the second-best
performing systems Oxigraph by measuring the performance of both systems
during the warmup phase, which executed 495 SPARQL SELECT queries. In our
experiments, this took Oxigraph over 9 hours where as Tentris-ID finished in
43 minutes. Notably, Oxigraph’s storage footprint is also 25–54% larger than
that of Tentris-ID. Hence, we conclude that our extension of the hypertrie
with updates leads to the first WCOJ-enabled data structure that outperforms
the state of the art both on SELECT (as shown in [5, 6]) and INSERT/DELETE

queries.
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7 Conclusion and Future Work

We present the first, to the best of our knowledge, efficient online update algo-
rithm for RDF triplestores that fully support worst-case optimal joins (WCOJs).
Our solution enables both insertion and deletion of triples while preserving the
performance benefits of WCOJs, achieving a crucial milestone in making WCOJs
viable for production-ready triple stores. Our evaluation demonstrated that the
proposed methods deliver update performance on live updates—scaling up to
1M triples—comparable to or better than traditional triple store systems on
large graphs such as DBpedia and Wikidata.

While this work focused on the update operations of the hypertrie, future
work should aim to optimize the update process further. The current imple-
mentation does not support concurrent reads during updates. In the future, we
plan to investigate approaches that allow a hypertrie to remain accessible for
reads while updates generate a new version. A possible direction that we plan
to explore is deferred materialization where nodes track deltas relative to other
hypertrie nodes, thus enabling incremental updates with minimal disruption to
ongoing reads. Further, a systematic study of runtime under specific update
patterns, e.g., different insertion orders, could be executed to identify possible
performance pitfalls.

Supplemental Material Statement: Source code for our modified version of the
hypertrie and Tentris-ID are available from Github9. Raw benchmarking re-
sults, bulk-loading performance and storage efficiency results, a technical report
for the implemented algorithm, scripts to setup and run the benchmarks, and
scripts to generate the figures are available from GitHub10.
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16. Ngo, H.Q., Porat, E., Ré, C., Rudra, A.: Worst-case optimal join algorithms. J.
ACM pp. 16:1–16:40 (2018)
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