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Abstract. Knowledge Graph Embeddings are often used to bridge sym-
bolic representations of Knowledge Graphs and the sub-symbolic repre-
sentations that modern Machine Learning algorithms operate on. While
embedding models provide users with a mapping from symbolic enti-
ties and relations to their sub-symbolic representations, a mapping in
the opposite direction typically relies on a nearest neighbor search. Due
to the computational complexity of this task, a plethora of approaches
for approximate nearest neighbor search have been developed. The ma-
jority of these approaches outperform the default brute-force-based ap-
proach while providing a high recall. However, previous evaluations of
these approaches focused on image data and word embeddings but did
not consider Knowledge Graph Embeddings. We close this gap by car-
rying out a detailed comparison of 22 Approximate Nearest Neighbor
Search systems on 16 datasets. In contrast to the state of the art, we
fine-tune each approach in each experiment by using Bayesian opti-
mization to ensure the fairness of our experiments. Our results sug-
gest that the overall performance of approaches with respect to run-
time and recall is contingent upon the similarity measure used to com-
pare embeddings. Our source code, datasets and results are available at
https://github.com/MichaelRoeder/ann-benchmarks/tree/main.

Keywords: Knowledge Graph Embeddings · k-Nearest Neighbor Search
· Approximate Nearest Neighbor Search.

1 Introduction

Knoweldge Graph Embeddings (KGEs) have a wide area of applications [8] rang-
ing from link prediction [11] to Knowledge-Graph-based question answering [5,6]
and recommendation systems [37,16]. In several of the aforementioned applica-
tions, one or several entities found in the embedded Knoweldge Graph (KG)
have to be identified based on the similarity (or distance) of their embedding
vector to a given query vector. A brute force comparison of the query vector to
all known embedding vectors is a simple, straight-forward solution. However, it
comes with a linear time complexity in the number of entities in the input KG

https://github.com/MichaelRoeder/ann-benchmarks/tree/main
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and in the number of dimensions of the embeddings. Consequently, brute-force
approaches yield a high runtime if

1. there are many vectors in the embedding model and
2. the embedding vectors have a high dimensionality.

This is known as the k nearest neighbors (k-NN) search problem. In recent years,
a plethora of algorithms has been proposed that try to approximate the solu-
tion for this search problem [2,26,34]. These algorithms are called approximate
nearest neighbors search (ANNS) algorithms. The main idea behind ANNS ap-
proaches is to accept a small error in the result in exchange for a runtime or mem-
ory consumption reduction when compared to exact k-NN search algorithms [26].
Muja et al. [28] report that the choice of the optimal ANNS algorithm highly
depends on factors including the data dimensionality and the size and struc-
ture of the dataset. Due to their wide applicability, ANNS algorithms have been
compared on many different datasets including audio, image, video, text and
word embedding datasets in the literature [2,26]. However, to the best of our
knowledge, their performance on KGEs has never been studied so far and it is
unclear whether previous results hold in this different application area.3

Our work tackles this research gap via two main contributions.

1. We provide the first comprehensive evaluation of ANNS algorithms on KGEs.
Relying on an ANN benchmarking framework proposed by Aumüller et
al. [2], we compare 22 ANNS systems on 16 datasets. These datasets are
created using 2 KGs, 2 distance metrics and 4 KGEs models.

2. For the first time, we address the challenge of finding suitable parameters
for ANNS systems by using Bayesian optimization. Through this superior
approach for parameter tuning, we achieve a fairer comparison of the systems
we evaluate than previous grid-search-based works [2].

In the following, we describe related work with a focus on the systems that we
evaluate. Section 3 gives a formal problem definition of the problem we tackle and
describes the extensions of the ANN benchmarking framework necessary for our
experiments. Section 4 comprises a description of our experiments, including the
used data, they key performance indicators and the gathered results. We discuss
these results in Section 5 before we conclude the article in Section 6.

2 Related Work

A large number of exact and approximate k-NN search algorithms have been
proposed [2,26,34]. In recent years, several articles have been published that
compare these algorithms with respect to their effectiveness and efficiency on
different types of data. For example, Wen et al. [26] compare 8 algorithms on 20
3 KGEs tend to contain millions of entities but with less dimensions than the image

embeddings used in the related work. At the same time, Alshahrani et. al [1] showed
that different embedding algorithms use the embedding space in very different ways.
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datasets with a focus on the Euclidean distance. Their datasets comprise mainly
image data but also include audio, video, text and synthetically generated data.
Wang et al. [34] compare 15 algorithms on 8 datasets with a focus on on graph-
based ANNS algorithms. Their evaluation also relies on audio, image, text and
video data. Aumüller et al. [2] compare 14 algorithms on 7 datasets and include
the angular and Hamming distance. None of these works targets the effectiveness
and efficiency of ANNS systems on KGEs.

Aumüller et al. [2] also propose an open-source ANN benchmarking frame-
work that they used for their evaluations.4 We use this framework as basis for our
experiments since it provides the general workflow for a repeatable evaluation
and comes with a large number of integrated ANNS systems. Consequently—in
contrast to Wen et al. [26]—, we do not alter the algorithm implementations to
reduce the impact of optimizations the developers may have integrated into their
solutions. Instead, we evaluate ANNS systems that are ready for use. We also
include several systems that implement the same base algorithm to see whether
the implementation of an algorithm has an impact on our evaluation results.5

While there are many ANNS systems available, we ensure the practical fea-
sibility of our study by focusing our evaluation on systems that

1. can handle floating point numbers,
2. support at least the one of the angular and Euclidean distance metrics,
3. have been integrated into the ANN benchmarking framework,
4. come with a working Docker image, and
5. are suggested for benchmarking by the authors of the ANN benchmarking

framework.6

Table 1 lists the 22 chosen systems, which are briefly described in the follow-
ing subsections.7 Note that the list does neither contain hash-based nor neural
algorithms. Systems of the former type rely on a hash algorithm like locality
sensitive hashing [20,29] to create a list of possible neighbors while the latter are
a set of approaches that utilize neural networks to improve existing search algo-
rithms further [25,33], e.g., by learning a hash function [7]. We have to exclude
these algorithms since none of them fulfills the criteria above at the time of our
evaluation.

4 The framework is available at https://github.com/erikbern/ann-benchmarks/.
5 Note that some of the systems offer additional features, e.g., the support of a vari-

ety of distance metrics, support for a distributed environment, or the usage of the
computational power of GPUs [13]. We won’t take these features into account for
our experiments as they go beyond the focus of this paper.

6 Some algorithms, like Annoy (https://github.com/spotify/annoy) have been
marked as "disabled" since they have a successor algorithm (in this case, Voyager)
that typically performs better.

7 We also include the pyglass library into our experiments (https://github.com/
zilliztech/pyglass). However, it does not achieve a Recall above 0 for any config-
uration that we try. Hence, we won’t discuss it within this article.

https://github.com/erikbern/ann-benchmarks/
https://github.com/spotify/annoy
https://github.com/zilliztech/pyglass
https://github.com/zilliztech/pyglass
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Table 1. The ANN systems that we evaluate, their main algorithm, and links to their
project page.

Type System Algorithm Link

Graph-based

Elasticsearch HNSW [27]
FaissHNSW HNSW [27]
Hnswlib HNSW [27]
LuceneKNN HNSW [27]
N2 HNSW [27]
NGT-PANNG PANNG [22]
NGT-QG QG [23]
NN-Descent NN-Descent [13]
OpenSearch k-NN HNSW [27]
pg-embedding HNSW [27]
PyNNDescent NN-Descent [13]
QSGNGT QG [23]
Vald QG [23]
Vespa HNSW [27]
Voyager HNSW [27]
Weaviate HNSW [27]

Tree-based
FLANN [28] kd-trees / k-means tree
MRPT MRPT [19]
Scann SOAR [32] + VQ [18]

IVF-based
FaissIVF IVF
FaissIVFPQ IVF + PQ
TinyKNN IVF + PQ

2.1 Graph-based Approaches

Graph-based ANNS approaches create a k-NN neighborhood graph, in which
data points of the original dataset are the nodes that are connected to their k
neighboring vertices with an edge [34]. However, creating an exact k-NN graph
is expensive [21]. The NN-Descent algorithm [13] can be used to generate an
approximate nearest neighbor graph (ANNG) and is based on the idea that two
neighboring vertices are very likely to have the same neighbors. Given an initial
ANNG, the algorithm traverses the neighbors of nodes and checks whether their
neighbors are also within the k nearest neighbors of the current node. Based on
this concept, the algorithm creates an updated version of the given graph. PyN-
NDescent and NN-Descent are implementations of the NN-Descent algorithm in
Python an C++, respectively. Both implementations extend the original algo-
rithm with an initialization based on random projection trees [9] to generate the
initial version. Several algorithms of the NGT library are built upon a similar
approach to create ANNG [21]. NGT-PANNG [22] is an implementation that
includes the pruning of excessive edges in the ANNG. NGT-QG and QSGNGT
are further extensions based on quantization graphs (QG), i.e., they make use
of product quantization to store approximations of the given vectors that are

https://github.com/elastic/elasticsearch
https://github.com/facebookresearch/faiss
https://github.com/nmslib/hnswlib
https://lucene.apache.org/
https://github.com/kakao/n2
https://github.com/yahoojapan/NGT
https://github.com/yahoojapan/NGT
https://github.com/brj0/nndescent
https://github.com/opensearch-project/k-NN
https://github.com/neondatabase-labs/pg_embedding
https://github.com/lmcinnes/pynndescent
https://github.com/WPJiang/HWTL_SDU-ANNS
https://github.com/vdaas/vald
https://github.com/vespa-engine/vespa
https://github.com/spotify/voyager
https://github.com/weaviate/weaviate
http://www.cs.ubc.ca/research/flann/
https://github.com/vioshyvo/mrpt
https://github.com/google-research/google-research/tree/master/scann
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
https://github.com/thomasahle/tinyknn
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shorter and, hence, faster to process [23]. Vald is a variant thereof with a focus
on distributed setups. One approach to search in an ANNG with a given query
vector is to start at one or several seed nodes and to compare the distances of
this node and its neighbors to the query node. The closest node is chosen and
the search continues until no closer neighbor can be found. Another approach is
to further explore nodes within a search space that is narrowed down during the
search process [22].

The Hierarchical Navigable Small World (HNSW) algorithm [27] separates
the neighborhood graph into several hierarchically connected graphs. The high-
est layer only contains a small number of randomly chosen points with larger
distances while the lower layers contain neighborhoods with small distances. A
search in the graph is performed in the same way as before but includes steps
from the top layers to the bottom layers. In each layer, the number of neigh-
bors per vertex is limited to ensure a search in logarithmic time. The HNSW
algorithm has been widely adopted and in this article, we look at Elasticsearch,
FaissHNSW, Hnswlib, LuceneKNN, N2 [27], OpenSearch k-NN, pg-embedding,
Vespa, Voyager, and Weaviate, that all rely on this algorithm.8

2.2 Tree-based Approaches

Tree-based approaches separate the high-dimensional space into smaller sub
spaces. The separated parts are then organized in a tree structure. MRPT [19]
uses multiple random projection trees to separate the search space. The search
results from the different trees are combined using voting. FLANN [28] is a sys-
tem that is based on two different algorithms and decides which to use based
on the given data. It can use the multiple randomized kd-trees [3,15] or the
priority search k-means tree [17]. The latter is chosen in cases in which the vec-
tors have many dimensions since the multiple randomized kd-trees are known to
have a decreasing performance with high dimensional data [28]. Scann is based
on SOAR [32], an approach that uses spill trees with multiple representations
of the search space to reduce the probability that a nearest neighbor is missed
due to the separation of the search space. However, in contrast to previous
works, SOAR does not create the trees independently but uses an orthogonality-
amplified residual loss. The goal is to optimize each tree to cover cases where
other trees perform poorly. In addition, Scann uses a quantization method called
vector quantization [18].

2.3 Inverted-file-based Approaches

Inverted-file-based approaches cluster the set of given vectors into inverted lists.
When a search is performed on an inverted file (IVF) index, only vectors from

8 According to the documentation, OpenSearch k-NN also provides a FaissIVF-based
implementation for an ANN search index (https://opensearch.org/docs/2.6/
search-plugins/knn/approximate-knn/). However, only the HNSW implementa-
tion seems to be integrated into the ANN Benchmarking framework.

https://opensearch.org/docs/2.6/search-plugins/knn/approximate-knn/
https://opensearch.org/docs/2.6/search-plugins/knn/approximate-knn/
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a small number of lists are compared to the given query vector [24]. Faiss-IVF
implements this algorithm while FaissIVFPQ and TinyKNN combine the IVF
approach with product quantization (PQ).

3 Benchmarking Framework

We define the k nearest neighbor problem as follows: Given a set of vectors V in
a space X and a distance function δ : X ×X → R+, find the set π that contains
the k closest vectors to a given query vector u according to δ [2]. Formally, we
define π as a k-subset of V such that ∀v ∈ π ∀v′ ∈ V \ π : δ(u, v) ≤ δ(u, v′).
An algorithm that provides an approximation of π is called approximate nearest
neighbor search (ANNS) algorithm. Within this article we focus on the angular
and Euclidean distance functions for δ. The space X is defined by the used
Knowledge Graph embedding model.

A dataset for the evaluation of an ANNS system comprises 1. a set of vectors
that are to be indexed, 2. a set of query vectors, and 3. the ground truth which
of the indexed vectors are the k-NNs of the single query vectors. Aumüller et
al. [2] provide an ANN benchmarking framework that already provides the main
functionalities that are necessary to carry out our experiments. Given a set of
high-dimensional vectors, the framework generates a dataset by splitting the
vectors into indexed and query vectors and generates the ground truth based on
a brute force search. This search is also used as a baseline for comparison.

We propose two extensions of this framework. First, we use Bayesian opti-
mization to choose parameters of the benchmarked systems. Second, we generate
synthetic queries based on the indexed data instead of splitting the data into a
train and a test split to account for the comparatively small size of the KGE
models we use in our experiments.

3.1 Bayesian Optimization

Nearly all of the ANN systems integrated into the benchmarking framework
have one or several parameters that can be used to adapt the system to the
given data. The ANN benchmarking framework supports the configuration of a
grid search to identify system configurations with different performance charac-
teristics. However, grid search is known to be a disadvantageous option when
optimizing parameters in comparison to a random search [4] or hyper parameter
optimization [31]. We integrate the latter into the framework using the imple-
mentation of [30]. We use the upper confidence bound as acquisition function for
the optimizer [35] and use the Recall value achieved by a system’s configuration
as quality metric for the optimization.

3.2 Query Generation

By default, the ANN benchmarking framework randomly selects 10,000 vectors
from the given set of vectors and uses them as query vectors while the remaining
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vectors will be indexed by the benchmarked system. However, this would remove
more than 68% of the vectors in our evaluation, thus leading to a small number of
indexed vectors and correspondingly unrealistic evaluation results. At the same
time, using several thousand queries supports the reliability of the evaluation
results. To circumvent the split of the embedding model vectors, we implement
the generation of synthetic queries based on the given embedding vectors. For
each vector dimension, we calculate the mean and standard deviation of the
pairwise distances of the given vectors. Then, we generate a synthetic query
vector by randomly sampling a vector from the set of given vectors. After that,
for each vector dimension we sample a value from a Gaussian distribution that
is defined by the previously determined mean and standard deviation for this
dimension. Then, we randomly choose to add or subtract the sampled value from
the sampled vector to calculate the value for the new query vector.

4 Evaluation

4.1 Datasets

We evaluate the 22 systems from Table 1 on 16 datasets. These 16 datasets are
created using the angular and the Euclidean distance measures on 8 KGE mod-
els. These models are created for the FB15k-237 and Yago3-10 datasets. For each
of these two Knowledge Graphs, we reuse 4 Knowledge Graph embedding mod-
els that have been pre-calculated using the embedding algorithms DistMult [36],
QuatE [38], OMult [10] and Keci [11]. We choose these embedding algorithms
because they operate with different vector spaces. The first three algorithms are
based on R, H, and O, respectively. In contrast, Keci determines the appropriate
Clifford algebra depending on the KG [11]. All embedding models use vectors
comprising 128 floats. Each model for FB15k-237 and Yago3-10 contains one vec-
tor for each of the Knowledge Graphs’ 14,541 and 123,182 entities, respectively.
We generate the datasets using these entity vectors as described in Section 3.
So in addition to the entity vectors, we generate 10,000 synthetic query vectors
and create the ground truth.

4.2 Key Performance Indicators

The goal of our analysis is to evaluate the effectiveness and efficiency of the
benchmarked systems. The effectiveness is measured as Recall, i.e., we divide
the number of correctly retrieved neighbors by k = 10.9 With respect to the
system’s efficiency, we put our focus on the number of queries that a system is
able to queries per second (QpS). However, we also report the size of the created
index and the time the system needs to create it.

9 Note that related work may call the measure Precision, Recall@k or Recall@10.
The ANN benchmarking framework also reports the approximative recall. These
results can be found in our result files but we will not discuss them in this article.
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As suggested by the related work, we focus on those configurations that lead
to the best performances of the benchmarked systems [2,14]. Let S be the set
of the benchmarked systems listed in Table 1. Let Θs be the set of all possible
configurations of the system s ∈ S. Let d be a dataset and Md be the set of all
results that we gathered for all systems on this dataset. A single result mi in
this set is represented as the tuple mi = (si, θi, ri, qi, ti, bi), where si is a system,
θi ∈ Θs is the system’s configuration that leads to the measured results ri, qi,
ti, and bi that represent the Recall, QpS, the time needed to create the index
and the index size, respectively. We define a comparison operator that identifies
configurations that show a lower performance than other configurations with
respect to either effectiveness or efficiency and are not worse with respect to the
other. Let m1 and m2 be two results in Md and let r1, r2, q1, and q2 be their
recall and QpS scores. We define the comparator >

r,q
based on Recall and QpS

as follows:

m1 >
r,q

m2 ⇐⇒ (r1 > r2 ∧ q1 ≥ q2) ∨ (r1 ≥ r2 ∧ q1 > q2) . (1)

Based on this operator, we define a subset of measurements Md,r,q that represent
the best performance of the single systems with respect to Recall and QpS as
follows:

Md,r,q =

{
mi

∣∣∣∣mi ∈ Md ∧ ∄mj ∈ Md : mj ̸= mi ∧ sj = si ∧mj >
r,q

mi

}
, (2)

where si and sj are the two systems for which the results with mi and mj have
been measured, respectively. This subset Md,r,q contains only the best config-
urations with respect to Recall and QpS that have been identified during our
evaluation for all systems for a particular dataset. The curve that they create
can be understood as the Pareto front of the systems on the dataset [14].

4.3 Setup

We evaluate the 22 systems listed in Table 1. All experiments are carried out with
k = 10 on a single machine.10 For all systems, for which the ANN benchmarking
framework would run a grid search, we configure the Bayesian optimizer to search
for the configuration with the best Recall in the parameter range that would
have been used by the grid search. To keep the comparison of systems fair, we
configured the benchmarking framework to use a maximum of 35 runs for each
system regardless of the number of parameters the systems may have. We run
the queries in batch mode, i.e., systems can answer queries in parallel. This has
the following two benefits. First, it is closer to real applications in which for
example multiple users interact with a KG-based system in parallel. Second, it
enables us to run more experiments and, hence, test more configurations.
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Fig. 1. The best configurations for all tested systems and the performance of the base-
line on the FB15k-237 DistMult embeddings with angular distance. The best configu-
rations for this dataset have been encircled ( ). Note that the Recall axis is not linear.

4.4 Results

Our experiment results comprise more than 750 data points per dataset.11 In
previous works, the results have been presented in Recall-QpS plots. However,
these plots tend to be crowded when comparing all 22 evaluated systems as it
can be seen in Figure 4.4. Instead, we depict only the Pareto front of those
systems that have at least one configuration that is part of the Pareto front
for a particular dataset in Figures 2 and 3. FaissIVFPQ occurs in every plot.
It typically achieves very high QpS scores while the Recall is quite high as
well. However, only for some datasets, the Bayesian optimization was able to
find configurations of FaissIVFPQ that let to a Recall very close to 1.0. On
angular-distance-based datasets, implementations like NGT-QG, QSGNGT or
Hnswlib dominate this region of the plots. Many configurations of FaissIVF are
10 A VM with 4 64-bit CPUs and 32GB RAM. Note that the VM does not have a GPU

that could be used by the ANNS systems.
11 All our results are available at https://github.com/MichaelRoeder/

ann-benchmarks/tree/main.

https://github.com/MichaelRoeder/ann-benchmarks/tree/main
https://github.com/MichaelRoeder/ann-benchmarks/tree/main
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Fig. 2. The Recall-QpS curve of the best-performing systems on the FB15k-237
datasets. Angular and Euclidean datasets can be found in the left and right columns,
respectively. The best configurations for the datasets have been encircled ( ).
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Fig. 3. The Recall-QpS curve of the best-performing systems on the Yago3-10 datasets.
Angular and Euclidean datasets can be found in the left and right columns, respectively.
The best configurations for the datasets have been encircled ( ).
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Fig. 4. The average size of the generated indexes on the two knowledge graphs (top)
and the average time it took to generate the index (bottom).

not competitive when used with the angular distance. However, in half of the
plots for the angular-distance-based datasets, FaissIVF occurs since it is able
to achieve a Recall of 1.0, which rarely is achieved by other approaches. The
plots for the Euclidean-distance-based experiments are dominated by FaissIVF
and FaissIVFPQ with a similar pattern as before. In many cases, FaissIVFPQ
achieves a high QpS rate and a good Recall, but FaissIVF achieves a better
Recall.

Figure 4 summarizes the results with respect to the generation of the search
indexes. Especially for the bigger KG Yago3-10, the systems show quite different
numbers. While the majority of systems stays close or even below the 60MB
of the Parquet file, in which the Knowledge Graph embeddings are provided,
LuceneKNN, N2, NGT-QG, NN-Descent, PyNN-Descent, and QSGNGT create
indexes with a size close to or beyond the 500MB mark. With respect to the time
that is needed to generate the index, pg-embedding is the slowest system with
an average runtime of 921 seconds for Yago3-10 datasets, followed by NGT-QG,
N2 and QSGNGT.
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Table 2. Pairwise comparisons of systems: the number of datasets on which the system
in the row outperformed the system in the column. The row #Worse and the column
#Better contain the sum in how many comparisons a system has been worse or better
than any other system, respectively.
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BL 16 0 0 3 0 0 0 0 8 6 0 0 1 0 0 6 0 0 0 0 0 4 44

Elasticsearch 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FaissHNSW 0 16 0 5 4 0 0 0 7 3 0 0 0 0 0 7 1 3 0 1 0 8 55
Hnswlib 4 16 6 14 5 2 0 4 9 5 6 0 11 9 7 11 7 6 4 1 0 11 138
LuceneKNN 0 16 0 0 0 0 0 0 6 3 0 0 0 0 0 0 0 0 0 0 0 2 27
N2 0 8 3 0 8 0 0 0 8 0 0 1 4 6 5 6 0 0 0 1 0 5 55
NGT-PANNG 0 16 0 0 4 3 0 0 6 1 0 0 0 0 0 2 4 3 0 1 0 13 53
NGT-QG 0 16 4 0 13 6 3 2 13 5 5 0 8 9 10 12 5 7 2 1 0 14 135
NN-Descent 0 16 0 0 12 1 0 0 15 8 2 0 0 0 0 9 5 6 0 1 0 16 91
OpenSearch k-NN 0 16 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 18
pg-embedding 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6
PyNNDescent 0 16 0 0 7 1 0 0 0 9 0 0 0 0 0 5 2 1 0 1 0 14 56
QSGNGT 0 16 1 0 11 5 1 0 0 9 4 3 5 3 3 9 5 6 1 1 0 13 96
Vald 0 16 0 0 1 0 0 0 0 4 0 0 0 0 0 2 1 1 0 0 0 10 35
Vespa 0 16 0 0 14 0 0 0 0 9 6 0 0 0 0 10 2 2 0 1 0 11 71
Voyager 0 16 0 0 13 1 0 0 0 10 8 0 0 0 0 10 3 2 0 0 0 11 74
Weaviate 0 16 0 0 0 0 0 0 0 8 3 0 0 0 0 0 0 0 0 0 0 1 28

FLANN 3 12 0 0 5 0 0 0 0 6 3 0 0 2 0 0 4 0 0 0 0 9 44
MRPT 0 13 1 0 6 0 0 0 0 7 1 0 0 4 0 0 6 0 0 0 0 10 48
Scann 0 15 1 0 1 3 2 0 0 1 0 0 0 6 1 1 0 5 6 1 0 8 51

FaissIVF 10 12 7 7 11 4 8 8 9 12 4 8 6 9 8 8 10 8 9 7 0 11 176
FaissIVFPQ 1 15 8 5 8 14 6 7 2 8 0 4 6 9 7 8 8 5 8 5 2 14 150
TinyKNN 0 10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 11

#Worse 18 315 31 12 136 47 22 15 17 156 62 28 13 59 43 42 117 53 60 19 12 0 185

5 Discussion

For a detailed discussion, we analyse the results further. To this end, we remove
the configurations from the systems’ Pareto curves that have a Recall below
0.1, since although many of these results have a good efficiency (i.e., their QpS
is high), they lack effectiveness. This for example removes many of the points
in the upper left corner of the plots in Figures 2 and 3. With these updated
curves, we compare the systems pair-wise on each dataset checking whether a
system is able to outperform the other. We define that a system outperforms
another system on a particular dataset, if there is no configuration of the second
system on the common Pareto front of both systems according to the comparison
operator defined in Section 4.2. Table 2 shows a summary of these pairwise
comparisons over all datasets. For each dataset, we assign ranks to the single
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Table 3. Average ranks according to the pairwise comparisons across the datasets.
Best average ranks are marked bold. Systems that are significantly outperformed by
the best system are underlined.
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BL 11.19 11.31 10.38 12.13 10.88 12.88 10.00 11.25 11.25

Elasticsearch 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00
FaissHNSW 8.31 15.94 11.56 12.69 12.00 14.13 11.00 11.38 12.13
Hnswlib 2.25 7.31 4.44 5.13 5.75 4.38 4.75 4.25 4.78
LuceneKNN 17.13 20.50 18.44 19.19 18.38 18.50 19.13 19.25 18.81
N2 17.88 4.06 11.31 10.63 11.63 11.25 10.25 10.75 10.97
NGT-PANNG 9.81 11.25 9.06 12.00 9.38 8.63 13.38 10.75 10.53
NGT-QG 3.44 5.81 5.81 3.44 3.25 5.25 6.38 3.63 4.63
NN-Descent 4.75 7.81 7.25 5.31 4.75 7.50 6.38 6.50 6.28
OpenSearch k-NN 17.88 20.88 21.13 17.63 18.75 20.25 19.50 19.00 19.38
pg-embedding 18.81 14.31 17.38 15.75 16.88 16.13 17.13 16.13 16.56
PyNNDescent 11.69 8.75 11.06 9.38 10.88 10.25 10.63 9.13 10.22
QSGNGT 5.13 7.69 6.50 6.31 5.13 6.75 6.50 7.25 6.41
Vald 14.63 15.19 16.06 13.75 14.38 14.25 16.13 14.88 14.91
Vespa 6.81 15.69 9.94 12.56 12.50 8.88 11.38 12.25 11.25
Voyager 7.56 14.63 10.31 11.88 10.63 10.88 11.38 11.50 11.09
Weaviate 16.31 19.50 17.56 18.25 18.50 17.00 17.25 18.88 17.91

FLANN 15.69 7.94 8.94 14.69 14.13 12.13 10.75 10.25 11.81
MRPT 17.88 6.56 12.25 12.19 11.88 14.25 10.38 12.38 12.22
Scann 7.94 14.50 13.69 8.75 12.00 11.38 9.38 12.13 11.22

FaissIVF 9.25 1.25 4.19 6.31 6.50 2.13 6.63 5.75 5.25
FaissIVFPQ 6.94 1.75 5.00 3.69 4.13 4.75 4.00 4.50 4.34
TinyKNN 21.75 20.38 20.75 21.38 20.75 21.50 20.75 21.25 21.06

systems according to the wins and losses that they achieve in the comparison.
Table 3 shows the average ranks of the systems aggregated according to the
distance measure, the underlying Knowledge Graph and the KGE used for the
different datasets. A Friedman Test acknowledged for all columns in Table 3
that there are significant differences in the systems ranks [12].12 The post-hoc
Nimney Test [12] showed that in each column, several systems are significantly
outperformed by the best system in that column.

These results allow several conclusions. The results from the first two columns
suggest that in many cases, Hnswlib and FaissIVF are good choices when the
angular and Euclidean distances are used, respectively. Similarly, several sys-

12 We use α = 0.05 for all significance tests.
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tems should not be used for the one or the other distance. For example, N2
showed a comparably good performance on two Yago3-10 datasets when used
with the Euclidean distance, but was often outperformed on datasets with an
angular distance. Similarly, Vespa, Voyager, and Scann are significantly worse
on Euclidean datasets while they are not significantly outperformed on angular
datasets. Comparing the two distance columns with the other columns shows
that the large differences of some of the average ranks that are observed in the
first two columns do not repeat. This suggests that the distance measure could
be the most important feature when deciding which system to take. However,
especially with larger knowledge graphs, the growth of the index size and in-
dexing time depicted in Figure 4 could become important for several algorithms
that achieved good ranks, like N2, NGT-QG or QSGNGT. The four columns
of the embeddings only show smaller differences between each other, suggesting
that there is only a minor influence of the embedding algorithm on the systems’
performance.

Another interesting insight comes from the comparison of the systems that
rely on the same ANNS algorithm (see Table 1). For example, Hnswlib is the
only HNSW-based implementation in our evaluation that is not significantly
outperformed on either angular or Euclidean datasets. Other implementations
are either outperformed in one, or like Elasticsearch, LucenKNN, OpenSearch
k-NN, pg-embedding, and Weaviate, in both categories. Overall, these last 5
systems together with Vald and TinyKNN perform significantly worse in our
evaluation than FaissIVFPQ. The latter achieves the best average rank over all
16 datasets. Hence, we can conclude that FaissIVFPQ can serve as an interesting
alternative for Hnswlib and FaissIVF.

6 Conclusion

In this work, we carried out a detailed comparison of 22 Approximate Nearest
Neighbor Search systems on 16 KGE-based datasets—a type of data that has
been overlooked so far in evaluations of these systems. In contrast to the state
of the art, we fine-tuned each approach in each experiment by using Bayesian
optimization to ensure the fairness of our experiments. The evaluated systems
showed significant performance differences in these experiments. Our results sug-
gest that the overall performance of approaches with respect to runtime and
recall is contingent upon the similarity measure used to compare embeddings.

Our future work will focus on the best performing systems in this evaluation.
While our 16 datasets are based on FB15k-237 and Yago3-10—two Knowledge
Graphs that are widely adopted in the research on KGE algorithms—we plan
to include larger knowledge graphs to further look into the influence of the
Knowledge Graph size on the system’s performance.
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