
Tree-Based OWL Class Expression 
Learner over Large Graphs 

Caglar Demir(B) , Moshood Yekini , Michael Röder , Yasir Mahmood , 
and Axel-Cyrille Ngonga Ngomo 

Data Science Research Group, Department of Computer Science, Paderborn 
University, Paderborn, Germany 

{caglar.demir,moshood.olawale.yekini,michael.roeder, 
yasir.mahmood,axel.ngonga}@upb.de 

Abstract. Learning continuous vector representations for knowledge 
graphs has significantly improved state-of-the-art performances in many 
challenging tasks. Yet, deep-learning-based models are only post-hoc and 
locally explainable. In contrast, learning Web Ontology Language (OWL) 
class expressions in Description Logics (DLs) is ante-hoc and globally 
explainable. However, state-of-the-art learners have two well-known lim-
itations: scaling to large knowledge graphs and handling missing infor-
mation. Here, we present a decision-tree-based learner (tDL) to learn 
Web Ontology Languages (OWLs) class expressions over large knowl-
edge graphs, while imputing missing triples. Given positive and negative 
example individuals, tDL firstly constructs unique OWL expressions in 
.SHOIN from concise bounded descriptions of individuals. Each OWL 
class expression is used as a feature in a binary classification problem to 
represent input individuals. Thereafter, tDL fits a CART decision tree to 
learn Boolean decision rules distinguishing positive examples from nega-
tive examples. A final OWL expression in .SHOIN is built by traversing 
the built CART decision tree from the root node to leaf nodes for each 
positive example. By this, tDL can learn OWL class expressions without 
exploration, i.e., the number of queries to a knowledge graph is bounded 
by the number of input individuals. Our empirical results show that tDL 
outperforms the current state-of-the-art models across datasets. Impor-
tantly, our experiments over a large knowledge graph (DBpedia with 1.1 
billion triples) show that tDL can effectively learn accurate OWL class 
expressions, while the state-of-the-art models fail to return any results. 
Finally, expressions learned by tDL can be seamlessly translated into 
natural language explanations using a pre-trained large language model 
and a DL verbalizer. 

Keywords: Decision Tree · OWL Class Expression Learning · 
Description Logic · Knowledge Graph · Large Language Model · 
Verbalizer 

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026 
R. P. Ribeiro et al. (Eds.): ECML PKDD 2025, LNAI 16015, pp. 495–511, 2026. 
https://doi.org/10.1007/978-3-032-06066-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-06066-2_29&domain=pdf
http://orcid.org/0000-0001-8970-3850
http://orcid.org/0009-0001-8120-3170
http://orcid.org/0000-0002-8609-8277
http://orcid.org/0000-0002-5651-5391
http://orcid.org/0000-0001-7112-3516
https://doi.org/10.1007/978-3-032-06066-2_29


496 C. Demir et al.

1 Introduction 

Explainability is quintessential to establish trust in Artificial Intelligence (AI) 
decisions [ 32]. Its significance becomes particularly pronounced when AI algo-
rithms rely on large amounts of data, e.g., the Web – an extensive and widely 
utilized information infrastructure that serves over 5 billion users worldwide. 
For instance, the recent success of large language models is built upon a 
crawled Web corpus comprising raw web page data, metadata extracts, and 
text extracts [ 5, 17, 30, 34]. A key development over the last decade has been the 
increasing availability of Web data in the form of large-scale Resource Descrip-
tion Framework (RDF) Knowledge Graphs (KGs) [ 16]. According to the 2022 
crawl of WebDataCommons, roughly 50% of the Web sites now contain (frag-
ments of) RDF KGs. 1 The giant joint Knowledge Graph (KG) that can be 
extracted from the Web is known to contain at least 82 billion triples [ 4]. How-
ever, when analyzing or processing such a large graph, explainability and scala-
bility remain challenging. For example, while learning continuous vector repre-
sentations for knowledge graphs has significantly improved state-of-the-art per-
formances in many challenging tasks [ 10, 29], many deep-learning-based models 
that such solutions rely on, are only post-hoc and locally explainable [ 25]. In con-
trast, OWL class expression learning is ante-hoc explainable and showed good 
performance in areas like ontology engineering [ 21], bio-medicine [ 24], and Indus-
try 4.0 [ 8]. However, most symbolic class expression learners cannot operate well 
on large KGs having millions of triples. 

Our work contributes to a wider domain of designing scalable and explain-
able Machine Learning (ML) approaches for learning OWL class expressions over 
large RDF knowledge graphs. An OWL class expression represents a set of indi-
viduals by formally specifying conditions on the properties of individuals [ 26]. 
Such class expressions 2 in description logic syntax are ante-hoc explainable and 
intrinsically human-readable, e.g.,.∃award.{NobelPrizeInPhysics} represents a 
set of individuals being awarded a Nobel prize in physics. At the same time, they 
can be used by machines, e.g., the set of individuals satisfying this expression in 
the DBpedia KG can be retrieved via the following SPARQL query [ 12]: 

SELECT DISTINCT ?x WHERE 
{ 

?x dbo:award ?s_1 . 
FILTER (?s_1 IN 

(dbr:Nobel_Prize_in_Physics)) 
}

1 1.51 billion of the 3.20 billion URLs crawled by the Web Data Commons con-
tained RDF, see http://webdatacommons.org/structureddata, accessed on April  
25th, 2024. 

2 An OWL class expression can also be called a Description Logic (DL) concept. We 
will stick to the first term throughout this paper. 

http://webdatacommons.org/structureddata
http://webdatacommons.org/structureddata
http://webdatacommons.org/structureddata
http://webdatacommons.org/structureddata


Tree-Based OWL Class Expression Learner over Large Graphs 497

Thus the given class expression can be seen as a human-readable, inter-
pretable, and binary descriptor, identifying a set of 163 individuals as positive 
within the DBpedia KG. 3

Learning class expressions relies on two sets of given examples: a set of posi-
tive examples (.E+) that the target class expression should describe while differ-
entiating them from a set of negative examples (.E−). 4 For example, given  the  
positive examples .E+ = {Roger Penrose, Paul Dirac} and the negative exam-
ples .E− = {Barack Obama, George R. R. Martin}, a class expression learn-
ing algorithm using the DBpedia KG may return the class expression provided 
above, since the expression’s entailment holds for Penrose and Dirac but not for 
Obama and Martin. However, although state-of-the-art approaches effectively 
tackle the class expression learning problem on benchmark datasets, their deploy-
ment in large-scale applications remains unrealized. Early approaches reformu-
late the learning problem as a search problem in an infinite, quasi-ordered search 
space [ 21, 23]. Therein, the search begins by applying a downward refinement 
operator to the root state (i.e., the most general class expression . �). Thereafter, 
the search is guided by a heuristic function. However, recent results suggest that 
search-based symbolic learners do not scale well on large KGs [ 9]. This limita-
tion arises from the fact that search-based symbolic learners must explore the 
space of OWL class expressions to identify an accurate one. The potentially vast 
search space introduces significant challenges, serving as the principal barrier to 
learning class expressions over large KGs [ 3, 9]. 

In this work, we present a solution to the search space exploration prob-
lem in state-of-the-art models. Our proposal is a decision tree-based learner 
(tDL) that can tackle the class expression learning problem over large KGs by 
performing retrieval operations (i.e., retrieving qualifying individuals of a class 
expression) only at most .|E+∪E−| times. More specifically, .∀e ∈ E+∪E−, tDL 
first retrieves the first hop information about examples (elucidated in 4). From 
these .|E+ ∪ E−| sets of triples, tDL constructs unique class expressions using 
.SHOIN Description Logic (DL). These expressions are then treated as features 
in a binary classification problem to describe examples numerically (as detailed 
in 4). Subsequently, tDL fits a CART decision tree to distinguish .E+ from . E−

within the created feature space. The final class expression is built by traversing 
the built CART decision tree from the root node to leaf nodes for each posi-
tive example. Overall, our experimental results over three benchmark datasets 
with four state-of-the-art models indicate that tDL learns more accurate class 
expressions under a time constraint and generalizes better than state-of-the-art 
models including Drill [ 9] and EvoLearner [ 13]. Importantly, we show that tDL 
can learn OWL class expressions over knowledge graphs involving more than 1.1 
billion triples in less than 2 min, while all other baselines lead to out-of-memory 
errors. Finally, we further improve the explainability by integrating a large lan-
guage model and a verbalizer to translate potentially complex domain-specific 
class expressions into natural language sentences.

3 https://dbpedia.org/sparql. 
4 We give a formal definition for class expression learning in Sect. 2.3. 

https://dbpedia.org/sparql
https://dbpedia.org/sparql
https://dbpedia.org/sparql
https://dbpedia.org/sparql


498 C. Demir et al.

The main contributions of this paper are as follows: 

1. We propose an explainable and scalable ML approach (tDL) to learn  OWL  
class expressions over large RDF KGs. 

2. We conducted extensive experiments to benchmark the learning and general-
ization performance of our proposal against state-of-the-art models. 

3. To the best of our knowledge, tDL is the first OWL class expression learner 
integrating a pre-trained language model and a verbalizer to translate domain-
specific expressions into plain natural language sentences. 

In the following Section, we introduce background knowledge about RDF, 
DLs, and class expression learning. After that, we present related work in Sect. 3 
before explaining our approach in detail in Sect. 4. The evaluation and its results 
are described in Sect. 5 and discussed in Sect. 6. We conclude the paper in Sect. 7. 

2 Background 

2.1 RDF Knowledge Graphs and OWL 

RDF is a formal language for describing structured information [ 15]. The goal of 
RDF is to enable applications to exchange data on the Web while still preserving 
their original meaning. OWL is designed to model the semantics of RDF KGs 
that facilitates machine interpretability of Web content by providing additional 
expressive power along with formal semantics [ 15]. OWL has three sublanguages: 
OWL Full (the most expressive but undecidable), OWL DL (expressive and 
decidable), and OWL Lite (decidable, less expressive). OWL Full contains OWL 
DL and OWL Lite, while OWL DL contains OWL Lite. OWL DL coincides with 
.SHOIN (D) DL [ 15]. Note that any RDF KG forms an OWL Full ontology [ 2]. 

2.2 Description Logics 

Description Logics (DLs) are fragments of first-order predicate logic using only 
unary and binary predicates [ 1, 15, 27]. A DL knowledge base corresponding to 
an OWL ontology is often defined as a pair .K = (T ,A), where  T denotes the set 
of terminological axioms describing the relationships between defined DL con-
cepts. Every terminological axiom is of the form of .A � B or .A ≡ B where . A
and .B are DL concepts and .A,B ∈ NC . .NC denotes a set of atomic concepts 
corresponding to OWL named classes. A denotes the set of assertions describing 
relationships among DL individuals .a, b ∈ NI via roles .r ∈ NR as well as instan-
tiation relationships. .NI and .NR denote the set of individuals and the set of DL 
roles corresponding to OWL properties, respectively. Thus A contains an asser-
tion of the form .A(a) or .r(a, b), where  .A ∈ NC , r ∈ NR, and  .a, b ∈ NI . Within 
this work, we focus on .SHOIN DL. Table 1 depicts the syntax and semantics 
for .SHOIN concepts.



Tree-Based OWL Class Expression Learner over Large Graphs 499

Table 1. Syntax and semantics for concepts in .SHOIN following Lehmann et al. [ 21]. 
.I = (ΔI , ·I) is an interpretation where .ΔI is its domain and .·I is the interpretation 
function. 

Construct Syntax Semantics 

Atomic concept A . AI ⊆ ΔI

Role r . rI ⊆ ΔI × ΔI

Nominals .{o} . oI ⊆ ΔI , |oI | = 1

Inverse Role .r− . {(bI , aI) ∈ ΔI × ΔI | (aI , bI) ∈ rI}
Top concept .� . ΔI

Bottom Concept .⊥ . ∅
Negation .¬C . ΔI \ CI

Disjunction .C � D . CI ∪ DI

Conjunction .C 	 D . CI ∩ DI

Exists Restriction .∃ r.C . {aI ∈ ΔI | ∃ bI ∈ CI , (aI , bI) ∈ rI}
Universal Restriction .∀ r.C . {aI ∈ ΔI | ∀ bI , (aI , bI) ∈ rI ⇒ bI ∈ CI}
Atmost Restriction .≥ n r.C. {aI ∈ ΔI | |{bI ∈ CI : (aI , bI) ∈ rI}| ≥ n}
Atleast Restriction .≤ n r.C. {aI ∈ ΔI | |{bI ∈ CI : (aI , bI) ∈ rI}| ≤ n}

2.3 OWL Class Expression Learning 

Definition 1 (OWL Classical Learning Problem). Given a DL knowledge 
base . K, a set of positive individuals .E+ ⊂ NI , and a set of negative OWL 
individuals .E− ⊂ NI s.t. .E+ ∩ E− = ∅, the learning problem is to find an OWL 
class expression .H s.t. 

.∀p ∈ E+ : K |= H(p) and ∀n ∈ E− : K �|= H(n) . (1) 

Traditionally, this learning problem is transformed into a search problem 
within a quasi-ordered concept space (.C,
) [  21], where . C denotes all valid 
OWL class expressions in a DL. An OWL class expression learner (e.g. OCEL, 
CELOE [ 22]) applies a downward refinement operator .ρ : C → 2C to traverse in 
. C, e.g., .Mother 
 ρ(Female). To steer the search starting from . � to .H satisfying 
1, a fixed heuristic function is often applied. Most heuristic functions are based 
on the quality of the traversed OWL class expressions. One of these metrics is 
the F1 score, which is defined as 

.F1(H) =
|E+ ∩ R(H)|

|E+ ∩ R(H)| + 1
2 (|E− ∩ R(H)| + |E+ \ R(H)|)

, (2) 

where .R denotes a concept retrieval operation that maps a class expression to a 
subset of .NI . As the  size  of  K grows, computing the quality of a class expression 
becomes a bottleneck due to this mapping process [ 3, 9, 20]. Recent state-of-
the-art models (e.g. Drill [ 9], EvoLearner [ 13]) apply reinforcement learning or



500 C. Demir et al.

evolutionary algorithms to find .H as elucidated in Sect. 3. In contrast, our pro-
posed approach only needs a refinement operator to generate its training data 
and does not make use of the mapping process. 

3 Related Work 

DL-Learner [ 21] is regarded as the most mature and recent system for 
class expression learning [ 6, 9]. DL-Learner comprises several state-of-the-art 
approaches, including OCEL and CELOE [ 22]. Both consider the OWL class 
expression learning problem as a search problem in a quasi-ordered space of OWL 
class expressions in DLs. To traverse the search space, OCEL and CELOE apply 
a downward refinement operator while relying on different statistical heuristic 
functions. During the search, CELOE prioritizes syntactically shorter expres-
sions. CELOE and OCEL apply the redundancy elimination and the expression 
simplification rules to decrease their runtimes. Although applying such fixed rules 
may reduce the number of explored expressions, long runtimes and extensive 
memory requirements still prohibit large-scale applications of such refinement-
operators-based approaches [ 9, 11, 14]. Rizzo et al. [ 31] follow the general idea of a 
refinement-operator-based approach but focus on a small number of class expres-
sions, which are used to create several decision trees that are combined similar to 
a random forest. Recent works often focus on accelerating the learning process. 
DRILL [ 9] uses a deep Q-network instead of a fixed heuristic function to steer 
the search more efficiently towards accurate OWL class expressions. CLIP [ 18] 
prunes the search space by introducing an upper bound on the length of the 
OWL class expressions. NCES [ 19, 20] uses deep neural networks to learn map-
pings between sets of examples and class expressions without a search process. 
EvoLearner [ 13] is based on evolutionary algorithms and initializes its population 
(i.e., class expressions) by random walks on the input RDF KG. 

Compared to the state-of-the-art models, tDL uses multi-hop informa-
tion about .E+ and .E− to detect relevant OWL class expressions. Such expres-
sions are then used as binary features for a supervised binary classification prob-
lem. tDL builds a decision tree algorithm (e.g. CART) to tackle this supervised 
binary classification problem, where a node corresponds to OWL class expres-
sion. Therefore, tDL learns Boolean rules to distinguish positive and negative 
examples. Instead of using a fixed handcrafted heuristic, tDL can use the Shan-
non information gain to recursively partition the feature space (i.e., the extracted 
class expression space) such that the positive examples are grouped together. 

4 Methodology 

Supervised Binary Classification. Given two ordered sets . E+, E− ⊂ NI

with .E+ ∩ E− = ∅ and a knowledge base K, we firstly extract the first hop 
information as 

.F =
⋃

x∈E

{(x, p, o) | (x, p, o) ∈ K}, (3)



Tree-Based OWL Class Expression Learner over Large Graphs 501

where .E = E+∪E−. Given . F , a set of relevant atomic concepts can be defined as 

.FC =
⋃

(s,p,o)∈F
{o | o ∈ NC}. (4) 

Similarly, relevant restrictions over NI and NC can be defined as  

.FRO =
⋃

(s,p,o)∈F ∧ o∈NI

{∃p.{o}} ∪ {∀p.{o}} (5) 

and 
.FRC =

⋃

(s,p,o)∈F ∧ o∈NI

{∃p.type(o)} ∪ {∀p.type(o)}, (6) 

where .type : NI → NC returns a subset of NC that a given OWL individual 
belongs to. Since an individual can belong to multiple atomic concepts, a complex 
conjunctive concept can be constructed and included in .FRC. Similarly, since 
an individual can appear with other nominals with same property, a complex 
restriction involving multiple nominals can also be included in .FRO. Multi-
hop expression can be extracted by extending the fillers in .FRO and .FRC. By  
introducing counting over .FRO and .FRC, Atmost and Atleast restrictions can 
be obtained. 

Through these extractions over first-hop information about . E, we enable 
a decision tree to leverage multi-hop information for the learning problem. 
Through .FC, .FRO and .FRC, we firstly build the training data . X ∈
R

|E|×(|F|+|FRO|+|FRC|) and .y ∈ {0, 1}|E| where the j-th feature corresponds 
to a Boolean feature (e.g. .∃hasChild.{Julia}) of  .Xi,j ∈ {1.0, 0.0} for the i-th 
individual in . E. After  .X,y are constructed, we fit a decision tree to learn binary 
decision rules to distinguish the positive individuals .E+ from the negative indi-
viduals .E−. 

Running Example. Fig. 1 visualizes an example tree built on .X and . y for 
the Aunt benchmark learning problem. The rationale of using a decision tree is 
that it can be seen as a piece-wise constant approximation, where each decision is 
ante-hoc explainable [ 32]. For instance, being a Female and having a sibling being 
Mother can be important to distinguish .E+ from .E−. The entropy decreases from 
1.0 to 0.0 when classifying 25 positive individuals .x ∈ E+ as positive class, each of 
them fulfilling the following: (i) . (x, type, Female) ∧ (x, hasSibling, y) ∧
and (ii) .(y, hasChild, z) ∧ (z, type, Person), where  .y, z ∈ NI and 
.hasSibling, hasChild, type ∈ NR. Importantly, with a decision tree, we can 
rank class expressions in descending order w.r.t. their normalized total reduc-
tion of entropy. 

From a Decision Tree to a DL Concept. After creating a decision tree 
.T (·) using .X and . y, we construct a class expression. Let .N be the set of decision 
nodes of .T (·) and let the elements of .N have two types: leaf nodes . L and decision



502 C. Demir et al.

nodes .D with .L ∪ D = N . A leaf node .l ∈ L contains a class label .c ∈ {−1,+1}. 
We describe a decision node .di ∈ D as triple .di = (σi, n

+
i , n−

i ), where  .σi is a 
condition based on a feature in . F , while .n+

i and .n−
i are child nodes of .di in the 

tree. 

Building Conjunctive DL Concepts. When classifying a given individual, 
the decision tree algorithm starts at the root node and traverses the tree. The 
traversal depends on whether the current node is a leaf node or a decision node. If 
it is a leaf node, the node’s class is assigned to the example. If it is a decision node, 
the example is tested against the node’s condition. If the example fulfills the 
condition, the algorithm traverses to the .n+

i child node. Otherwise, the traversal 
continues with the .n−

i child node. We consider each node as a class expression; 
hence, for a given positive individual, we construct a conjunctive class expression 
from all nodes seen along the respective traversal. For a given .e ∈ E+, let  . π =
{n1, ..., n|π||n|π| ∈ L,∀i < |π| : ni ∈ D} denote a sequence of qualifying nodes 
starting from the root node and ending with a leaf node. From . π, a conjunctive 
class expression can be obtained as 

.Cπ =
�

i=1

σi, (7) 

where .Cπ(e) is the observed explainable features of . e at inference by the decision 
tree classifier. Let .Π denote a set of conjunctive class expressions constructed 
for .E+. For the running example shown in Fig. 2, .Π contains the following three 
class expressions: 

.Female � (∃ hasSibling.Father) (8) 
Female � (¬(∃ hasSibling.Father) � (∃ married.Brother) (9) 
Female � (¬(∃ hasSibling.Father)) � (¬(∃ married.Brother)) �

(∃ hasSibling.Mother) (10) 

Note that since . Π is a set, only distinct sequences of decision tree nodes are 
transformed into class expressions. By this, we aim to reduce redundancy, i.e., 
the length of generated concepts. 

Disjunction of Conjunctive DL Concepts. A final prediction for a given 
class expression learning problem is then computed as 

.H =
⊔

Cπ∈Π

Cπ. (11) 

For the running example, .H corresponds to the disjunction of Equations (8) 
to (10). Hence, tDL can tackle a class expression learning problem without 
a single retrieval operation. Recall that as the size of the input knowledge 
base grows, performing retrieval operations to compute the quality of a class 
expression becomes a computational bottleneck.



Tree-Based OWL Class Expression Learner over Large Graphs 503

Fig. 1. The built decision tree for the Aunt benchmark learning problem. Outgoing 
arrows mark the path of examples that either fulfill or neglect the originating node’s 
condition, and value array shows counts of observed negative and positive examples 

Fig. 2. Normalized total entropy reduction of important features for the Aunt 
benchmark learning problem with generated goal concept as: Aunt .≡ Female .	 (. ∃
hasSibling.Mother .�∃hasSibling.Father . � (. ∃textttmarried.Brother(. ∃hasChild.. �))).



504 C. Demir et al.

From DL Concepts to Natural Language Sentences. We investigate tech-
niques to translate a predicted class expression into natural language sentences. 
Therewith, we aim to enable non-domain experts to interpret predictions. To 
this end, we applied a large language model with or without an OWL verbalizer. 
We explored several system prompts and used the following one: 

You are an expert. Be concise in your answers and translate 
this description logic concept into English sentences. 

Provide no explanations: $ 

where $ is replaced with a class expression. 

5 Experiments 

5.1 Datasets 

We use three benchmark datasets—Family, Carcinogenesis, and Mutagenesis— 
obtained from [ 9]. In addition, we use the English DBpedia as example of a 
large KG together with three example learning problems created manually using 
prominent politicians. 5 Table 2 gives an overview of datasets. 

Table 2. Overview of benchmark datasets and total learning problems. .|K|, .|NI |, .|NC |, 
.|NR| and .LP denote the number of triples, individuals, concepts, roles, and learning 
problems, respectively. 

Dataset .|K| .|NI | .|NC | .|NR| . LP
Family 2,032 202 18 4 18 
Mutagenesis 62,067 14,145 86 11 1 
Carcinogenesis 96,939 22,372 142 21 1 
DBpedia 1,151,575,98142,042,875 1,568 1,194 3 

5.2 Experimental Setup 

We base our experimental setup on [ 9] and use all learning problems provided 
by the datasets. We compare approaches based on their F1-scores for predicted 
class expression and their runtimes. On each dataset, each model is initialized 
once. For each learning problem, the time needed for the inference of the class 
expression is measured as runtime. We use two standard stopping criteria for all 
approaches. (i) We set the maximum runtime to 30 s (60 min for the DBpedia). 
(ii) Approaches were configured to terminate as soon as they find a goal state 
(i.e., a state with F1-score = 1.0). Note that (i) is a soft constraint as the runtime

5 We use the English DBpedia version 2022-12. 



Tree-Based OWL Class Expression Learner over Large Graphs 505

criterion is not checked during all the steps of some of the evaluated approaches. 
If models do not find a goal state, the most accurate state is retrieved. 

In a second experiment, we quantify the generalization performance of all 
approaches using a 10-fold cross-validation on the provided learning problems of 
the first three datasets. All experiments have been executed on a DELL Precision 
3591 with an Intel Core Ultra 7 165H CPU, 64GB RAM, and Ubuntu 22.05. We 
provide an open-source implementation of tDL, including scripts for training 
and evaluation to ensure the reproducibility of our results using the Ontolearn 
framework [ 7]. 6

5.3 Experimental Results 

Learning Class Expressions Under Time Restriction. Table 3 reports 
the concept learning results on the three benchmark datasets with benchmark 
learning problems as previously done in [ 9]. Overall, tDL outperforms OCEL, 
CELOE, Evolearner, and Drill w.r.t. F1-score and runtimes. On all 18 learn-
ing problems of the Family dataset, tDL reaches the goal state while requiring 
less runtime. Compared to OCEL, CELOE, and Drill, EvoLearner underper-
forms considerably. After these results, we delved into the implementation of 
EvoLearner and analyzed the learning problems on each datasets. We made the 
following two observations: (i) If the input knowledge base is not reloaded from 
the disk into memory for each learning problem, the performance of EvoLearner 
degenerates. (ii) Goal concepts for some of the benchmark learning problems 
(e.g. Brother, Daughter, Father, Sister) on the Family benchmark dataset can 
be found via a linear search over the set of defined class expressions, i.e., a class 
expression satisfying 1 is already defined in K. In some of these cases, EvoLearner 
fails in identifying these existing concepts as solutions. To address (1), we reran 
our experiments on the Family dataset for EvoLearner and we reload the knowl-
edge base for each learning problem. Although this setting increases the runtimes 
by 1.3 s on average, EvoLearner finds a goal concept having F1-score of 1.0 for 
all 18 learning problems on the Family benchmark dataset. 

The learning problems created for the DBpedia KG and the evaluation results 
are listed in Table 4. tDL is the only algorithm that is able to solve the learning 
problems. All other approaches terminate with an out-of-memory error due to 
the size of the graph and the intermediate results they retrieve from it. 

K-Fold Cross Validation. Tables 5 and 6 report the 10-fold cross-validation 
results on the benchmark datasets. Overall, results indicate that tDL outper-
forms OCEL, CELOE, Drill, and Evolearner in nearly all metrics. Only for the 
Mutagenesis dataset, tDL achieves a slightly lower F1-score than OCEL and 
CELOE. The results also show that the generalization performance of OCEL, 
CELOE, Drill and tDL do not fluctuate, whereas the generalization performance 
of Evolearner differs extremely (up to 50% F1-score differences between learning 
problems).
6 https://github.com/dice-group/Ontolearn/tree/tdl. 

https://github.com/dice-group/Ontolearn/tree/tdl
https://github.com/dice-group/Ontolearn/tree/tdl
https://github.com/dice-group/Ontolearn/tree/tdl
https://github.com/dice-group/Ontolearn/tree/tdl
https://github.com/dice-group/Ontolearn/tree/tdl
https://github.com/dice-group/Ontolearn/tree/tdl
https://github.com/dice-group/Ontolearn/tree/tdl
https://github.com/dice-group/Ontolearn/tree/tdl


506 C. Demir et al.

Table 3. Class expression learning results on the benchmark datasets with benchmark 
learning problems. F1 and RT denote the F1-score of learned concept w.r.t. .E+ and . E−

and runtime in seconds, respectively. Maximum runtime is set to 30 s. Goal concepts 
with . † denote that the respective concept is defined in K, i.e., a goal concept can be 
found via a linear search over K. Bold and underlined results indicate the best results 
and second best results. 

Dataset Goal Concept OCEL CELOE EvoLearner Drill NCES TDL 
F1 RT F1 RT F1 RT F1 RT F1 RT F1 RT 

Family Aunt 0.837 15.0080.911 8.101 1.000 1.523 0.863 30.0360.804 1.622 1.000 0.061 
Uncle 0.905 19.6390.905 7.339 0.483 0.254 0.927 30.0380.884 1.853 1.000 0.043 
Cousin 0.721 12.0670.793 8.972 0.348 0.335 0.826 30.0470.686 1.870 1.000 0.060 
Grandgranddaughter 1.000 0.003 1.000 0.001 1.000 0.299 1.000 0.003 1.000 1.902 1.000 0.024 
Grandgrandfather 1.000 0.846 1.000 0.182 0.829 0.295 1.000 0.408 0.944 1.726 1.000 0.032 
Grandgrandmother 1.000 2.506 1.000 0.259 1.000 0.272 1.000 0.400 0.944 1.790 1.000 0.037 
Grandgrandson 1.000 2.082 1.000 0.198 0.486 0.365 1.000 0.224 0.923 1.707 1.000 0.030 
Brother.† 1.000 0.033 1.000 0.007 1.000 0.394 1.000 0.051 1.000 1.699 1.000 0.036 
Daughter.† 1.000 0.026 1.000 0.009 1.000 0.366 1.000 0.048 1.000 1.752 1.000 0.052 
Father.† 1.000 0.004 1.000 0.002 1.000 0.340 1.000 0.008 1.000 1.946 1.000 0.178 
Granddaughter.† 1.000 0.003 1.000 0.001 1.000 0.301 1.000 0.005 1.000 1.879 1.000 0.043 
Grandfather.† 1.000 0.003 1.000 0.001 1.000 0.277 1.000 0.005 1.000 1.915 1.000 0.037 
Grandmother.† 1.000 0.008 1.000 0.002 1.000 0.290 1.000 0.008 0.921 1.648 1.000 0.041 
Grandson.† 1.000 0.004 1.000 0.002 1.000 0.336 1.000 0.007 1.000 1.783 1.000 0.043 
Mother.† 1.000 0.004 1.000 0.002 0.000 0.277 1.000 0.007 1.000 1.843 1.000 0.055 
PersonWithASibling. †1.000 0.003 1.000 0.001 0.700 0.331 0.737 30.0311.000 1.985 1.000 0.073 
Sister.† 1.000 0.003 1.000 0.001 0.955 0.291 1.000 0.033 1.000 1.939 1.000 0.046 
Son.† 1.000 0.005 1.000 0.002 0.905 0.293 1.000 0.008 0.905 1.843 1.000 0.052 
Avg. Results 0.970 2.903 0.978 1.393 0.817 0.380 0.964 6.743 0.945 1.8171.0000.052 

Mutagenesis Unknown 0.916 32.30 0.916 30.040.980 31.31 0.704 30.17 0.704 8.324 0.919 4.050 
Carcinogenesis Unknown 0.734 30.42 0.734 30.13 0.807 30.98 0.705 30.19 0.705 8.5280.9733.370 

Translation Into Natural Language. We used Qwen2.5 32B Instruct-
AWQ [ 33, 35]and a verbalizer LD2NL [ 28] to translate the complex, learned class 
expressions into plain text. The LLM only gets the class expression while LD2NL 
needs K as additional input. The outputs of the verbalization given by Qwen2.5 
32B Instruct-AWQ and LD2NL for the class expression prediction from tDL for 
the Aunt learning problem as an example. 

Qwen2.5 32B Instruct-AWQ. 

– Female who either has a sibling who is a Father and is married to a Brother 
or has a sibling who is a Mother and is not married to a Brother.’ 

– Female who has a sibling who is a Father, is married to a Brother or has a 
child who is F5M66, and Female who does not have a Father sibling, does 
not marry a Brother, and has a Mother sibling.



Tree-Based OWL Class Expression Learner over Large Graphs 507

Table 4. Learning OWL class expression over 1.1 billion triples. F1 and RT denote the 
F1-score of learned concept w.r.t. .E+ and .E− and runtime in seconds, respectively. – 
denotes no results provided due to the out-of-memory error. 

Learning Problem OCEL CELOE Evo Drill TDL 
F1 RT F1 RT F1 RT F1 RT F1 RT 

.E+ = {B. Obama}, .E− = {A. Merkel} – – – – – – – – 1.000 62.18 

.E+ = {B. Obama,A. Merkel}, .E− = {E. Macron} – – – – – – – – 1.000 67.33 

.E+ = {B. Obama,A. Merkel,E. Macron}, .E− = {P. Sánchez} – – – – – – – – 1.000 71.41 

Table 5. 10-fold cross-validated class expression learning results for the learning prob-
lems of the Family dataset. F1 and RT denote the average F1-scores of learned concepts 
on the 10-test folds and runtime in seconds, respectively. Maximum runtime is set to 
30 s. Goal concepts with . † denote that the respective concept is defined in K, i.e., a goal 
concept can be found via a linear search over K. Bold and underlined results indicate 
the best results and second best results. 

Dataset Goal Concept OCEL CELOE EvoLearner Drill NCES TDL 
F1 RT F1 RT F1 RT F1 RT F1 RT F1 RT 

Family Aunt 0.631 16.190 0.855 16.1901.000 2.723 0.791 30.1060.812 3.696 1.000 0.107 
Cousin 0.708 12.520 0.789 12.5200.344 0.279 0.784 30.1050.557 4.090 0.956 0.153 
Uncle 0.891 20.731 0.891 20.7310.642 0.276 0.899 30.1610.877 4.551 0.986 0.103 
Grandgranddaughter 1.000 0.010 1.000 0.010 0.800 0.236 1.000 0.003 1.000 4.202 1.000 0.077 
Grandgrandfather 1.000 0.657 1.000 0.657 0.860 0.195 1.000 0.795 0.947 4.118 0.913 0.079 
Grandgrandmother 1.000 5.060 1.000 5.060 1.000 0.233 1.000 0.816 0.947 4.314 0.880 0.076 
Grandgrandson 1.000 1.826 1.000 1.826 0.463 0.199 1.000 0.722 0.931 4.108 0.862 0.083 
Brother.† 1.000 0.006 1.000 0.006 1.000 0.314 1.000 0.008 1.000 4.022 1.000 0.091 
Daughter.† 1.000 0.006 1.000 0.006 0.900 0.323 1.000 0.015 0.967 3.966 1.000 0.113 
Father 1.000 0.004 1.000 0.004 1.000 0.280 1.000 0.007 1.000 4.225 1.000 0.109 
Granddaughter.† 1.000 0.003 1.000 0.003 0.700 0.244 1.000 0.005 1.000 4.140 1.000 0.103 
Grandfather.† 1.000 0.003 1.000 0.003 0.780 0.256 1.000 0.005 0.980 4.088 1.000 0.088 
Grandmother.† 1.000 0.003 1.000 0.003 0.556 0.240 1.000 0.005 0.964 4.563 1.000 0.088 
Grandson.† 1.000 0.004 1.000 0.004 0.666 0.240 1.000 0.007 1.000 4.377 1.000 0.107 
Mother.† 1.000 0.004 1.000 0.004 0.625 0.219 1.000 0.007 0.929 4.441 1.000 0.113 
PersonWithASibling. †1.000 0.004 1.000 0.004 0.564 0.244 0.725 30.0720.976 4.680 1.000 0.145 
Sister.† 1.000 0.003 1.000 0.003 0.731 0.247 1.000 0.008 1.000 4.361 1.000 0.103 
Son.† 1.000 0.004 1.000 0.004 0.710 0.212 1.000 0.007 0.943 4.363 1.000 0.106 

Avg. Results 0.957 3.170 0.974 3.170 0.741 0.387 0.955 6.820 0.935 4.2390.9780.102 

Table 6. 10-fold cross-validated class expression learning results on the Mutagenesis 
and Carcinogenesis datasets. F1 and RT denote the average F1-scores of learned con-
cepts on the 10-test folds and runtime in seconds, respectively. Maximum runtime is 
set to 30 s. 

Dataset Goal Concept OCEL CELOE Evo Drill NCES TDL 
F1 RT F1 RT F1 RT F1 RT F1 RT F1 RT 

Mutagenesis Unknown 0.91831.5510.91831.551 0.74232.317 0.70430.046 0.70410.062 0.855 11.467 
Carcinogenesis Unknown 0.706 30.899 0.701 30.899 0.70733.059 0.70430.280 0.714 9.844 0.74710.670



508 C. Demir et al.

– A female who either has a sibling who is a father, is married to a brother 
but has no children, or has a sibling who is a mother but is not married to a 
brother and has no children. 

LD2NL. Every predicted individual is that something that a female that has not 
as sibling has as child a person and that marries something that has as sibling a 
mother or that a female that has as sibling something that has as child a person 
or that something that a female that has not as sibling has as child a person and 
that does not marry has as sibling a mother and that marries something that 
has as sibling a son. Although the translation via Qwen2.5 32B Instruct-AWQ 
arguably is more fluent than the translation of LD2NL, LD2NL verbalizes the 
input at least 10 times faster and requires less memory. 

6 Discussion 

Although tDL finds more accurate concepts in less time in most of cases, the 
length of the extracted class expressions created from the decision tree can grow 
quite large in comparison to the results of the other approaches. A large, com-
plex class expression may require more domain expert knowledge for the inter-
pretation. Moreover, tDL currently does not support datatype properties, data 
values, or data types. Consequently, we expect that tDL may perform poorly if 
a goal concept is based on the usage of one of these features, e.g., the class of 
persons that are taller than 1.80 m. 

We conjecture that the performance of tDL can be further improved in an 
iterative fashion. More specifically, after .F is constructed and a decision tree is 
built, the most important features can be refined through a refinement operator 
and the refinements can be added into . F . Considermarried.Brother.hasChild 
as  shown in Fig.  2, many possible feature candidates can be inferred depend-
ing on schema design of . K, e.g. (. ∃married.Brother(. ∃hasChild.Male))) or 
(. ∃married.Brother(. ∃hasChild.Person))) provided Male .� Person. Although 
this iterative process may allow the creation of a decision tree to find more 
compact rules to distinguish .E+ from .E−, it may require more careful hyperpa-
rameter optimization to alleviate possible overfitting. 

7 Conclusion 

In this work, we proposed tDL—a decision-tree-based learner for OWL class 
expressions. We explained how we use the decision tree to learn Boolean rules 
from a feature space comprising class expressions. Furthermore, we illustrated 
that the Boolean rules learned by said tree can be adeptly converted into class 
expressions. Additionally, we showed that domain-specific class expressions can 
be seamlessly translated into natural language sentences by employing a sophis-
ticated language model enhanced with a verbalizer. Our evaluation showed 
that our approach tDL outperforms previous state-of-the-art approaches on all



Tree-Based OWL Class Expression Learner over Large Graphs 509

benchmarking datasets except one case. We also were able to show that tDL 
is the only approach that is able to provide results for learning problems on 
a large KG comprising 1.1 billion triples. In future work, we want to improve 
tDL further to cover its shortcomings discussed in Sect. 6. For example, we 
plan to extend the feature generation to be able to learn class expression in the 
.SHOIN (D) DL. 

Acknowledgements. This work has been supported by the European Union’s Hori-
zon Europe research and innovation programme within the project ENEXA under the 
grant No. 101070305, the Deutsche Forschungsgemeinschaft (DFG, German Research 
Foundation): TRR 318/1 2021 - 438445824, the Ministry of Culture and Science of 
North Rhine-Westphalia (MKW NRW) within projects SAIL under the grant No. 
NW21-059D and WHALE (LFN 1-04) funded under the Lamarr Fellow Network pro-
gramme. 

References 

1. Baader, F.: The description logic handbook: Theory, implementation and applica-
tions. Cambridge university press (2003) 

2. Bechhofer, S., et al.: OWL Web Ontology Language. W3c recommendation, W3C 
(February 2004). https://www.w3.org/TR/2004/REC-owl-ref-20040210/ 

3. Bin, S., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.C.: Towards sparql-based 
induction for large-scale rdf data sets. In: ECAI 2016, pp. 1551–1552. IOS Press 
(2016) 

4. Bizer, C., Meusel, R., Primpeli, A., Brinkmann, A.: Web data commons – rdfa, 
microdata, embedded json-ld, and microformats data sets – october 2022. https:// 
webdatacommons.org/structureddata/2022-12/stats/stats.html (2022). Accessed 
15 May 2023 

5. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. 
Syst. 33, 1877–1901 (2020) 

6. Bühmann, L., Lehmann, J., Westphal, P., Bin, S.: Dl-learner structured machine 
learning on semantic web data. In: Companion Proceedings of the The Web Con-
ference 2018. pp. 467–471. WWW ’18, International World Wide Web Conferences 
Steering Committee, Republic and Canton of Geneva, Switzerland (2018) 

7. Demir, C., et al.: Ontolearn–a framework for large-scale owl class expression learn-
ing in python. J. Mach. Learn. Res. 26(63), 1–6 (2025) 

8. Demir, C., Himmelhuber, A., Liu, Y., Bigerl, A., Moussallem, D., Ngomo, 
A.C.N.: Rapid explainability for skill description learning. In: ISWC 
(Posters/Demos/Industry) (2022) 

9. Demir, C., Ngomo, A.C.N.: Neuro-symbolic class expression learning. In: Proceed-
ings of the Thirty-Second International Joint Conference on Artificial Intelligence, 
pp. 3624–3632 (2023) 

10. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge 
graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 32 (2018) 

11. d’Amato, C.: Machine learning for the semantic web: lessons learnt and next 
research directions. Semantic Web 11(1), 195–203 (2020)

https://www.w3.org/TR/2004/REC-owl-ref-20040210/
https://www.w3.org/TR/2004/REC-owl-ref-20040210/
https://www.w3.org/TR/2004/REC-owl-ref-20040210/
https://www.w3.org/TR/2004/REC-owl-ref-20040210/
https://www.w3.org/TR/2004/REC-owl-ref-20040210/
https://www.w3.org/TR/2004/REC-owl-ref-20040210/
https://www.w3.org/TR/2004/REC-owl-ref-20040210/
https://www.w3.org/TR/2004/REC-owl-ref-20040210/
https://www.w3.org/TR/2004/REC-owl-ref-20040210/
https://www.w3.org/TR/2004/REC-owl-ref-20040210/
https://webdatacommons.org/structureddata/2022-12/stats/stats.html
https://webdatacommons.org/structureddata/2022-12/stats/stats.html
https://webdatacommons.org/structureddata/2022-12/stats/stats.html
https://webdatacommons.org/structureddata/2022-12/stats/stats.html
https://webdatacommons.org/structureddata/2022-12/stats/stats.html
https://webdatacommons.org/structureddata/2022-12/stats/stats.html
https://webdatacommons.org/structureddata/2022-12/stats/stats.html
https://webdatacommons.org/structureddata/2022-12/stats/stats.html
https://webdatacommons.org/structureddata/2022-12/stats/stats.html


510 C. Demir et al.

12. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language. Rec-
ommendation, W3C (March 2013). http://www.w3.org/TR/2013/REC-sparql11-
query-20130321/ 

13. Heindorf, S., et al.: Evolearner: Learning description logics with evolutionary algo-
rithms. In: Proceedings of the ACM Web Conference 2022, pp. 818–828 (2022) 

14. Hitzler, P., Bianchi, F., Ebrahimi, M., Sarker, M.K.: Neural-symbolic integration 
and the semantic web. Semantic Web 11(1), 3–11 (2020) 

15. Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of semantic web technologies 
(2009) 

16. Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. (Csur) 54(4), 1–37 
(2021) 

17. Jiang, A.Q., et al.: Mistral 7b. arXiv preprint arXiv:2310.06825 (2023) 
18. Kouagou, N.J., Heindorf, S., Demir, C., Ngonga Ngomo, A.: Learning concept 

lengths accelerates concept learning in ALC. In: ESWC. Lecture Notes in Computer 
Science, vol. 13261, pp. 236–252. Springer (2022) 

19. Kouagou, N.J., Heindorf, S., Demir, C., Ngonga Ngomo, A.: Neural class expres-
sion synthesis in ALCHIQ(D). In: ECML/PKDD (4). Lecture Notes in Computer 
Science, vol. 14172, pp. 196–212. Springer (2023) 

20. Kouagou, N.J., Heindorf, S., Demir, C., Ngonga Ngomo, A.C.: Neural class expres-
sion synthesis. In: European Semantic Web Conference, pp. 209–226. Springer 
(2023) 

21. Lehmann, J.: Learning OWL class expressions, vol. 22. IOS Press (2010) 
22. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for 

ontology engineering. J. Web Seman. 9(1), 71–81 (2011). https://doi.org/10. 
1016/j.websem.2011.01.001,https://www.sciencedirect.com/science/article/pii/ 
S1570826811000023 

23. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement 
operators. Mach. Learn. 78(1–2), 203 (2010) 

24. Lehmann, J., Völker, J.: Perspectives on ontology learning, vol. 18. IOS Press 
(2014) 

25. Marques-Silva, J., Ignatiev, A.: Delivering trustworthy AI through formal XAI. In: 
Thirty-Sixth AAAI Conference on Artificial Intelligenc, pp. 12342–12350. AAAI 
Press (2022) 

26. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web Ontology Language Struc-
tural Specification and Functional-Style Syntax (Second Edition). Recommen-
dation, W3C (December 2012). http://www.w3.org/TR/2012/REC-owl2-syntax-
20121211/ 

27. Nardi, D., Brachman, R.J., et al.: An introduction to description logics. Descrip. 
Logic Handbook 1, 40 (2003) 

28. Ngomo, A.C.N., Moussallem, D., Bühmann, L.: A Holistic Natural Language Gen-
eration Framework for the Semantic Web. In: Proceedings of the International 
Conference Recent Advances in Natural Language Processing, pp. 8. ACL (Asso-
ciation for Computational Linguistics) (2019) 

29. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine 
learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2015) 

30. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language 
models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019) 

31. Rizzo, G., d’Amato, C., Fanizzi, N., Esposito, F.: Tree-based models for 
inductive classification on the web of data. J. Web Semantics 45, 1–22 
(2017). https://doi.org/10.1016/j.websem.2017.05.001, https://www.sciencedirect. 
com/science/article/pii/S1570826817300173

http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://arxiv.org/abs/2310.06825
https://doi.org/10.1016/j.websem.2011.01.001,
https://doi.org/10.1016/j.websem.2011.01.001,
https://doi.org/10.1016/j.websem.2011.01.001,
https://doi.org/10.1016/j.websem.2011.01.001,
https://doi.org/10.1016/j.websem.2011.01.001,
https://doi.org/10.1016/j.websem.2011.01.001,
https://doi.org/10.1016/j.websem.2011.01.001,
https://doi.org/10.1016/j.websem.2011.01.001,
https://doi.org/10.1016/j.websem.2011.01.001,
https://doi.org/10.1016/j.websem.2011.01.001,
https://www.sciencedirect.com/science/article/pii/S1570826811000023
https://www.sciencedirect.com/science/article/pii/S1570826811000023
https://www.sciencedirect.com/science/article/pii/S1570826811000023
https://www.sciencedirect.com/science/article/pii/S1570826811000023
https://www.sciencedirect.com/science/article/pii/S1570826811000023
https://www.sciencedirect.com/science/article/pii/S1570826811000023
https://www.sciencedirect.com/science/article/pii/S1570826811000023
https://www.sciencedirect.com/science/article/pii/S1570826811000023
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
https://doi.org/10.1016/j.websem.2017.05.001
https://doi.org/10.1016/j.websem.2017.05.001
https://doi.org/10.1016/j.websem.2017.05.001
https://doi.org/10.1016/j.websem.2017.05.001
https://doi.org/10.1016/j.websem.2017.05.001
https://doi.org/10.1016/j.websem.2017.05.001
https://doi.org/10.1016/j.websem.2017.05.001
https://doi.org/10.1016/j.websem.2017.05.001
https://doi.org/10.1016/j.websem.2017.05.001
https://doi.org/10.1016/j.websem.2017.05.001
https://www.sciencedirect.com/science/article/pii/S1570826817300173
https://www.sciencedirect.com/science/article/pii/S1570826817300173
https://www.sciencedirect.com/science/article/pii/S1570826817300173
https://www.sciencedirect.com/science/article/pii/S1570826817300173
https://www.sciencedirect.com/science/article/pii/S1570826817300173
https://www.sciencedirect.com/science/article/pii/S1570826817300173
https://www.sciencedirect.com/science/article/pii/S1570826817300173
https://www.sciencedirect.com/science/article/pii/S1570826817300173


Tree-Based OWL Class Expression Learner over Large Graphs 511

32. Rudin, C.: Stop explaining black box machine learning models for high stakes 
decisions and use interpretable models instead. Nature Mach. Intell. 1(5), 206–215 
(2019) 

33. Team, Q.: Qwen2.5: A party of foundation models (September 2024). https:// 
qwenlm.github.io/blog/qwen2.5/ 

34. Touvron, H., et al.: Llama 2: Open foundation and fine-tuned chat models. arXiv 
preprint arXiv:2307.09288 (2023) 

35. Yang, A., et al.: Qwen2 technical report. arXiv preprint arXiv:2407.10671 (2024)

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2407.10671

	Tree-Based OWL Class Expression Learner over Large Graphs
	1 Introduction
	2 Background
	2.1 RDF Knowledge Graphs and OWL
	2.2 Description Logics
	2.3 OWL Class Expression Learning

	3 Related Work
	4 Methodology
	5 Experiments
	5.1 Datasets
	5.2 Experimental Setup
	5.3 Experimental Results

	6 Discussion
	7 Conclusion
	References


