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 A B S T R A C T

Large Language Models (LLMs) have demonstrated remarkable performance across a wide range 
of natural language processing tasks. However, their effectiveness in low-resource languages 
remains underexplored, particularly in complex tasks such as end-to-end Entity Linking (EL), 
which requires both mention detection and disambiguation against a knowledge base (KB). 
In earlier work, we introduced IndEL — the first end-to-end EL benchmark dataset for the 
Indonesian language — covering both a general domain (news) and a specific domain (religious 
text from the Indonesian translation of the Quran), and evaluated four traditional end-to-end 
EL systems on this dataset. In this study, we propose ELEVATE-ID, a comprehensive evaluation 
framework for assessing LLM performance on end-to-end EL in Indonesian. The framework eval-
uates LLMs under both zero-shot and fine-tuned conditions, using multilingual and Indonesian 
monolingual models, with Wikidata as the target KB. Our experiments include performance 
benchmarking, generalization analysis across domains, and systematic error analysis. Results 
show that GPT-4 and GPT-3.5 achieve the highest accuracy in zero-shot and fine-tuned settings, 
respectively. However, even fine-tuned GPT-3.5 underperforms compared to DBpedia Spotlight 
— the weakest of the traditional model baselines — in the general domain. Interestingly, GPT-
3.5 outperforms Babelfy in the specific domain. Generalization analysis indicates that fine-tuned 
GPT-3.5 adapts more effectively to cross-domain and mixed-domain scenarios. Error analysis 
uncovers persistent challenges that hinder LLM performance: difficulties with non-complete 
mentions, acronym disambiguation, and full-name recognition in formal contexts. These issues 
point to limitations in mention boundary detection and contextual grounding. Indonesian-
pretrained LLMs, Komodo and Merak, reveal core weaknesses: template leakage and entity 
hallucination, respectively—underscoring architectural and training limitations in low-resource 
end-to-end EL.1
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1. Introduction

Named Entity Recognition (NER) and Entity Linking (EL) are two closely related tasks in Natural Language Processing (NLP). 
NER identifies spans of text that refer to entities (e.g., persons, organizations, locations) [1], while EL grounds these mentions to 
unique entries in a Knowledge Base (KB) [2], such as Wikidata [3] or DBpedia [4]. These tasks are often integrated in a unified 
setting known as end-to-end Entity Linking (end-to-end EL), where a system simultaneously identifies entity mentions and links them 
to their corresponding KB entries without relying on a separate NER stage [5,6]. For instance, in the sentences Affandi bergabung 
dengan kelompok Lima Bandung sekitar tahun 30-an (Affandi joined the Lima Bandung group around the 1930s) and Affandi berhasil 
memaksimalkan peran badan amil zakat kabupaten (Affandi succeeded in enhancing the role of a district amil zakat foundation), 
end-to-end EL not only detects the mention Affandi but also disambiguates it as the renowned Indonesian painter (wd:Q2826050) 
in the first sentence and as a local regent (wd:Q20426359) in the second [7]. This joint approach extends the utility of NER by 
enabling deeper semantic understanding and supports downstream applications such as knowledge base population [8], question 
answering [9], and information extraction [10].

While spoken by over 280 million people,2 Indonesian has limited NLP resources until recently, primarily due to the lack of robust 
benchmark datasets that accommodate both the general linguistic attributes of Indonesian and its specialized contexts. Since 2020, 
collaborative efforts have introduced over 140 Indonesian NLP datasets [11] and models like IndoBERT [12,13], with the addition of 
IndQNER [14] as the first NER dataset for a specific Indonesian domain. However, there remained a gap in EL benchmark datasets 
for both general and specific domains. To address this, we presented IndEL [7] in our previous work as the first EL benchmark 
dataset for Indonesian, covering both general and specific domains with carefully annotated entities linked to Wikidata.

Large Language Models (LLMs) have demonstrated impressive capabilities across various NLP tasks, including identifying 
entity mentions [15–20] and linking them to unique KB entries [21,22]. They have also shown strong performance in relation 
extraction [23], speech recognition [24], machine translation [25], and language understanding [26,27]. However, their evaluation 
has primarily focused on high-resource languages (HrLs), particularly English, limiting our understanding of their effectiveness 
in low-resource settings. Building on our prior work with IndEL — which introduced a benchmark suitable for end-to-end EL in 
Indonesian — we extend this research by systematically evaluating the ability of LLMs to perform end-to-end EL. Specifically, 
the LLMs are tasked with identifying mentions in text and linking them to corresponding entries in Wikidata. The evaluation 
encompasses both multilingual and monolingual Indonesian LLMs, assessed in zero-shot and fine-tuning settings across general and 
specific domains. The analyses are structured into three components: performance evaluation, generalization analysis [28], and error 
analysis. Generalization analysis includes cross-domain evaluations, where models fine-tuned on one domain (general or specific) 
are tested on the other to assess their ability to adapt to unseen contexts. Mixed-domain evaluations are also conducted, involving 
models fine-tuned on combined data from both domains and evaluated within their respective original training contexts to measure 
robustness and consistency. To further explore the challenges LLMs face in performing end-to-end EL tasks for Indonesian, human 
evaluation is conducted to qualitatively analyze the results from both zero-shot and fine-tuning experiments. Our contributions can 
be summarized as follows:

1. We benchmark the performance of multilingual LLMs, including GPT-3.5 [29], GPT-4 [30], and LLaMA-3 [31], as well as two 
monolingual Indonesian LLMs, Komodo [32] and Merak,3 in end-to-end EL tasks on IndEL. In the zero-shot setting, all models 
perform poorly, with GPT-4 slightly outperforming the others. Despite being trained on Indonesian, Komodo and Merak also 
struggle in this setting. In contrast, fine-tuned GPT-3.5 achieves the highest F1-scores in both domains, while Komodo and 
Merak show competitive gains in the specific domain.

2. We identify key challenges faced by LLMs in end-to-end EL, including difficulties in handling incomplete mentions, acronym 
disambiguation, and failures to detect full-name entities in formal contexts. Additionally, some models struggle with salutation 
over-inclusion, hallucinating unrelated entities, or generating unreplaced prompt placeholders.

Our findings challenge the prevailing assumption that strong multilingual LLMs can generalize effectively to low-resource 
languages (LrLs) like Indonesian. Results from ELEVATE-ID show that even with fine-tuning, models such as GPT-3.5 fall short 
of traditional end-to-end EL systems in key performance metrics. This highlights important limitations in current LLM architectures 
when applied to LrL contexts. ELEVATE-ID thus fills a critical gap: it not only benchmarks LLM-based end-to-end EL for Indonesian, 
but also serves as a diagnostic tool to pinpoint and explain where these models struggle. By providing a reusable and extensible 
evaluation framework, we contribute a scalable methodology that can be applied to other LrLs, advancing the broader goal of 
inclusive and equitable NLP research.

2. Related works

2.1. Traditional methods for named entity recognition and entity linking

Traditional approaches to NER are commonly classified into three categories: rule-based systems, unsupervised methods, and
feature-based supervised models [33]. Rule-based systems employ handcrafted linguistic rules, typically constructed using domain-
specific gazetteers [34] and syntactic-lexical patterns [35]. While effective when supported by comprehensive lexicons, these 

2 https://www.bps.go.id/en/statistics-table/2/MTk3NSMy/jumlah-penduduk-pertengahan-tahun–ribu-jiwa-.html
3 https://huggingface.co/Ichsan2895/Merak-7B-v4-GGUF
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systems often exhibit limited recall and poor generalization, despite achieving high precision in narrow domains. Unsupervised 
approaches often use clustering [36] and distributional statistics [37] over unlabeled data to group and identify entities, reducing 
the need for annotated corpora. Feature-based supervised models such as Hidden Markov Models [38], Conditional Random 
Fields [39], Maximum Entropy Models [40], and Support Vector Machines [41] utilize carefully engineered features — like POS 
tags, orthographic cues, and gazetteer matches — to model named entities as sequence labeling tasks. While these methods have 
achieved strong performance in resource-rich settings, they rely heavily on annotated datasets and feature engineering, making them 
less suitable for LrLs.

EL is commonly modeled as a three-stage process: candidate generation, candidate ranking, and result selection [42]. Candidate 
generation aims to construct a set of possible entities 𝐸𝑚 for each mention 𝑚, typically by comparing the surface form of the 
mention with names in a KB. According to [43], candidate generation approaches can be grouped into three main categories: 
(i) name dictionary-based techniques [44,45], which construct mappings using features from Wikipedia such as entity pages, 
redirect pages, disambiguation pages, bold phrases, and hyperlinks; (ii) surface form expansion methods [46,47], which expand 
acronyms or incomplete names using local document context through heuristic patterns or supervised learning methods; and (iii) 
search engine-based methods [48,49], which leverage web or Wikipedia search APIs to retrieve candidate entities based on the 
mention string and its surrounding context. Candidate ranking aims to select the most appropriate entity from the candidate set 
𝐸𝑚 for a given mention 𝑚. Since the size of 𝐸𝑚 is often greater than one, this module plays a crucial role in disambiguating the 
correct entity. Ranking approaches can be broadly divided into two categories: (i) supervised ranking methods, which rely on 
annotated training data to learn ranking models—such as binary classifiers [50,51], learning-to-rank methods [52,53], probabilistic 
models [54,55], or graph-based approaches [56–58]; and (ii) unsupervised ranking methods, which operate without labeled data 
and use techniques such as Vector Space Models [59,60] or statistical information retrieval [44,61,62]. Alternatively, candidate 
ranking methods can also be classified based on how they handle interdependencies between mentions: (i) independent ranking 
methods treat mentions independently and typically compute similarity between local context and entity descriptions [63,64]; (ii) 
collective ranking methods assume mentions in a document refer to related entities and exploit topical coherence across mentions 
for joint disambiguation [65–67]; and (iii) collaborative ranking methods consider similar mentions and contexts across documents 
to enhance ranking decisions by sharing contextual cues [68,69]. Result selection is the final stage in the EL pipeline, tasked with 
determining whether the top-ranked entity 𝑒top from the candidate set 𝐸𝑚 should be assigned to the mention 𝑚, or if the system 
should return NIL, indicating no suitable match. Based on how this decision is made, result selection approaches can be grouped 
into three main categories [42,43]: (i) Threshold-based methods, which compare the score of the top-ranked candidate entity 𝑠top
against a fixed or learned threshold 𝜏. If 𝑠top < 𝜏, the system returns NIL for the mention 𝑚 [70,71]. While simple and widely used, 
manual thresholding can lead to missed links when valid entities fall below the threshold. (ii) Classifier-based methods, which treat 
the result selection task as a binary classification problem [72,73]. These methods evaluate the pair ⟨𝑚, 𝑒top⟩ to determine whether 
𝑒top is a valid mapping for 𝑚. Features used often overlap with those in candidate ranking, such as contextual similarity and NER 
confidence scores [74,75]. (iii) Joint prediction methods, which integrate unlinkable mention prediction into the ranking process 
by augmenting the candidate set with a synthetic NIL entity [55,76]. If the ranker selects NIL as the top entity, the mention is 
considered unlinkable [49,77]. Probabilistic models extend this strategy by comparing the generative likelihood of the mention 
given the NIL entity versus that given by other candidate entities. A mention is predicted as unlinkable when the NIL entity yields 
higher likelihood than any real entity [55].

2.2. End-to-end entity linking models

End-to-end EL refers to systems that simultaneously detect entity mentions and link them to KB entries, eliminating the need for 
separate NER and EL pipelines [5,6]. Early heuristic-based systems like DBpedia Spotlight [78] and TagMe [79] applied mention 
detection and disambiguation in a single pass. TagMe’s underlying algorithm was later refined into WAT, which improved precision 
and disambiguation speed [80]. A major milestone in the field was the work by Kolitsas et al. [5], which was among the first to 
introduce a neural end-to-end EL architecture. Their model considers all possible spans as candidate mentions and jointly optimizes 
mention detection and entity linking. The model learns contextual mention and entity embeddings, using a probabilistic mention–
entity mapping, and achieves notable performance gains in the GERBIL benchmarking framework [81] when sufficient training 
data is available. Following this, several models have extended the end-to-end EL paradigm. ReFinED [82] proposes a type-aware 
architecture that jointly performs mention detection and disambiguation, leveraging fine-grained type information to prune the 
candidate space early and improve both efficiency and accuracy. Unlike pipeline-based approaches, ReFinED enables real-time
end-to-end EL with large knowledge bases, making it suitable for industrial applications. Laskar et al. [83] extend the BLINK 
framework by integrating it with Elasticsearch to support scalable, real-time end-to-end EL in business conversation settings. These 
works demonstrate the effectiveness and scalability of fully neural, end-to-end EL systems in both open-domain and domain-specific 
settings.

2.3. End-to-end entity linking benchmark datasets

TweetNERD [84] is a large-scale benchmark dataset designed for evaluating end-to-end EL on social media texts, particularly 
tweets. It comprises over 340,000 English tweets annotated with both entity mention spans and their corresponding Wikidata entity 
links, enabling comprehensive evaluation of end-to-end EL systems in noisy, user-generated contexts. The dataset captures temporal 
diversity (spanning 2010–2021), making it suitable for assessing robustness to linguistic drift and emerging entities. Unlike prior 
3 
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datasets that separate NER and linking stages, TweetNERD facilitates joint evaluation of mention detection and disambiguation, 
aligning well with modern, fully end-to-end EL models. Its release supports reproducible research in low-context, high-noise 
environments—conditions typical of real-world applications such as misinformation detection and social media analytics.

KOREDYWC was introduced as an extension of the KORE 50 data set to include YAGO, Wikidata, and Crunchbase [85]. The goal 
is to provide an evaluation data set that addresses the limitations of existing data sets and can be easily used by other developers. 
The KORE 50 data set was chosen as a foundation because it is popular and covers a broad range of topics in English. Three sub-data 
sets are released for each KB: YAGO, Wikidata, and Crunchbase. YAGO and Wikidata cover general knowledge, while Crunchbase 
focuses on technology and business. To perform the annotation, the authors used WebAnno, a web-based annotation tool, to manually 
annotate the KORE 50 data set using entities from different KBs. Each document was manually annotated by searching for entities in 
the respective KB. The annotations were exported using the WebAnno TSV3 format. There are some peculiarities of the annotation. 
Some entities were available in YAGO and Wikidata, but not in Crunchbase. YAGO offers a larger number of resources for annotation 
compared to DBpedia. Wikidata provides information for a broader range of mentions than DBpedia. Crunchbase has a tech-focused 
domain, resulting in fewer entities compared to DBpedia.

2.4. Large language model-based for named entity recognition, entity linking, and end-to-end entity linking

The emergence of LLMs has redefined NER, EL, and end-to-end EL by enabling models to learn rich contextual representations. 
In NER, LLMs fine-tuned on token classification tasks have consistently outperformed traditional models across various domains 
and languages. Complementing this trend, hybrid architectures like LinkNER [15] combine small fine-tuned NER models with 
LLMs using uncertainty guidance: the local NER model predicts spans and estimates uncertainty, and ambiguous spans are then 
re-classified by an LLM (e.g., GPT-3.5 or LLaMA-2) using in-context prompts, resulting in robust detection particularly for unseen or 
noisy entities. In EL, LLM-based approaches typically rely on gold mention spans and focus solely on the linking stage. EntGPT [21] 
models EL as an instruction-following task. Given a pre-annotated mention and its surrounding context, EntGPT uses a GPT-style 
language model to generate or select the correct entity title from a list of candidates derived from a KB. This approach simplifies 
the disambiguation process by avoiding explicit retrieval during inference, but it does not address the mention detection step. 
LLMAEL [86] adopts a hybrid pipeline where LLMs augment mention contexts, which are then processed by traditional EL systems 
such as BLINK, GENRE, or ReFinED. This three-stage architecture — comprising LLM-based context enrichment, data fusion, and 
disambiguation — has shown strong performance for rare and long-tail entities. However, LLMAEL assumes gold mentions and does 
not address mention detection. Vollmers et al. [87] propose a jointly fine-tuned NER+EL model based on T5, enhanced with LLM-
driven mention expansion. They prompt LLaMA-3 to expand ambiguous mentions — e.g., rewriting ‘‘Angelina’’ as ‘‘Angelina Jolie’’ 
— and then constrain outputs via a filtered Wikipedia-derived dictionary to reduce hallucination. The model is evaluated in both 
EL-only (with gold mentions) and joint NER+EL settings. Their tests show that augmentation improves performance significantly, 
especially on out-of-domain datasets.

Although recent methods have advanced the integration of LLMs into NER, EL, and end-to-end EL, none fully support true end-
to-end EL — where mention detection and linking to KB entries are performed jointly — in LrL contexts. In contrast, ELEVATE-ID 
addresses this gap by evaluating LLMs as complete end-to-end EL systems for Indonesian: given raw text, models are required 
to detect entity spans and link them to corresponding KB entries. Using the IndEL benchmark, we assess both multilingual and 
Indonesian monolingual LLMs under zero-shot and fine-tuning settings, providing the first comprehensive evaluation of LLM-based 
end-to-end EL in an LrL environment.

3. IndEL dataset

The IndEL dataset is designed to support both EL and end-to-end EL across general and specific domains in Indonesian. To clarify 
this distinction, we define the two domains as follows. The general domain refers to news-based content that reflects everyday 
language use, current events, and public discourse, and is represented by the NER UI dataset.4 In contrast, the specific domain
encompasses religious and culturally grounded content derived from the Indonesian translation of the Quran, represented by the 
IndQNER dataset.5 These domain definitions help capture both broad linguistic usage and specialized vocabulary, which are essential 
for evaluating domain-sensitive end-to-end EL systems.

NER UI includes 5055 entities across the classes Person (1870 entities), Organization (1949 entities), and Location (1236 entities). 
Among the first two Indonesian NER benchmark datasets introduced in 2020, NER UI has proven to be the most effective, as fine-
tuning IndoBERT on it achieved the highest F1 score of 90.1% [13]. Despite its utility, the NER UI dataset also presents several 
annotation challenges that affect the quality and reliability of end-to-end EL evaluation. These include misspelled entities, incorrect 
entity spans, and missing entities. Misspellings, such as Lea Iacocca instead of Lee Iacocca and Lentang instead of lenteng, can make 
it difficult for end-to-end EL systems to find and accurately link these entities to the correct entries in knowledge bases (KBs). 
Additionally, the dataset sometimes incorrectly labels entity spans or fails to capture the complete span of an entity, such as treating
Fakultas Ekonomi (Economics Faculty) and Universitas Indonesia (University of Indonesia) as separate entities instead of combining 
them into Fakultas Ekonomi Universitas Indonesia (Economics Faculty at the University of Indonesia). Similarly, entities like Pemkot

4 https://github.com/indolem/indolem/tree/main/ner/data/nerui
5 https://github.com/dice-group/IndQNER
4 
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Table 1
Distribution of total entities, unique entities, sentences with nested entities, and the average of entities in sentences 
in IndEL.
 Property General Specific 
 Total entities 4765 2453  
 Unique entities 55 16  
 Sentences with nested entities 1488 141  
 Entities in sentence 2.4 1.6  

(city/local government) and Surabaya should be recognized together as Pemkot Surabaya. Finally, some entities are entirely omitted, 
such as Hye-kyo (Person) and Korea Times (Organization), which can lead to incomplete end-to-end EL results.

On the other hand, IndQNER comprises 3117 sentences and 2475 entities across 18 entity types, as detailed in [14]. Evaluation 
of an Indonesian NER system using BiLSTM and CRF on IndQNER yielded an F1 score of 98% [14], indicating high annotation 
consistency. Since IndQNER is based on a well-defined source (the Indonesian translation of the Qur’an), it features more controlled 
vocabulary and fewer noisy or ambiguous mentions compared to the general domain. This makes it a valuable complement to NER 
UI in evaluating end-to-end EL performance across diverse linguistic and domain-specific settings.
3.1. Human annotation

The IndEL annotation involved six native Indonesian speakers. Annotators were grouped into pairs, forming two annotation 
groups for the general domain and one for the specific domain. Each group independently annotated the same source data within 
their assigned domain. An additional independent annotator performed quality control and adjudicated disagreements across both 
domains. The annotation process followed meticulously prepared guidelines.6

A trial round using 20 sentences from the NER UGM dataset7 was first conducted to align annotators’ understanding and ensure 
consistency. During the main annotation phase, entities were categorized as Agreed (both annotators linked to the same entity),
Disagreed (conflicting links), or OneNoLink (only one annotator linked the entity). For OneNoLink cases, annotators revisited the 
entity to reach a decision. Disagreements were resolved by the third annotator, who reviewed Wikidata entries and, when needed, 
added new ones.

In the general domain, remaining OneNoLink entities were first validated against NER UI; those not found were marked as named 
entity candidates. Both valid entities and candidates were then manually verified by the third annotator. In the specific domain, 
remaining OneNoLink cases were manually reviewed, and no valid links were found. For Disagreed entities in both domains, the 
third annotator selected the correct link or proposed a new one. All Agreed entities were also re-verified. This process resulted in 
4765 verified entities in the general domain and 2453 in the specific domain.

Although inter-annotator agreement scores, such as Cohen’s kappa, were not reported in [7], the annotation process followed 
a structured double-annotation protocol with clearly defined disagreement categories and third-party adjudication. The grouping 
of annotators and multi-stage validation steps described here provide a strong qualitative basis for annotation consistency and 
reliability.

3.2. Dataset analysis, format, and usage

Table  1 summarizes key statistics of the IndEL dataset used in this work, including the distribution of total and unique entities, 
the number of sentences with nested entities, and the average number of entities per sentence across general and specific domains. 
The general domain, as expected, features a significantly broader array of entities, with about 1.2% being unique. It also includes 
more complex sentence structures, reflected in the higher proportion of nested entities and an average of 2.4 entities per sentence. In 
contrast, the specific domain, derived from religious texts, contains fewer unique entities and lower average entity density, indicating 
its more focused scope.

These statistics reflect the verified entities obtained through the human annotation process introduced in our prior work [7], 
and provide a foundation for evaluating end-to-end EL in both general and specific domain contexts. The dataset is formatted in 
the NLP Interchange Format (NIF) and integrated into the GERBIL platform [81], enabling reproducible evaluation of end-to-end 
EL systems. In this study, we independently evaluate LLM-based approaches using the same dataset.

4. LLMs evaluation framework for end-to-end entity linking

In this paper, we evaluated the performance of LLMs on the IndEL benchmark across both general and specific domains. We then 
compared their performances to those of traditional end-to-end EL models previously evaluated on IndEL [7]. As shown in Fig.  1, we 
conducted experiments with multilingual and monolingual LLMs on IndEL in both zero-shot and fine-tuning settings. Subsequently, 
we evaluated the results through performance analysis, generalization analysis, and error analysis. Performance analysis assessed 
how effectively the LLMs identified and linked entities to the correct entries on Wikidata. Generalization analysis examined the 
ability of LLMs to generalize across domains (cross-domain evaluation) and perform in mixed-domain settings, where they were 

6 Annotation Guidelines (IndEL)
7 https://github.com/indolem/indolem/tree/main/ner/data/nerugm
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Fig. 1. The framework of LLMs evaluation on IndEL.

Table 2
Instruction example.
 Task description Find entities and their corresponding entry links in Wikidata 

within the following sentence. Use the context of the sentence 
to determine the correct entries in Wikidata.

 

 Output format The output should be formatted as: [entity1=link1, 
entity2=link2]. No explanations are needed.

 

 Sample sentence Pria kelahiran Bogor, 16 Maret 60 tahun silam itu juga ditunjuk 
sebagai salah satu direktur Indofood dalam RUPS Juni 2008 silam.
(A man born in Bogor, 60 years ago on March 16, was also 
appointed as one of the directors of Indofood in the General 
Meeting of Shareholders in June 2008.)

 

fine-tuned on combined data from general and specific domains and tested on particular domain. Finally, error analysis identified 
common types of mistakes made by LLMs, such as misidentifying entities or failing to link them correctly, providing insights to 
develop better error mitigation strategies for LLM-based end-to-end EL systems. To ensure standardization and consistency, we 
defined relevant prompts for fine-tuning LLMs, similar to annotation guidelines used in human-based annotation tasks. Table  2 
outlines the prompts, which comprised two parts: the task description and the desired outputs.

5. Experiments

We evaluated four LLMs, GPT-4, Komodo (Komodo-7b-base8), LLaMA-3 (LLaMA-3-8B-Instruct9), and Merak (Merak-7B-v410) in 
end-to-end EL tasks using the IndEL dataset. Our experiments focused on two scenarios: zero-shot and fine-tuning settings. For the 
fine-tuning setting, GPT-3.5 was included in place of GPT-4 to assess its adaptability.11 Through the experiments, we were interested 
in addressing the following questions:

RQ1: How do GPT-4, Komodo, LLaMA-3, and Merak perform in the zero-shot setting on the IndEL dataset?

8 https://huggingface.co/Yellow-AI-NLP/komodo-7b-base
9 https://huggingface.co/meta-llama/Meta-LLaMA-3-8B-Instruct
10 https://huggingface.co/Ichsan2895/Merak-7B-v4
11 At the time of this research, fine-tuning GPT-4 was not accessible to us.
6 

https://huggingface.co/Yellow-AI-NLP/komodo-7b-base
https://huggingface.co/meta-llama/Meta-LLaMA-3-8B-Instruct
https://huggingface.co/Ichsan2895/Merak-7B-v4


R.H. Gusmita et al. Data & Knowledge Engineering 161 (2026) 102504 
RQ2: How does fine-tuning affect the performance of GPT-3.5, Komodo, LLaMA-3, and Merak, and how do they compare to each 
other after fine-tuning?

RQ3: How well do the models generalize to unseen entities or contexts in the IndEL dataset?
RQ4: What types of errors are most common for each model in both the zero-shot and fine-tuning settings?

To address RQ1, we evaluated GPT-4, Komodo, LLaMA-3, and Merak using the IndEL dataset, covering both general and specific 
domains. For RQ2, we fine-tuned GPT-3.5, Komodo, LLaMA-3, and Merak with training and validation sets from IndEL, then 
evaluated the fine-tuned models with the IndEL test set. We compared their fine-tuned performance to their zero-shot performance. 
To address RQ3, we performed cross-domain and mixed-domain evaluations involving GPT-3.5, Komodo, LLaMA-3, and Merak. To 
address RQ4, we conducted a detailed analysis of the results from both zero-shot and fine-tuning settings both in general and specific 
domains.

5.1. Experiment setup

5.1.1. Zero-shot learning setting
In the zero-shot setting, we prompted the LLMs using the instruction format shown in Table  2, where the prompt includes only 

the task description and output format. Zero-shot learning in this context means that the model is performing the end-to-end EL task 
without being explicitly trained for it. Instead of being trained specifically to identify entities and link them to Wikidata, the model 
uses its general understanding of language and knowledge encoded during pre-training to infer the mentions and their correct links. 
We evaluated the LLMs using the test set obtained from IndEL, covering both general and specific domains.

5.1.2. Fine-tuning setting
Fine-tuning LLMs involves adapting a pre-trained model to a specific task, such as end-to-end EL, by using smaller, task-specific 

datasets. In this process, the LLMs were provided with detailed prompts and example sentences from the dataset, as outlined in Table 
2. The fine-tuning leveraged both general and specific domain datasets from IndEL, ensuring the model could handle a wide range 
of contexts. Training and validation sets from both domains were used to refine the model’s parameters, enhancing its ability to 
accurately identify mentions and link them within sentences. Key hyperparameters during the fine-tuning process included a batch 
size of 8 with gradient accumulation steps of 4, a learning rate of 2e−4, and training over 3 epochs. Additionally, a warmup ratio 
of 0.03 and 100 warmup steps were used to stabilize the initial learning rate, and gradient clipping with a max norm of 0.3 was 
applied to maintain training stability. The model utilized 4-bit quantization via BitsAndBytes and Low-Rank Adaptation (LoRA) with 
specific settings (alpha of 16, dropout of 0.1, and rank of 64) to optimize memory and computation efficiency. Once the fine-tuning 
was complete, the model was evaluated using test sets from both general and specific domains to measure its performance.

5.2. Dataset setup

In our experiments, we split IndEL into training, validation, and test sets with an 8:1:1 ratio [88]. In the general domain, this 
resulted in 1673, 229, and 212 sentences for training, validation, and testing, respectively. For the specific domain, the dataset was 
split into 2075, 283, and 263 sentences for training, validation, and testing, respectively.

5.3. Evaluation metric

We employed two evaluation metrics: automatic evaluation for quantitative performance assessment and human evaluation for 
qualitative analysis. The details of each metric are outlined below.

5.3.1. Automatic evaluation
The automatic evaluation relies on standard metrics, including precision, recall, and F1-score, to objectively quantify the 

performance of LLMs in end-to-end EL tasks:

• Precision (𝑃 ): Represents the proportion of correctly linked entities among all entities predicted as linked. This metric 
highlights the model’s accuracy in minimizing incorrect links. 

𝑃 = TP
TP + FP (1)

where TP being true positives (correct links) and FP being false positives (incorrect links).
• Recall (𝑅): Denotes the proportion of correctly linked entities relative to all ground truth entities. Recall measures the model’s 
ability to comprehensively capture relevant entities. 

𝑅 = TP
TP + FN (2)

where TP being true positives (correctly linked mentions) and FN being false negatives (mentions that should have been linked 
but were missed).
7 
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• F1-score (𝐹1): Calculated as the harmonic mean of precision and recall, this metric provides a balanced evaluation of the 
model’s performance, especially in cases where precision and recall are equally critical. 

𝐹1 = 2 ⋅ 𝑃 ⋅ 𝑅
𝑃 + 𝑅

(3)

where 𝑃  is precision and 𝑅 is recall.

5.3.2. Human evaluation
The human evaluation was conducted to qualitatively examine the challenges encountered by LLMs during the end-to-end EL 

process. In doing so, the experiment results were categorized into three distinct groups:

A: Sentences where all identified entities and their corresponding links exactly match the IndEL references.
B: Sentences where all entities are correctly identified, but some or all links are inaccurate.
C: Sentences where no correct entities are identified.

For each category, a comprehensive manual analysis was conducted to identify and evaluate the underlying factors affecting 
the model’s performance. This qualitative investigation aims to uncover specific challenges and limitations of LLMs in performing 
end-to-end EL tasks.

5.3.3. Evaluation consistency across systems
While the LLMs were evaluated using our custom Python scripts and the traditional end-to-end EL systems were evaluated 

through the GERBIL platform, the same core metric — exact match of predicted entity links to gold-standard Wikidata QIDs — 
was applied across all systems. For both settings, we computed micro-averaged precision, recall, and F1-score, based solely on exact 
QID matches. No partial credit or fuzzy matching was used. This alignment ensures a fair comparison between LLM-based and 
traditional end-to-end EL models despite differences in implementation and execution environments.

5.4. Baselines

To benchmark the performance of LLMs in end-to-end EL tasks, we compared them against four traditional end-to-end EL models 
previously evaluated on the IndEL dataset [7]. These models were assessed using the GERBIL framework [81], which provides a 
standardized platform for evaluating end-to-end EL systems. The baseline models include Babelfy [89], DBpedia Spotlight [78], 
OpenTapioca [90], and WAT [80]. Each system’s performance was tested on the IndEL benchmark, covering both general and 
specific domains. Details of the evaluation results are available in the repository.12

6. Results and analysis

6.1. Performance analysis (RQ1 and RQ2)

Tables  3 and 4 compare the performance of various LLMs, including GPT-4, LLaMA-3, Komodo, and Merak in the zero-shot 
setting and GPT-3.5, LLaMA-3, Komodo, and Merak in the fine-tuning setting, with the IndEL dataset in both general and specific 
domains, respectively. In the zero-shot setting, both GPT-4 and LLaMA-3 exhibit very low performance across both domains, but 
GPT-4 achieves slightly better results with an F1-score of 0.083 in the general domain and 0.012 in the specific domain, compared 
to LLaMA-3’s F1-scores of 0.003 and 0.000, respectively. For Indonesian-trained LLMs, Komodo and Merak, unexpectedly show 
very poor performance with F1-scores of 0.000 in both domains. In the fine-tuning setting, all LLMs generally perform better in 
the specific domain compared to the general domain. GPT-3.5 significantly outperforms the other LLMs in the general domain, 
achieving an F1-score of 0.373, while the other LLMs do not reach an F1-score of 0.1. In the specific domain, GPT-3.5 shows the 
best performance among all LLMs, achieving an F1-score of 0.611. Merak shows notable performance by achieving an F1-score of 
0.407, which is slightly lower than LLaMA-3’s F1-score. Despite Komodo has the worst performance among all models based on 
F1-scores, it outperforms Merak and LLaMA-3 models according to recall measurement. These results demonstrate that the fine-
tuning process significantly benefits the LLMs, as their performances increase substantially compared to their performances in the 
zero-shot setting. Table  3 also shows that the performance of most LLMs in end-to-end EL tasks in Indonesian still lags behind that 
of the four end-to-end EL systems evaluated on IndEL [7]. In the general domain, the best performer in the fine-tuning setting, GPT-
3.5, still underperforms compared to DBpedia Spotlight, which is the weakest among the four traditional end-to-end EL systems. 
This comparison is intended to highlight that even the least effective traditional system still outperforms state-of-the-art LLMs, 
underscoring the substantial performance gap that remains. This indicates that even with fine-tuning, significant challenges persist 
in the ability of LLMs to effectively handle end-to-end EL in LrLs like Indonesian.

12 https://github.com/dice-group/IndEL/blob/main/README.md
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Table 3
Precision, recall, and F1-score from zero-shot (*) and fine-tuning (**) experiments with GPT-3.5, GPT-4, LLaMA-3, 
Komodo, and Merak, compared to traditional end-to-end EL systems also evaluated using the IndEL dataset in 
the general domain.
 Model (#parameters) Precision Recall F1-score 
 General domain
 Babelfy 0.727 0.372 0.492  
 DBpedia Spotlight 0.675 0.358 0.468  
 OpenTapioca 0.798 0.410 0.542  
 WAT 0.612 0.555 0.582  
 GPT−4* 0.083 0.089 0.083  
 LLaMA-3 (8B)* 0.003 0.003 0.003  
 Komodo (7B)* 0.000 0.000 0.000  
 Merak (7B)* 0.000 0.000 0.000  
 GPT-3.5 (175B)** 0.385 0.373 0.373  
 LLaMA-3 (8B)** 0.084 0.117 0.093  
 Komodo (7B)** 0.018 0.026 0.021  
 Merak (7B)** 0.045 0.039 0.041  

Table 4
Precision, recall, and F1-score from zero-shot (*) and fine-tuning (**) experiments with GPT-3.5, GPT-4, LLaMA-3, 
Komodo, and Merak, compared to traditional end-to-end EL systems also evaluated using the IndEL dataset in 
the specific domain.
 Model (#parameters) Precision Recall F1-score 
 Specific domain
 Babelfy 0.805 0.473 0.595  
 DBpedia Spotlight 0.847 0.673 0.750  
 OpenTapioca 0.618 0.031 0.059  
 WAT 0.772 0.750 0.761  
 GPT−4* 0.010 0.016 0.012  
 LLaMA-3 (8B)* 0.000 0.000 0.000  
 Komodo (7B)* 0.000 0.000 0.000  
 Merak (7B)* 0.000 0.000 0.000  
 GPT-3.5 (175B)** 0.616 0.610 0.611  
 LLaMA-3 (8B)** 0.415 0.444 0.409  
 Komodo (7B)** 0.221 0.471 0.285  
 Merak (7B)** 0.446 0.393 0.407  

6.2. Generalization analysis (RQ3)

Table  5 exhibits the cross-domain and mixed-domain evaluation results in the fine-tuning scenario, involving GPT-3.5, LLaMA-3, 
Komodo, and Merak. We refer to the General domain to specific domain scenario as the model being fine-tuned with the general 
domain set and evaluated with the specific domain set, and vice-versa for the Specific domain to general domain scenario. GPT-
3.5 consistently outperforms LLaMA-3 in both scenarios. Specifically, in the General domain to specific-domain evaluation, GPT-3.5 
achieves a precision of 0.003 and both recall and F1-scores of 0.004, while LLaMA-3 scores zero across all metrics. In the Specific 
domain to general-domain evaluation, GPT-3.5 attained a precision of 0.044, recall of 0.042, and F1-score of 0.043, while LLaMA-3 
scored 0.002 for precision, 0.004 for recall, and 0.003 for F1-score. Komodo and Merak are unexpectedly not able to perform in any 
scenarios. These findings indicate that GPT-3.5 has better adaptability and performance in cross-domain tasks compared to LLaMA-3, 
with the highest performance observed when fine-tuned with the specific domain set and evaluated with the counterpart. Fine-tuning 
with a combination of both domains significantly enhances the models’ performance compared to one-domain fine-tuning, resulting 
in 4 out of 8 F1-scores exceeding 0.4. Specifically, the LLMs show better performance when the fine-tuned models are evaluated 
with the specific domain set. GPT-3.5 outperforms all other LLMs with a precision of 0.571, and both recall and F1-score at 0.566.

6.3. Error analysis (RQ4)

Table  6 outlines the percentage of sentences in each category (A, B, and C), as defined in Section 5.3.2, based on human evaluation 
of GPT-4 (zero-shot), GPT-3.5 (fine-tuned), and other LLMs (LLaMA-3, Komodo, and Merak) evaluated under both zero-shot and 
fine-tuned settings, across both general and specific domains of the IndEL dataset.

In category A — where all entities and their corresponding Wikidata links are correctly identified — fine-tuned GPT-3.5 achieves 
the highest performance, correctly resolving 58.6% of sentences in the specific domain and 17.0% in the general domain. Among 
the remaining models, Merak — an Indonesian monolingual LLM — outperforms the multilingual LLaMA-3 in the specific domain, 
achieving 36.5% compared to LLaMA-3’s 32.3%. This suggests that language-specific pretraining can be advantageous in domain-
relevant tasks, particularly when entity names and structures follow culturally and linguistically specific patterns. Komodo, another 
9 
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Table 5
The precision, recall, and F1-score from cross-domain and mixed-domain evaluations of fine-tuning GPT-3.5, 
LLaMA-3, Komodo, and Merak.
 Model Precision Recall F1-score  
 General domain to specific-domain
 GPT-3.5 0.003 0.004 0.004  
 LLaMA-3 0.000 0.000 0.000  
 Komodo 0.000 0.000 0.000  
 Merak 0.000 0.000 0.000  
 Specific domain to general-domain
 GPT-3.5 0.044 0.042 0.043  
 LLaMA-3 0.002 0.004 0.003  
 Komodo 0.000 0.000 0.000  
 Merak 0.000 0.000 0.000  
 Mix training data to general-domain
 GPT-3.5 0.405 0.412 0.404  
 LLaMA-3 0.094 0.123 0.103  
 Komodo 0.067 0.106 0.077  
 Merak 0.050 0.044 0.046  
 Mix training data to specific-domain
 GPT-3.5 0.571 0.566 0.566  
 LLaMA-3 0.425 0.436 0.415  
 Komodo 0.105 0.165 0.122  
 Merak 0.486 0.421 0.441  

Indonesian model, performs notably lower at 2.3%. In the zero-shot setting, GPT-4 achieves only 0.8% and 0.5% in the specific and 
general domains, respectively, highlighting the substantial gains enabled through fine-tuning.

In category B — sentences where all entities are correctly identified, but some or all links are inaccurate — fine-tuned LLaMA-3 achieves 
the highest performance in the general domain (84.4%), followed by Merak (69.3%), GPT-3.5 (50.0%), and Komodo (42.5%). In the 
specific domain, LLaMA-3 again leads (16.4%), with Merak (8.4%), Komodo (8.0%), and GPT-3.5 (3.8%) following. These findings 
suggest that while mention detection is largely successful after fine-tuning, accurate entity disambiguation — especially linking 
to the correct Wikidata entries — remains a significant challenge. This difficulty persists even for models with strong language 
alignment (such as Komodo and Merak, which are trained specifically on Indonesian) and models that benefit from large-scale 
fine-tuning (such as GPT-3.5 and LLaMA-3). The results indicate that mastering the linguistic form of the input (e.g., Indonesian) or 
even optimizing the model through task-specific supervision does not automatically translate to robust knowledge resolution. This 
points to limitations in current models’ reasoning over entity candidates and suggests a need for more structured, knowledge-aware 
training or hybrid approaches that can combine surface-level language understanding with deeper semantic linking capabilities [91].

In category C — sentences where no correct entities are identified — fine-tuning substantially reduces the number of such cases 
across most models. In the specific domain, GPT-3.5 achieves the lowest error rate (0.4%), followed by LLaMA-3 (0.8%), Komodo 
(4.2%), and Merak (12.6%). In the general domain, Merak shows the most notable improvement, with its error rate dropping from 
20.3% (zero-shot) to 1.4% (fine-tuned). Similarly, LLaMA-3 and GPT-3.5 exhibit strong gains, with reductions from 7.6% and 5.2% 
to 0.0% and 0.9%, respectively. In contrast, Komodo’s error rate increases in the general domain after fine-tuning — from 5.2% to 
10.4% — suggesting limitations in its ability to generalize across domains. Notably, Komodo fails to generate any valid output for 
this category in the specific domain, indicating a critical breakdown in its entity recognition and linking pipeline under fine-tuned 
conditions.

In summary, fine-tuning substantially boosts performance in both entity detection and linking—especially in the specific domain. 
GPT-3.5 stands out in end-to-end accuracy, while LLaMA-3 shows strength in partial linking. Among the Indonesian-trained models, 
Merak demonstrates stronger generalization than Komodo, particularly in the general domain. While both models perform well in 
mention detection, their performance lags in entity disambiguation and domain transfer compared to the multilingual LLMs. These 
results highlight the promise of localized models, while pointing to key areas — such as entity linking reasoning and robustness 
across domains — where further development is needed.

While the quantitative evaluation across categories A, B, and C highlights performance differences among models and the effects 
of fine-tuning, it does not fully reveal the underlying causes of model failure—particularly in zero-shot settings. To gain deeper 
insights into the challenges faced by LLMs in performing end-to-end EL in Indonesian, we conducted a detailed analysis of two 
groups of problematic cases in the zero-shot setting : (i) sentences that were not processed by the models (i.e., no output was 
returned), and (ii) sentences that fell into category C, where no correct entities were identified. In the general domain, we found 
that LLMs failed to process or correctly resolve entities in these cases due to the following factors:

1. The entities exist in non-complete form such as, first names, nicknames, or aliases in sentences. Mega in the sentence ‘‘Apa 
sikap Mega itu bisa disebut egois karena kadernya tidak ada yang jadi menteri? (Can Mega’s attitude be considered selfish because 
none of her party members were appointed as ministers?)’’ is considered as a non-complete entity as it is the nickname of
Megawati Soekarno Putri.
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Table 6
Statistics of the detailed human evaluation conducted on the results of GPT-3.5, GPT-4, LLaMA-3, Komodo, and 
Merak, assessed against IndEL in both general and specific domains.
 Category General Domain (212 sentences) Specific Domain (263 sentences)
 Zero-shot Fine-tuning Zero-shot Fine-tuning  
 GPT-4 & GPT-3.5  
 A 0.5% 17.0% 0.8% 58.6%  
 B 59.0% 50.0% 46.8% 3.8%  
 C 5.2% 0.9% 5.3% 0.4%  
 LLaMA-3  
 A 0.0% 0.9% 0.0% 32.3%  
 B 60.0% 84.4% 50.0% 16.4%  
 C 7.6% 0.0% 6.5% 0.8%  
 Komodo  
 A 0.0% 0.0% 0.0% 2.3%  
 B 0.5% 42.5% 0.0% 8.0%  
 C 5.2% 10.4% 0.0% 4.2%  
 Merak  
 A 0.0% 0.9% 0.0% 36.5%  
 B 33.5% 69.3% 31.6% 8.4%  
 C 20.3% 1.4% 20.5% 12.6%  

2. The entities exist as their acronyms in sentences. TNGL in ‘‘Menurut laman resmi TNGL, DiCaprio datang bersama dua aktor 
lain, yakni Adrien Brody dan Fisher Stevens, bersama sejumlah kru. (According to TNGL’s official website, DiCaprio came with 
two other actors, namely Adrien Brody and Fisher Stevens, along with several crew members.)’’ is the acronym of Taman 
Nasional Gunung Leuser (Gunung Leuser National Park).

3. The entities are in their full-name form, and the sentences are written in a formal style (sourced from the general domain), 
yet the LLMs still fail to identify them. This issue can be seen in the following examples for each entity class covered in the 
general domain:

(a) Person: Dengan jaminan dua menteri yang memiliki integritas, Menhub Ignasius Jonan dan Menkominfo Rudiantara, proses 
akan mudah. (With the assurance of two ministers who have integrity, Minister of Transportation Ignasius Jonan and 
Minister of Communication and Information Technology Rudiantara, the process will be easy.)

(b) Location: Sebagai Bandara, lalu lintas ke dan dari Bandara HLP sudah sangat padat. (As an airport, the traffic to and from 
HLP Airport is already very congested.)

(c) Organization: Tantangan kian besar karena Sociedad akan berusaha mengeksploitasi fisik Barca setelah melakoni laga tengah 
pekan di Liga Champions. (The challenge is even greater because Sociedad will try to exploit Barca’s physical condition 
after playing a midweek match in the Champions League.)

According to the analysis of sentences in category C — where no correct entities were identified — in the general domain under 
the zero-shot setting, we identified the most frequent error type for each model based on the actual number of annotated error 
cases:

1. GPT-4: The dominant error involves partial entity extraction, which accounts for 6 out of 11 annotated cases (54.5%). In 
these cases, the model identifies only a portion of the correct entity or embeds the entity within a broader, imprecise 
phrase. For instance, instead of recognizing BUMN as a standalone organizational entity, GPT-4 returns menteri pemberdayaan 
BUMN (Minister of State-Owned Enterprises), incorporating a role title. Similarly, in another case, the entities PSG and Ibra
are collapsed into PSG TV, which refers to a different concept entirely. These boundary issues reduce linking precision by 
distorting the intended semantic reference and impairing disambiguation against KBs like Wikidata.

2. LLaMA-3: The most common error involves the inclusion of salutations or official titles within entity spans, found in 5 out 
of 16 sentences (31.3%). The model frequently prepends role designations to named entities, resulting in overly broad or 
incorrect spans. For example, instead of correctly identifying Yasonna Laoly, it returns menteri hukum dan HAM Yasonna Laoly
(Minister of Law and Human Rights Yasonna Laoly). Similarly, Ignasius Jonan is detected as menhub Ignasius Jonan (Minister of 
Transportation), and Megawati Soekarnoputri appears as mantan presiden Megawati Soekarnoputri (former president Megawati 
Soekarnoputri). This over-inclusion of titles reduces entity linking accuracy, especially when role names are not part of the 
canonical entity label in Wikidata.

3. Komodo: All 11 of its errors (100.0%) are due to unreplaced template placeholders such as ‘entity1’, ‘entity2’, ‘link1’, or ‘link2’, 
which are directly copied from the prompt format into the output. For example, instead of generating valid named entities 
from the sentence — such as Telkom and its corresponding Wikidata link — the model simply outputs generic tokens like
entity1 and link1, showing no evidence of sentence understanding or mention detection. These failures suggest an over-reliance 
on prompt structure during fine-tuning and highlight a critical weakness in semantic grounding and output generation.
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4. Merak: Hallucination is the most frequent error, occurring in 18 out of 43 annotated sentences (41.9%). In these cases, the 
model generates entities that are semantically unrelated to the sentence content or simply fabricated. For example, in the 
sentence ‘‘Tapi kita juga punya kemampuan’’, tandas mantan Menteri Pemberdayaan BUMN ini.’’ (But we also have capabilities’’, 
asserted the former Minister of State-Owned Enterprises), Merak hallucinates mantan menteri pemberdayaan bumno, a distorted 
phrase not grounded in the input and unrelated to the gold entity BUMN. In another case, for the sentence mentioning 
government aid in Halmahera Utara, the model predicts a list of invented or irrelevant programs such as PKH, ASLU, and Beras 
Rastra—none of which appear in the original sentence. These errors reveal a pattern of over-generation and poor contextual 
grounding, where the model fails to anchor its predictions in the actual input.

These results demonstrate that each model exhibits a distinct primary weakness when applied in zero-shot settings on general-
domain text. GPT-4 most often returns incomplete mention spans, LLaMA-3 frequently includes extraneous titles within entity 
boundaries, Komodo struggles with placeholder substitution due to template leakage, and Merak is prone to hallucinating entities 
that are semantically unrelated to the input. Understanding these model-specific failure profiles is essential for improving end-to-end 
EL performance, particularly in LrLs like Indonesian.

6.4. Comparative analysis: LLMs vs. Traditional end-to-end EL systems

Despite the growing capabilities of LLMs, our experiments show that traditional end-to-end EL systems such as Babelfy, DBpedia 
Spotlight, OpenTapioca, and WAT still outperform LLMs across both general and specific domains. For instance, in the general 
domain (Table  3), WAT achieves the highest F1-score of 0.582, followed by OpenTapioca (0.542), Babelfy (0.492), and DBpedia 
Spotlight (0.468). In contrast, the best-performing fine-tuned LLM — GPT-3.5 — achieves an F1-score of only 0.373. In the specific 
domain (Table  4), WAT and DBpedia Spotlight again dominate with F1-scores of 0.761 and 0.750, respectively, while GPT-3.5, the 
strongest fine-tuned LLM, achieves 0.611. Other LLMs, including Indonesian-trained Komodo and Merak, and multilingual LLaMA-3, 
consistently fall below the 0.5 mark in both domains.

This persistent gap can be attributed to several key factors:

• Lack of Explicit Knowledge Grounding: Traditional systems explicitly rely on structured KB access through deterministic 
components—mention detection, candidate generation, and coherence-based entity disambiguation. This enables them to 
directly retrieve and rank candidate entities based on symbolic signals. In contrast, LLMs rely on latent knowledge encoded 
during pretraining and lack transparent KB access, which limits their ability to resolve ambiguous mentions unless explicitly 
guided via prompt engineering or external retrieval modules [31].

• Mention Boundary Detection Consistency: Traditional end-to-end EL systems typically rely on rule-based or statistical NER 
modules that are fine-tuned to accurately segment entity spans. As a result, they rarely encounter span boundary issues. In 
contrast, LLMs often struggle to delineate entity boundaries in Indonesian sentences, as observed in category C and non-
processed sentence errors. For instance, LLaMA-3 frequently includes salutations (e.g., menteri or mantan presiden) as part 
of the entity span—components that traditional systems typically exclude through gazetteer-based heuristics or supervised 
training on curated corpora.

• Template Leakage and Format Robustness: Errors such as template leakage — observed in Komodo’s outputs with tokens like
entity1 and link1 — are not present in traditional systems, which follow strict formatting rules throughout their pipelines. 
These systems enforce structured output schemas by design, whereas LLMs may revert to training-time templates when the 
prompt is not fully grounded in semantic context, especially in fine-tuned small-scale models [92].

• Domain and Language Adaptation: While traditional systems generally perform consistently across domains due to broad KB 
coverage and modular pipeline tuning, LLMs require fine-tuning to achieve reasonable performance, and still fall short in 
domain transfer. For example, although Komodo and Merak are pretrained on Indonesian, they struggle in the general domain 
due to insufficient exposure to diverse linguistic forms, whereas DBpedia Spotlight performs competitively in both domains 
without task-specific adaptation.

• Disambiguation Accuracy: Even when LLMs successfully detect all entity mentions — as in category B — they often fail to 
assign the correct Wikidata entity IDs, particularly in domain-specific texts. This highlights a weakness in the disambiguation 
component of the end-to-end EL pipeline, where traditional end-to-end EL systems outperform LLMs due to their use of 
structured signals such as entity descriptions, popularity scores, and coherence-based reranking [5,89,93].

ELEVATE-ID reveals that although fine-tuned LLMs demonstrate promising improvements over their zero-shot counterparts, they 
still lag significantly behind traditional end-to-end EL systems in terms of F1 performance, mention-link coherence, and cross-domain 
robustness. These findings highlight the importance of developing hybrid approaches that combine the contextual adaptability of 
LLMs with the structured precision, reliability, and interpretability of traditional end-to-end EL architectures [21,86].

7. Practical implications

The findings from ELEVATE-ID demonstrate practical relevance for real-world applications of end-to-end EL in Indonesian and 
potentially other LrLs. For example, improved end-to-end EL performance in the specific domain has strong implications for religious 
information systems, where disambiguating scriptural and historical entities is essential. In the general domain, ELEVATE-ID can 
support digital journalism, public discourse monitoring, and personalized content delivery by enabling accurate linkage of ambiguous 
12 
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mentions (e.g., ‘‘Hatta’’, ‘‘Anies’’) to KB entries. The framework also facilitates the development of local NLP tools — such as 
Indonesian-language virtual assistants, search engines, and question answering systems — by identifying end-to-end EL bottlenecks 
that LLMs still face, particularly in handling acronyms, incomplete mentions, and culturally grounded expressions.

8. Limitations

While ELEVATE-ID provides a comprehensive evaluation of LLM-based end-to-end EL in Indonesian, several limitations should 
be acknowledged. First, the study focuses exclusively on a single LrL (Indonesian), which may limit the generalizability of the 
findings to other LrLs with different linguistic characteristics. Second, while IndEL includes both general and specific domain data, 
its relatively small scale compared to high-resource benchmarks may restrict the diversity of contexts available during training and 
evaluation. Third, the evaluation is limited to Wikidata as the target KB, which offers rich textual descriptions, structured relations, 
and standardized identifiers [3]. These characteristics make Wikidata particularly suitable for LLM-based linking, especially since 
earlier models in the LLaMA family were trained on multilingual Wikipedia dumps [31], which embed Wikidata-aligned content. 
Although the training data for LLaMA-3 has not been disclosed, it may have retained similar exposure to such entity distributions. 
In contrast, other KBs such as DBpedia or YAGO provide sparser or less standardized entity representations [94], and adapting 
ELEVATE-ID to these resources may require alternative alignment or linking strategies. Fourth, our experiments evaluate zero-shot 
and fine-tuned settings but do not include advanced prompting strategies (e.g., few-shot or chain-of-thought), nor hybrid models that 
combine symbolic and neural methods. Future work could explore these directions to further enhance performance and robustness.

9. Conclusion and future works

This paper presents ELEVATE-ID, a framework for evaluating end-to-end EL in Indonesian — a low-resource language — using 
multilingual and Indonesian-pretrained LLMs. Leveraging the IndEL benchmark, we assess model performance under zero-shot and 
fine-tuned settings across general and specific domains. While GPT-4 and GPT-3.5 outperform others, our analysis reveals that 
persistent disambiguation and linking errors remain across all models. Indonesian LLMs show reasonable mention detection but 
suffer from hallucinations and format-related issues. Compared to traditional end-to-end EL systems, LLMs still underperform in F1-
score and linking precision. The limited size of IndEL further underscores the need to develop more comprehensive datasets for robust 
evaluation. Future work may explore LLM-based data augmentation [95,96], mention paraphrasing [97], or back translation [98] 
to improve generalization and mitigate data scarcity in low-resource end-to-end EL tasks.
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