
AutoCL: AutoML for Concept Learning

Jiayi Li1[0009−0001−9475−8159], Sheetal Satheesh1[0009−0009−0385−5825], Stefan
Heindorf1[0000−0002−4525−6865], Diego Moussallem1[0000−0003−3757−2013], René

Speck1[0009−0001−0151−5538], and Axel-Cyrille Ngonga
Ngomo1[0000−0001−7112−3516]

Paderborn University, Paderborn, Germany
{jiayili, sheetal}@mail.uni-paderborn.de

{heindorf, diego.moussallem, rene.speck, axel.ngonga}@uni-paderborn.de

Abstract. Node classification in knowledge graphs aids in the discovery
of new drugs, the identification of risky users in social networks, and the
completion of missing type information in knowledge graphs. A crucial re-
quirement for many stakeholders is to understand the models’ predictions
in these applications. To this end, concept learners have been proposed
to learn concepts in description logic from positive and negative nodes in
knowledge graphs in an interpretable way. However, learning concepts on
large datasets is computationally expensive. Manually selecting impor-
tant subgraphs and features to reduce runtime is tedious. While many
feature selection approaches have been proposed to simplify the process
for tabular data, they are not directly applicable to knowledge graphs
and concept learning. In addition, current concept learners have a large
number of hyperparameters that need to be optimized to achieve high
predictive performance. In this paper, we propose AutoCL—an AutoML
approach that is tailored to concept learning. AutoCL comprises meth-
ods for automatic feature selection and hyperparameter optimization for
concept learners. We demonstrate its effectiveness with SML-Bench, a
benchmarking framework for structured machine learning. Our approach
leads to better predictive performance across concept learners, in terms
of F1-measure and Accuracy while reducing runtime on 6 of 8 datasets
from SML-Bench.

Keywords: Knowledge bases; Concept learning; Automated machine
learning; Feature selection; Hyperparameter optimization

1 Introduction

Artificial intelligence (AI) has made remarkable progress in recent years, with
deep learning standing out as a prominent subfield. Deep learning models contain
a series of linear and non-linear transformations that often comprise millions of
parameters exceeding human comprehension capabilities. Due to their opaque
decision-making processes, they are often referred to as “black-box” models. This
lack of transparency poses significant challenges, particularly in critical domains
where understanding the decision-making process is important.

2 Li et al.

In response, the field of explainable artificial intelligence (XAI) has emerged
[42, 51]. XAI aims to explain the outcomes and inner workings of such models
in a way that is understandable to humans. One promising avenue in this
direction is the integration of knowledge graphs (KGs) [19]. KGs offer a structured
representation of domain knowledge, providing clear semantics for entities and
relations. By infusing deep learning models with domain knowledge from KGs via
neuro-symbolic procedures, their functioning and outcomes might be explained.

Moreover, concepts in description logics (DLs) have been proposed as inter-
pretable “white box” models. Given positive and negative examples of individuals
in a knowledge base, the task of concept learning (CL) [17, 24, 34, 36] is to learn
a concept such that many of the positive examples are entailed and many of the
negatives are not. The learned concepts in turn can be applied to new unseen data
to make new predictions. Concepts in DLs directly correspond to class expressions
in the W3C Web Ontology Language (OWL) designed to represent rich and
complex knowledge about things. OWL allows expressive concepts including
logical operators, such as conjunctions, disjunctions, and negations, as well as
data and cardinality restrictions [24].

Real-world KGs like DBpedia, Wikidata, and YAGO have numerous relations,
but many of these relations are irrelevant to specific learning problems. For
instance, the “author” relation is meant for books and publications, the “shares
border with” relation is intended for countries, but both relations are hardly
relevant for predicting family relations of individuals. Such superfluous relations
can unnecessarily prolong the runtime of concept learners and if irrelevant
features are picked up, this can jeopardize the interpretability of the results
and consequently the generalizability to new unseen data [50]. Although many
feature selection methods have been proposed and shown to enhance model
interpretability [12, 13, 25, 21, 41], most of the approaches are tailored to tabular
data and, to a lesser extent, to image and text data, but there is a lack of
approaches specifically tailored to concept learning.

Moreover, contemporary concept learners like CELOE, OCEL [36], and Ev-
oLearner [24] are equipped with a multitude of hyperparameters (HPs). To obtain
the best predictive performance of the concept learners, it is necessary to carefully
tune the HPs, called Hyperparameter Optimization (HPO).

In this paper, we propose AutoCL—an AutoML approach including FS and
HPO for concept learning. We evaluate AutoCL on 8 datasets from the SML-
Bench framework [55]. Our results show that AutoCL significantly improves upon
the state-of-the-art concept learners, especially on large learning problems. We
observe enhancements in both runtime and predictive performance.

To the best of our knowledge, no similar methods for FS and HPO for
concept learning have been implemented at the time of writing. Therefore, we
envisage that our findings lay the groundwork for future research in this area.
Our contributions are summarized as follows:

1. We propose an AutoML approach for concept learning.
2. We perform automatic FS for concept learning both with a table-based and

a graph-based approach.

AutoCL: AutoML for Concept Learning 3

3. We optimize the HPs of concept learners with the Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES) [22].

4. We provide our source code to the research community.

The paper is structured as follows: In Section 2, we give an overview of the
required background in DLs and concept learning. In Section 3, we introduce
related work. Our approach is proposed in Section 4. Our experimental results are
shown in Section 5 and we discuss the strengths and weaknesses of our AutoCL
approach in Section 6. Finally, we summarize our work and give an outlook on
future improvements of our approach in Section 7.

2 Background

DLs [3, 37] are a family of languages for knowledge representation (KR). DLs
represent knowledge through concepts, objects, and roles. Concepts serve as
formal descriptors of ideas within a specific domain; for instance, defining “Mother”
as “woman has a child.” Objects are members of concepts in the application
domain and roles indicate binary relationships between objects. Information is
stored in a knowledge base that is divided into two parts for description logic
systems: the TBox and the ABox. The ABox contains assertions about objects.
It relates objects to concepts and other objects via roles. The TBox describes
the terminology by relating concepts and roles. Table 1 introduces the syntax of
the DL ALCQ(D).

Table 1. Description logic constructs according to Lehmann et al. [37].

Construct Syntax

ALC

abstract role r
Boolean concrete role b
numeric concrete role d
atomic concept A

top concept ⊤
bottom concept ⊥
negation ¬C
disjunction C ⊔D
conjunction C ⊓D
existential restriction ∃r.C
universal restriction ∀r.C

Construct Syntax

Q

max. cardinality restriction ≤ n r.C
min. cardinality restriction ≥ n r.C

D

max. numeric restriction (v ∈ R) d ≤ v
min. numeric restriction (v ∈ R) d ≥ v
Boolean value restriction b = true
Boolean value restriction b = false

We revisit the definition of concept learning in DLs introduced by Lehmann
et al. [37]. Assuming we have one target concept Target, a knowledge base
K, and sets P and N representing positive and negative examples of Target,

4 Li et al.

the goal is to find a concept C such that Target does not occur in C and for
K′ = K ∪ {Target≡ C}, we have K′ |= P and K′ ̸|= N .

Typically, the learning problem is to find a concept C which maximizes the
F1-measure or Accuracy, which are defined as follows:

Precision :=
|CP ∩ P |

|CP ∩ P |+ |CP ∩N |
Recall :=

|CP ∩ P |
|CP ∩ P |+ |CN ∩ P |

F1 := 2× Precision × Recall

Precision + Recall
Accuracy :=

|CP ∩ P |+ |CN ∩N |
|P |+ |N |

In this definition, CP denotes the set of objects that are members of the concept C
and CN the set of objects that are not members of C [37, 33].

3 Related Work

Lehmann and Hitzler [37] learn concepts in ALC with a refinement operator.
Their approach achieves high accuracy and surpasses previous inductive logic
programs in certain cases.

DL-Learner [34], a framework widely utilized for inductive learning within the
semantic web domain, serves as the foundation for various advanced algorithms
such as CELOE [36] and OCEL [35]. CELOE is a noteworthy extension of OCEL
that uses the same refinement operator but a different heuristic function with a soft
syntactic bias that balances between predictive performance and short, readable
concepts [33]. Another concept learning algorithm called DL-FOIL [17] constructs
the solution as a disjunction of partial descriptions using refinement operators. The
partial descriptions cover a part of the positive examples and eliminate as many
negative and uncertain examples as possible. DL-FOCL1–3 [49] was created based
on DL-FOIL. EvoLearner is a modern evolutionary concept learner for ALCQ(D).
It differs from CELOE and OCEL as it utilizes evolutionary algorithms instead
of inductive logic programming. OntoSample [4] speeds up concept learning by
sampling a subset of the knowledge base. CLIP [33] accelerates concept learning
by predicting the concept length before exploring the solution space. DRILL [15]
employs reinforcement learning to traverse the space of potential refinement
operations. Recent neurosymbolic approaches such as NCES [31] and NCES2 [32]
directly synthesize concepts from sets of positive and negative examples.

Concept learners are machine learning models with important HPs, e.g. the
fitness function in EvoLearner is controlled through one HP, whose optimal
value depends on the underlying data [24]. AutoML is a promising solution
for building a machine-learning system without human assistance and is being
studied extensively. With the exponential growth of computing power, AutoML
has become a hot topic in both industry and academia [23]. Many AutoML
libraries have been proposed: AutoSklearn [18] is built on top of scikit-learn [47];
TPOT [44] supports neural networks via the Pytorch [45] backend; Auto-Keras [26]
focuses on searching for deep learning models and supports multi-modal and multi-
task models based on Keras.1 AutoML techniques have been applied to many
1 https://github.com/keras-team/keras

AutoCL: AutoML for Concept Learning 5

tasks, such as network compression, federated learning, image captioning [23],
and even graph learning. The Auto-GNN framework [58] aims to find an optimal
Graph Neural Network (GNN) architecture within a predefined search space.
AutoGL is an AutoML pipeline based on PyTorch Geometric that enables feature
engineering, model training and more [20].

Feature selection (FS) [9] is a key component of AutoML and involves the
construction and selection of subsets of features for building a good predictor. FS
algorithms [5, 11, 28, 57] have been proposed based on three categories: wrapper,
filter, and embedded methods [21, 29, 30]. KGs have been integrated into FS
methodologies in various ways to enhance model performance and interpretability.
Peng et al. [48] proposed a hybrid feature selection model that integrates KG
technology to obtain a feature text weight matrix, improving the efficiency and
interpretability of the model. Li et al. [38] applied knowledge maps to generate
new features. Atzmueller et al. [2] employed KGs together with an interactive
visualization method for semi-automated FS. However, there is limited research
on automatic FS for KGs and concept learners. While AutoGL includes FS
methods for homogeneous GNNs, we introduce FS methods for concept learning
and KGs with heterogeneous relations.

HPO as another key component of AutoML, plays a crucial role in the
predictive performance of machine learning algorithms [56]. Machine learning
models usually contain multiple hyperparameters that determine how a learning
algorithm functions and affects the model parameters it learns. Before the actual
training phase, we would like to find a set of HP values that achieve the best
performance on the data in a reasonable amount of time. This process is called
HPO or tuning. Several established approaches include Grid search [43], Random
search [7], Model-based optimization (SMBO), Hyperband [39], and Bayesian
Optimization and Hyperband [16]. In addition, open-source systems on HPO
have emerged, such as Optuna [1], which allow users to construct the parameter
search space dynamically and support an efficient sampling and pruning algorithm
that allows for customization by the user. Ray-Tune [40] is a Python library
for hyperparameter tuning. It scales from single machines to clusters, supports
parallel execution, and integrates with various optimization algorithms for efficient
and flexible hyperparameter search.

4 AutoCL

Similar to other advanced machine learning algorithms, concept learners require
optimization of their features and HPs to achieve peak performance. However,
current concept learners lack automated feature selection and hyperparameters
are often manually adjusted. Improvements of concept learners were often ac-
companied by an increase in the number of HPs. While OCEL and CELOE are
configured with 11 HPs, EvoLearner has more than 17 HPs.2 Our research aims
to address these challenges by introducing AutoCL, which comprises two main
2 https://github.com/dice-group/AutoCL/blob/main/ontolearn/concept_learner.py

6 Li et al.

components: (1) features selection over KGs (Section 4.1), and automatic HPO
(Section 4.2). The whole pipeline of our AutoCL approach is shown in Figure 1.

Graph
Representation

Feature
SelectionOntology Evaluation

Hyperparameter
Optimization

Concept
Learner

Fig. 1. Our AutoCL pipeline involves feature selection and hyperparameter optimization
for concept learners.

4.1 Feature Selection

FS aims to identify a subset of relevant features from a dataset [27]. It can be
formalized as follows [52]: Given a dataset D comprising M objects described
by a feature set F, the aim is to discover an optimal subset of features, denoted
as F ∗ ⊆ F , based on specific optimization criteria. In the context of KGs, we
consider the relations of entities as features.

Consider the example of a family dataset depicted in Figure 2. It includes
individuals of the concepts Female ⊑ Person (e.g., “Amy”), Male ⊑ Person
(e.g., “Bob”), Parent ⊑ Person (e.g., “Tom”) and Mother ⊑ Person (e.g.,
“Alice”). “Bob” has a hasSibling relationship with “Alice” and he is married
to “Amy” as indicated by the isMarried relationship. “Amy” has a hasSibling
relationship with “Tom”, who is a parent.

Using the DL constructs from Table 1, “Bob” can be described as
Male ⊓ ((∃isMarried.∃hasSibling.Parent) ⊔

(∃hasSibling.Mother))
For each individual in a dataset, each outgoing relationship that links to an

object can be considered as a feature f with value v. For “Bob”, the features
are f1 = hasSibling with v1 = “Alice”, f2 = isMarried with v2 = Amy, and
f3 = hasType with v3 = Male. For “Amy”, the features are f1 = hasSibling
with v1 = “Tom” and f2 = hasType with v2 = Female. For “Alice”, the feature
is f1 = hasType with v1 = Mother. For “Tom”, the feature is f1 = hasType with
v1 = Parent.

AutoCL: AutoML for Concept Learning 7

Bob

Amy

Tom

Alice

Male

Female

Parent

Mother

isMarried

hasSibling

hasSibling
instance

type

Fig. 2. Example of a family dataset with multiple individuals, relations, and types.

The most relevant features for the concept of an Uncle are hasSibling,
isMarried, and hasType. For example, we can infer that “Bob” is an Uncle as
he is Male and is married to “Amy” who has a sibling “Tom” who is a Parent.

Table-Based Feature Selection Approach (τ) Our initial approach involves
transforming a graph representation into a tabular format for feature selection.
This graph, denoted as G, comprises individuals I and relationship features F .

Transformation of Graph into Tabular Format The graph G is converted into a
table format, where individuals are represented in the first column, and features
are represented in the remaining columns. Each relationship feature fi belongs
to the set F . For each individual in I and each of its feature-value pairs (fi, vj)
where 0 ≤ i ≤ n, 0 ≤ j ≤ m, n,m ∈ N, a new column is created if it does not
already exist for fi with vj . These columns are labelled as fi · vj and the value
in each cell indicates whether that combination exists for the individual (1 if it
exists, 0 otherwise).

The primary aim of our feature selection process is to identify a minimum
of 5 distinct relationship features from the transformed tabular data.

Feature Selection Steps

1. Initially, the top K = 5 columns (feature-value pairs) are selected based on
the χ2 test [46].

2. As long as we have not obtained 5 distinct relationship features and we have
not reached the maximum number of 100 iterations, we increment K by one
and select the top K columns from the original table.

8 Li et al.

Graph-Based Feature Selection Strategy (γ) Our second idea is to use a
graph-based wrapper method for FS. We run EvoLearner as the wrapper tool,
employing it for retrieving features. EvoLearner operates directly on the graph,
generating the top n distinct hypotheses (concepts in DL) based on the Accuracy
metric. Subsequently, we extract all relations and atomic concepts from the top
n hypotheses. This involves identifying the edges (relations) and nodes (atomic
concepts) in the graph associated with the selected concepts.

Feature Selection Steps

1. Initially, select the top n := 10 distinct hypotheses using EvoLearner.
2. While the top n hypotheses do not contain at least 5 distinct relationship

features and the maximum number of 100 iterations has not been reached,
increment n by one and repeat the process.

4.2 Hyperparameter Optimization

HPO algorithms aim to find the best-performing configuration, denoted by λ,
within the hyperparameter space Λ̃ ⊂ Λ for a given machine learning algorithm
Aλ. This space encompasses all pertinent hyperparameters along with their
corresponding ranges Λ̃ = Λ̃1 × Λ̃2 × . . .× Λ̃l where Λ̃i represents a constrained
subset of the domain of the ith hyperparameter. The HPO problem is defined as

λ∗ ∈ argmin
λ∈Λ̃

c(λ) = argmin
λ∈Λ̃

ĜE(I ,J , ρ,λ)

where λ∗ denotes the theoretical optimum, and c(λ) is a shorthand for the
estimated generalization error ĜE(I ,J , ρ,λ) of a machine learner Iλ with HP
configuration λ, target performance measure ρ, and resampling strategy J =
((Jtrain,1,Jtest,1) , . . . , (Jtrain,B ,Jtest,B)) , where Jtrain and Jtest partition
the available data into training and test sets and B denotes the number of
splits [8].

The concept learner, which acts as a machine learner, has many HPs that
can impact its performance. Traditional methods for HPO in machine learning
models like grid search and random search are time-consuming [53]. To address
this, we opted for the CMA-ES Sampler [1] from Optuna, after comparing it with
five other samplers, including Random Sampler, Grid Sampler, Tree-structured
Parzen Estimator Sampler [6], Non-dominated Sorting Genetic Algorithm II
Sampler [14], and Quasi-Monte Carlo Sampler [10]. We choose the CMA-ES
Sampler due to its effective performance in optimizing the HPs of concept learners
in our experiment. Our HPO process utilizes the CMA-ES sampler to provide
HPs to the concept learner and assesses them based on the returned quality
score. Table 4 defines the search space of hyperparameters. To ensure stability
and accuracy, our HPO process is run three times, with each run comprising
n_trials := 100 iterations of the sampler to obtain the best HPO results via
the quality score quality_func.

AutoCL: AutoML for Concept Learning 9

5 Evaluation

After introducing our experimental setup in Section 5.1, we evaluate the two FS
methods presented in the previous section on state-of-the-art concept learners in
Section 5.2. In Section 5.3, we perform HPO and in Section 5.4, we combine the
two FS methods with HPO to form our complete AutoCL automation pipeline.
Notations used in this evaluation section are detailed in Table 2.

Table 2. Overview of the notations used in Section 5.

Notation Definition

LP Learning problem
FS Feature selection
TCL Time taken for concept learning
TFS Time taken for feature selection
τ Table-based feature selection approach
γ Graph-based feature selection approach
τCMA−ES Table-based feature selection with HPO (sampler CMA-ES)
γCMA−ES Graph-based feature selection with HPO (sampler CMA-ES)

5.1 Experimental Setup

Datasets Table 3 summarizes the 8 datasets from SML Bench [55], including
Carcinogenesis (CA), Family (FA), Hepatitis (HE), Mammographic (MA), Muta-
genesis (MU), NCTRER (NC), Premier League (PR), and Pyrimidine (PY).
The Lymphography dataset was excluded due to its lack of relevant properties.
Additionally, we added the FA dataset from DL-Learner [34] to SML-Bench,
commonly used for evaluating structured machine learning approaches [54].

Table 3. Overview of the datasets in terms of their abbreviations, number of instances,
axioms, atomic concepts, object properties and data properties.

Dataset Abbr. Instances Axioms Concepts Obj. Pro. Data Pro.

Carcinogenesis CA 22,373 74,566 142 4 15
Family FA 202 1,829 18 4 0
Hepatitis HE 6,812 79,935 14 5 12
Mammographic MA 975 6,80 19 3 2
Mutagenesis MU 14,145 62,066 86 5 6
NCTRER NC 10,209 103,070 37 9 50
Premier League PR 11,209 2,153,818 9 13 202
Pyrimidine PY 74 2,080 1 0 27

10 Li et al.

Baseline We apply our methods to three concept learners: EvoLearner, OCEL,
and CELOE.

Features As described in the previous section, our raw data is saved in KGs,
and the features are extracted from the ontologies. A different number of features
are obtained for each dataset. For example, in the FA dataset, features such as
hasSibling and isMarried are included. We chose to present the datasets in
our GitHub repository because some datasets have over 100 features prior to FS.

Hyperparameters As shown in Table 4, we opted to optimize 8 of EvoLearner’s
17 HPs: the maximum runtime in seconds (max_runtime), the number of random
individuals considered in each tournament (tournament_size), the maximum
height of a concept’s abstract syntax tree (height_limit), the upper cardinality
limit considered for cardinality restrictions (card_limit), whether to use data
property restrictions (use_data_properties), whether to use inverse properties
(use_inverse), the quality function (quality_func), and the splitting criterion
for data properties (value_splitter).

For OCEL and CELOE, we considered 4 of their 11 HPs: the maximum
runtime in seconds (max_runtime), the maximum number of concepts that are
tested (max_num_of_concepts_tested), the maximum number of refinements
(iter_bound), and the quality function (quality_func). Other hyperparameters
had a negligible impact on performance, e.g., because the Ontolearn library only
offered a single option for some of them at the time of writing.

Table 4. Overview of the range of hyperparameters.

HPs for EvoLearner Range

max_runtime 1–25
tournament_size 1–25
height_limit 1–25
card_limit 2–10
use_data_properties [True, False]
use_inverse [True, False]
quality_func [F1, Accuracy]

value_splitter [BinningValueSplitter,
EntropyValueSplitter]

HPs for OCEL and CELOE Range

max_runtime 2–600
max_concepts 2–1000000000
iter_bound 2–1000000000
quality_func [F1, Accuracy]

AutoCL: AutoML for Concept Learning 11

Dataset Split and Evaluation Metrics During HPO, we divided the data
into 60% for training, 20% for validation, and 20% for testing to fine-tune the
HPs in models on the validation set. This partitioning strategy helps prevent
overfitting by tailoring HPs specifically to the validation set while ensuring that
the chosen parameters generalize effectively to unseen data. In contrast, for FS,
we use 80% for training and 20% for testing to train the model preferentially
on a larger segment of the data to identify informative features. This simplified
split is sufficient for selecting relevant features without the need for a separate
validation set, as feature selection itself does not involve hyperparameter tuning.
We evaluate the performance of the approaches in terms of Accuracy, F1-measure
mentioned in Section 2, and the time taken for learning in seconds.

Reproducibility Our three concept learners are implemented by the Ontolearn
library in Python 3.8. For the FS, we use owlapy (0.41), owlready2 (0.41), Pandas
(1.2.3), and the scikit-learn library (1.0.2) with its SelectKBest class. For HPO,
we use the Optuna framework (3.0.3). Our experiments were run on a Linux-based
virtual machine with 256 GB RAM and 64 CPUs. Our implementation is publicly
available on GitHub at https://github.com/dice-group/AutoCL.

5.2 Feature Selection Results

Table 5 presents the evaluation results of our two FS methods τ and γ on the
benchmarking datasets in terms of F1-measure, Accuracy, concept learning time
TCL, and feature selection time TFS .

Table-based Feature Selection We report the results of our initial table-based
FS approach (τ). As shown in Table 5 (top), after table-based feature selection,
EvoLearners results improved for 3 datasets in terms of F1-measure and 2 datasets
in terms of Accuracy, particularly on the CA and HE datasets.

The concept learning time was at least halved on the 6 datasets CA, FA,
HE , MA, NC , and PR. Impressively, the large dataset PR demonstrates an
extraordinary improvement, saving nearly 200 seconds for learning after τ . For
OCEL, evaluation metrics improved for CA, PR, and PY . For PR, the learning
time was reduced by over 4 minutes. Similar outcomes are seen in the CELOE
experiments, where the PR dataset has a considerably shorter running time and
higher quality scores than the original one. Furthermore, the datasets FA, HE ,
PR, and PY show improvements in both F1-measure and Accuracy.

Graph-based Feature Selection We report the results of our second approach,
graph-based FS (γ). When using the γ method on EvoLearner, the performance
of F1-measure and Accuracy for datasets FA, MU , NC , and PR remains at
the optimal level of 1.00. For certain datasets, the learning time has notably
decreased, particularly for the PR, with a learning time now at 3.86 seconds.
Surprisingly, the datasets MA and PY improve F1-measure and Accuracy while

12 Li et al.

Table 5. Evaluation of the concept learners EvoLearner (top), OCEL (middle), and
CELOE (bottom) without (left), with table-based (middle), and graph-based (right)
feature selection in terms of F1-measure and Accuracy. The times for concept learning
TCL and feature selection TFS are measured in seconds.

LP EvoLearner EvoLearner(τ) EvoLearner(γ)

F1 Acc. TCL F1 Acc. TCL TFS F1 Acc. TCL TFS

CA 0.70±0.07 0.63±0.05 106 0.75±0.06 0.72 ± 0.04 5.52 167.98 0.73±0.04 0.70±0.02 6.00 6.50
FA 1.00±0.01 1.00±0.01 1.75 0.76±0.15 0.81±0.06 0.79 0.47 1.00±0.00 1.00±0.00 0.73 19.38
HE 0.80±0.03 0.83±0.04 44.35 0.82±0.01 0.84±0.02 5.68 13.04 0.79±0.02 0.83±0.01 5.65 6.31
MA 0.78±0.01 0.78±0.02 18.69 0.63±0.00 0.46±0.00 5.16 0.10 0.80±0.01 0.83±0.02 5.21 7.25
MU 1.00±0.00 1.00±0.00 3.10 0.56±0.24 0.83±0.07 5.63 377.02 1.00±0.00 1.00±0.00 0.74 2.98
NC 1.00±0.00 1.00±0.00 6.28 1.00±0.00 1.00±0.00 1.03 311.74 1.00±0.00 1.00±0.00 0.84 3.91
PR 1.00±0.00 1.00±0.00 205.86 0.99±0.02 0.97±0.02 6.58 232.08 1.00±0.00 1.00±0.00 3.86 96.05
PY 0.86±0.13 0.88±0.14 1.21 0.89±0.12 0.79±0.12 5.11 207.20 0.95±0.05 0.96±0.06 1.94 1.92

LP OCEL OCEL(τ) OCEL(γ)

F1 Acc. TCL F1 Acc. TCL TFS F1 Acc. TCL TFS

CA 0.69±0.05 0.56±0.09 651.58 0.75±0.06 0.72±0.04 636.23 168.90 0.69±0.04 0.60±0.00 610.29 6.40
FA 0.87±0.13 0.83±0.17 600.08 0.59±0.02 0.63±0.06 600.04 0.47 0.87±0.03 0.85±0.06 600.86 16.66
HE 0.81±0.04 0.81±0.05 602.10 0.58±0.01 0.61±0.01 602.41 13.13 0.68±0.07 0.72±0.08 603.47 6.09
MA 0.81±0.06 0.84±0.03 600.18 0.63±0.00 0.46±0.00 600.27 0.17 0.81±0.01 0.84±0.01 607.81 9.00
MU 0.93±0.7 0.96±0.04 600.85 0.39±0.11 0.67±0.07 634.31 311.02 0.56±0.22 0.81±0.11 626.87 2.02
NC 1.00±0.00 1.00±0.00 604.52 0.95±0.03 0.94±0.02 734.75 331.22 0.99±0.01 0.99±0.01 757.99 3.86
PR 0.65±0.01 0.48±0.04 718.79 0.69±0.02 0.54±0.04 458.00 232.08 1.00±0.00 1.00±0.00 681.37 98.00
PY 0.73±0.07 0.71±0.03 600.05 0.74±0.07 0.75±0.02 600.11 367.20 0.53±0.17 0.54±0.13 620.63 0.70

LP CELOE CELOE(τ) CELOE(γ)

F1 Acc. TCL F1 Acc. TCL TFS F1 Acc. TCL TFS

CA 0.65±0.05 0.61±0.04 603.82 0.57±0.04 0.62±0.03 603.92 163.95 0.70±0.02 0.60±0.03 600.85 6.46
FA 0.88±0.12 0.89±0.10 84.57 0.89±0.05 0.89±0.06 600.14 0.57 1.00±0.00 1.00±0.00 523.14 16.4
HE 0.80±0.04 0.79±0.03 602.22 0.82±0.01 0.82±0.01 607.74 13.0 0.72±0.10 0.78±0.05 600.72 6.11
MA 0.76±0.01 0.79±0.03 600.16 0.63±0.00 0.46±0.00 600.26 0.08 0.81±0.02 0.84±0.01 600.37 7.35
MU 0.70±0.10 0.84±0.04 602.74 0.00±0.00 0.71± 0.00 602.47 357.03 0.44±0.22 0.81±0.07 601.28 2.98
NC 0.96±0.02 0.96±0.02 405.30 0.97±0.02 0.96±0.02 727.92 313.12 1.00±0.00 1.00±0.00 600.66 3.82
PR 0.82±0.10 0.87±0.06 692.29 0.96±0.02 0.96±0.02 412.33 233.18 1.00±0.00 1.00±0.00 101.67 93.1
PY 0.80±0.05 0.75±0.12 400.21 0.80±0.03 0.79±0.05 600.92 207.20 0.86±0.04 0.83±0.06 600.23 1.42

the learning time is accelerated. The overall quality scores for HE are nearly the
same as the original experiment, with the learning time reduced by nearly a factor
of 8 compared to before. Additionally, on CA, the quality scores remain nearly
the same; however, the learning time and overall runtime have been reduced,
by nearly a factor of 17 compared to before. From OCEL, CA has reduced the
learning time by nearly 40 seconds with improved Accuracy scores. Datasets such
as FA and MA achieve slightly better quality scores in about the same running
time as the original ones, and on the large dataset PR, we have an improvement
of 53% in F1-measure and almost 105% in Accuracy while improving the running
time about 30 seconds. In CELOE, we found that the quality scores of FA, MA,
NC , PR, and PY are better than the original experimental data, the Accuracy
and F1-measure for some of the data are even 1, and the learning time of PR
is improved by 6 times. Not surprisingly, more than half of the datasets benefit
from this γ method, especially in terms of two quality scores.

AutoCL: AutoML for Concept Learning 13

Although both τ and γ exhibit favourable effects on concept learners across
most datasets especially some contain large axioms such as PR, γ not only
demonstrates a superior learning rate compared to τ but also yields higher F1-
measure and Accuracy scores. To further compare the performance of the two
feature methods themselves, we analyze in terms of TFS for the feature selection
process. Both methods are applied for feature processing on the same datasets, γ
outperforms τ in terms of TFS as evidenced on 6 datasets aside from FA and MA.
This is probably because γ performs better in datasets with a higher number of
atomic concepts, while τ works well in datasets with fewer atomic concepts.

5.3 Hyperparameter Optimization Results

Table 6 displays the best results for each learning problem including the best
values for some HPs3 before and after performing HPO on EvoLearner, OCEL,
and CELOE within the search range in Table 4.

Table 6. Best results per learning problem obtained from EvoLearner, OCEL and
CELOE before (1st row) and after (2nd row) HPO, in terms of max_runtime,
tournament_size (EvoLearner only), F1-measure, and Accuracy.

LP EvoLearner OCEL CELOE

Maxt. Tour. F1 Acc. Maxt. F1 Acc. Maxt. F1 Acc.

CA - 7 0.73 0.67 - 0.69 0.56 - 0.70 0.67
12 8 0.78 0.74 59 0.69 0.57 26 0.70 0.55

FA - 7 1.00 1.00 - 1.00 1.00 - 0.97 0.96
2 2 1.00 1.00 184 0.94 0.89 190 0.94 0.94

HE - 7 0.80 0.83 - 0.85 0.86 - 0.81 0.81
10 6 0.82 0.85 72 0.83 0.83 193 0.83 0.83

MA - 7 0.79 0.81 - 0.85 0.88 - 0.80 0.82
3 5 0.80 0.85 72 0.80 0.83 82 0.79 0.82

MU - 7 1.00 1.00 - 1.00 1.00 - 0.80 0.89
3 2 1.00 1.00 125 1.00 1.00 69 1.00 1.00

NC - 7 1.00 1.00 - 0.98 0.98 - 0.98 0.98
2 2 1.00 1.00 108 1.00 1.00 3 1.00 1.00

PR - 7 1.00 1.00 - 0.67 0.52 - 0.93 0.94
12 2 1.00 1.00 157 1.00 1.00 59 1.00 1.00

PY - 7 0.86 0.86 - 0.71 0.70 - 0.89 0.87
8 6 1.00 1.00 58 0.88 0.87 58 0.88 0.87

Through Table 6, we can observe an improvement in quality scores for
EvoLearner on CA, HE , MA, and PY . In particular, for dataset CA, the F1-
measure improved by 6% and Accuracy improved by 10% after HPO. Similarly,
3 All of the best HP settings are shown in our GitHub repository:

https://github.com/dice-group/AutoCL/tree/main/HPO

14 Li et al.

excellent performance is also reflected in PY , the F1-measure is almost 16%
better. FA, NC , MU , and PR keep the best F1-measure and Accuracy before
and after HPO in some values of HP changed.

We explore how the HPs affect the evaluation metrics and observe from Table 6
that HPO reduces the running time of all datasets after compared with the default
run time of 600 seconds, which proves that HPO accelerates the learning time of
the concept learner. Some datasets like CA, HE, the best values of HPs including
the tournament_size, all different from the default values. These HPs and their
values interact with each other and have an impact on the decisions made by the
concept learner. The results from Table 6 showed slightly higher quality scores
after OCEL and CELEO with parameter selection when learning some of the
data. In OCEL we can find that the optimal value of runtime is reduced on all
datasets, and the F1-measure as well as the Accuracy is improved on four of
them, especially for the large dataset PR, where the F1-measure and Accuracy
are improved by at least 50%. When HPO was applied to CELOE, it produced
similar results as on OCEL: the concept learner improved learning performance
on more than half of the datasets while reducing the runtime and learning range.
On the CA, MA, and FA dataset, F1-measure and Accuracy still produced quality
scores similar to the original data. In conclusion, we can conclude clearly that in
our experiments, both when applying HPO to EvoLearner, OCEL and CELOE,
the quality of concept learning can be effectively improved while reducing the
search space in learning most of the datasets.

5.4 AutoCL Results

We conducted additional experiments by integrating different feature selection
methods with the CMA-ES sampler to validate our final AutoCL approach.
Table 7 presents the outcomes of comparing two pipelines: table-based feature
selection with CMA-ES (τCMA−ES) and graph-based feature selection with
CMA-ES (γCMA−ES).

After EvoLearner with τCMA−ES , the learning time was reduced when study-
ing datasets CA, HE , MA, NC , and PR. There was a noteworthy enhancement in
F1-measure and Accuracy for CA and HE , and both quality scores were observed
for NC and PR, similar to the original experimental results.

Following OCEL with τCMA−ES , the learning time reductions were observed
across all 8 datasets. For instance, the learning time of FA decreased from the
original 600.08 seconds to 92.26 seconds, maintaining comparable quality scores.
Notably, most of the datasets such as CA and PY datasets exhibited improved
quality scores alongside reduced learning time. Specifically, for PR, the time
decreased by 10 minutes, with F1-measure and Accuracy improving by almost
53% and 108%. With the incorporation of τCMA−ES into CELOE, all datasets
have substantially shorter runtimes like in OCEL. Improvements in F1-measure
and Accuracy were observed for datasets HE , PY and PR. However, for datasets
MA, and MU , there was a minor decline in quality scores.

Subsequently, after EvoLearner was incorporated with γCMA−ES , the time
required to learn the majority of the datasets was lowered. Significant improve-

AutoCL: AutoML for Concept Learning 15

Table 7. Evaluation results of EvoLearner (top), OCEL (middle), and CELOE (bottom)
without (left), with τCMA−ES (middle), and with γCMA−ES (right) in terms of F1-
measure and Accuracy. The concept learning times TCL are measured in seconds.

LP EvoLearner EvoLearner(τCMA−ES) EvoLearner(γCMA−ES)

F1 Acc. TCL F1 Acc. TCL F1 Acc. TCL

CA 0.70±0.07 0.63±0.05 106 0.75±0.06 0.72±0.04 10.6 0.73±0.02 0.70±0.02 10.52
FA 1.00±0.01 1.00±0.01 1.75 1.00±0.00 1.00±0.00 1.97 1.00±0.00 1.00±0.00 1.42
HE 0.80±0.03 0.83±0.04 44.35 0.83±0.01 0.84±0.00 9.18 0.80±0.03 0.83±0.04 11.17
MA 0.78±0.01 0.78±0.02 18.69 0.63±0.00 0.46±0.00 3.18 0.81±0.01 0.82±0.02 6.18
MU 1.00±0.00 1.00±0.00 3.10 0.56±0.24 0.83±0.07 9.73 1.00±0.00 1.00±0.00 0.58
NC 1.00±0.00 1.00±0.00 6.28 1.00±0.00 1.00±0.00 0.57 1.00±0.00 1.00±0.00 2.61
PR 1.00±0.00 1.00±0.00 205.86 0.99±0.02 0.97±0.02 5.28 1.00±0.00 1.00±0.00 1.81
PY 0.86±0.13 0.88±0.14 1.21 0.67±0.11 0.71±0.13 5.46 1.00±0.00 1.00±0.00 2.31

LP OCEL OCEL(τCMA−ES) OCEL(γCMA−ES)

F1 Acc. TCL F1 Acc. TCL F1 Acc. TCL

CA 0.69±0.05 0.56±0.09 651.58 0.69±0.02 0.57±0.06 128.07 0.69±0.04 0.60±0.00 155.35
FA 0.87±0.13 0.83±0.17 600.08 0.90±0.04 0.89±0.05 92.26 0.89±0.07 0.87±0.06 77.71
HE 0.81±0.04 0.81±0.05 602.10 0.82±0.00 0.82±0.00 141.13 0.67±0.07 0.67±0.05 207.23
MA 0.81±0.06 0.84±0.03 600.18 0.63±0.00 0.46±0.00 116.85 0.81±0.03 0.84±0.02 192.75
MU 0.93±0.7 0.96±0.04 600.85 0.46±0.35 0.74±0.14 143.39 0.93±0.09 0.96±0.01 156.88
NC 1.00±0.00 1.00±0.00 604.52 0.97±0.03 0.96±0.04 90.76 1.00±0.01 1.00±0.01 100.39
PR 0.65±0.01 0.48±0.04 718.79 1.00±0.00 1.00±0.00 88.08 1.00±0.04 1.00±0.02 54.55
PY 0.73±0.07 0.71±0.03 600.05 0.86±0.14 0.87±0.13 195.38 0.76±0.12 0.80±0.05 229.92

LP CELOE CELOE(τCMA−ES) CELOE(γCMA−ES)

F1 Acc. TCL F1 Acc. TCL F1 Acc. TCL

CA 0.65±0.05 0.61±0.04 603.82 0.66±0.03 0.56±0.03 233.59 0.70±0.02 0.54±0.04 303.45
FA 0.95±0.10 0.94±0.06 284.57 0.89±0.06 1.00±0.00 179.71 0.90±0.03 0.85±0.10 151.88
HE 0.80±0.04 0.79±0.03 602.22 0.82±0.01 0.80±0.04 107.71 0.71±0.05 0.73±0.03 54.86
MA 0.76±0.01 0.79±0.03 600.16 0.63±0.00 0.46±0.00 99.31 0.82±0.01 0.83±0.02 72.48
MU 0.70±0.10 0.84±0.04 602.74 0.39±0.15 0.78±0.11 208.45 0.89±0.03 0.92±0.03 111.07
NC 0.96±0.02 0.96±0.02 405.30 0.95±0.01 0.96±0.12 218.09 1.00±0.01 1.00±0.01 42.27
PR 0.82±0.10 0.87±0.06 692.29 1.00±0.00 1.00±0.02 62.66 0.98±0.01 0.98±0.01 9.27
PY 0.80±0.05 0.75±0.12 400.21 0.88±0.12 0.75±0.04 106.05 0.79±0.03 0.80±0.06 60.13

ments in F1-measure and Accuracy were seen when learning CA, MA, and PY ,
outperforming the results obtained in the original experiment. Across all datasets,
OCEL, and CELOE consistently reduced learning time. Notably, there was a
remarkable 53% improvement in F1-measure, a 108% increase in Accuracy, and
a surprising 11-minute reduction in learning time when OCEL learned the PR.
Similarly, both F1-measure and Accuracy improved during the HE learning pro-
cess with OCEL which learning time was reduced by roughly 6 minutes. CELOE
performance similar to OCEL, achieved comprehensive learning speedups when
learning datasets such as MA, MU , NC , PR and so on, both F1-measure and
Accuracy show overall increases ranging from 5% to 30%.

Based on the information presented above, whether the concept learner
employs τCMA−ES or γCMA−ES for learning most data sets, the running time
will surely reduce. However, we can see from comparing the time values in Table 7

16 Li et al.

that the run time behind the γCMA−ES is shorter than the run time through
the τCMA−ES , and there are 14 best time performance uses. Similarly, after
checking with the best F1-measure and Accuracy, the three concept learners
acquired 24 times of optimal quality score performance through the operation
after γCMA−ES , whereas only 21 times appeared in the τCMA−ES part. In terms
of quality score and learning time, γCMA−ES performs better than τCMA−ES .
As a result, integrating the γCMA−ES approach with the CMA-ES sampler in a
pipeline as our final AutoCL technique seems reasonable. We achieve promising
performance on 6 of the 8 datasets in SML-Bench across concept learners while
reducing the learning time.

6 Discussion

Feature Selection Approach According to the two methods we proposed,
the τCMA−ES method relies on a tabular method, which is a feature selection
technique that involves the use of converted KGs to a tabular format in our
experiment. Our γCMA−ES method enables FS directly on the KGs, which is
convenient and reasonably interpretable. In Section 4.1, we have mentioned a
stopping criteria for the FS process. Because our features contain predicate and
subject pairs, the presence of multiple repetitions of a predicate adds complexity.
In certain instances, after 100 iterations, the selected features may not yield
distinct values. At the same time, some datasets like FA, may only have 4 or 3
features in total, which makes it impossible to attain 5 distinct features. Hence,
a stopping criteria is necessary. In some cases, we may end up with only one
inadequate feature for classification, which could lead to an F1-measure score of
0 in some instances, but this is not typically the case.

Hyperparameter Optimization Approach In a pilot study, we encountered
some incompatibilities of HPO frameworks with the Ontolearn library. This
influenced our choice of the HPO framework and we ultimately selected Optuna
because it allowed us to easily define, save, and analyze HPO processes. In
the future, we plan to enhance the HPO by expanding the search space and
considering additional concept learners.

AutoCL Pipeline Concept learners are a type of supervised learning that
enhances the learning process by using the semantic knowledge and information
offered by KGs. AutoCL can automate concept learning and enhance application
efficiency by using the rich semantic information held in KGs.

The efficiency of AutoCL in real-world applications depends not only on the
concept learners use for learning but also on the quality and quantity of the
learning dataset. For example, the time required by AutoCL in the FS phase
depends on the number of data attributes etc. When dealing with huge and
complex data where performance is an issue, parallel processing can be explored
to ensure good performance.

AutoCL: AutoML for Concept Learning 17

7 Conclusion

We investigated the use of AutoML for concept learning to improve the effi-
ciency of concept learning. In particular, we developed a feature selection and
hyperparameter optimization approach for concept learners. We evaluated our
proposed approach, dubbed AutoCL, for state-of-the-art concept learners on the
SML-Bench datasets. The evaluation results show that our approach can improve
the performance of the learning algorithm. Additionally, we show that feature
selection reduces the search space and improves efficiency while HPO improves
the predictive performance of concept learners.

To further enhance the effectiveness of AutoCL, we intend to incorporate
additional feature selection and hyperparameter optimization approaches in the
future. Moreover, we plan to test it on large-scale KGs beyond the scope of the
SML benchmark datasets. Potential applications include explainable anomaly
detection, identification of cybersecurity threads, financial fraud detection, and
manufacturing quality control.

8 Acknowledgement

This work has been supported by the German Federal Ministry of Education and
Research (BMBF) within the projects COLIDE under the grant No. 01I521005D,
KIAM under the grant No. 02L19C115, the European Union’s Horizon Europe
research and innovation programme within the project ENEXA under the grant
No 101070305. This work has also been supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation): TRR 318/1 2021 – 438445824.

Disclosure of Interests.

The authors have no competing interests to declare that are relevant to the
content of this article.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation
hyperparameter optimization framework. In: KDD. pp. 2623–2631. ACM (2019)

2. Atzmueller, M., Sternberg, E.: Mixed-initiative feature engineering using
knowledge graphs. In: K-CAP. pp. 45:1–45:4. ACM (2017)

3. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D.: The
description logic handbook: Theory, implementation and applications. Cambridge
university press (2003)

4. Baci, A., Heindorf, S.: Accelerating concept learning via sampling. In: CIKM. pp.
3733–3737. ACM (2023)

5. Bennasar, M., Hicks, Y., Setchi, R.: Feature selection using joint mutual
information maximisation. Expert Syst. Appl. 42(22), 8520–8532 (2015)

18 Li et al.

6. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: NIPS. pp. 2546–2554 (2011)

7. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

8. Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J.,
Ullmann, T., Becker, M., Boulesteix, A., Deng, D., Lindauer, M.: Hyperparameter
optimization: Foundations, algorithms, best practices, and open challenges. WIREs
Data. Mining. Knowl. Discov. 13(2) (2023)

9. Blum, A., Langley, P.: Selection of relevant features and examples in machine
learning. Artif. Intell. 97(1-2), 245–271 (1997)

10. Caflisch, R.E.: Monte carlo and quasi-monte carlo methods. Acta numerica 7, 1–49
(1998)

11. Chaudhuri, A., Sahu, T.P.: A hybrid feature selection method based on binary jaya
algorithm for micro-array data classification. Comput. Electr. Eng. 90, 106963
(2021)

12. Chen, J., Song, L., Wainwright, M.J., Jordan, M.I.: Learning to explain: An
information-theoretic perspective on model interpretation. In: ICML. Proceedings
of Machine Learning Research, vol. 80, pp. 882–891. PMLR (2018)

13. Covert, I., Lundberg, S.M., Lee, S.: Explaining by removing: A unified framework
for model explanation. J. Mach. Learn. Res. 22, 209:1–209:90 (2021)

14. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimisation: NSGA-II. In: PPSN.
vol. 1917, pp. 849–858. Springer (2000)

15. Demir, C., Ngomo, A.N.: Neuro-symbolic class expression learning. In: IJCAI. pp.
3624–3632. ijcai.org (2023)

16. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter
optimization at scale. In: ICML. Proceedings of Machine Learning Research,
vol. 80, pp. 1436–1445. PMLR (2018)

17. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description
logics. In: ILP. vol. 5194, pp. 107–121. Springer (2008)

18. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.:
Efficient and robust automated machine learning. In: NIPS. pp. 2962–2970 (2015)

19. Gaur, M., Faldu, K., Sheth, A.P.: Semantics of the black-box: Can knowledge
graphs help make deep learning systems more interpretable and explainable? IEEE
Internet Comput. 25(1), 51–59 (2021)

20. Guan, C., Zhang, Z., Li, H., Chang, H., Zhang, Z., Qin, Y., Jiang, J., Wang, X.,
Zhu, W.: Autogl: A library for automated graph learning. CoRR abs/2104.04987
(2021)

21. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182 (2003)

22. Hansen, N.: The CMA evolution strategy: A comparing review. In: Towards a New
Evolutionary Computation, Studies in Fuzziness and Soft Computing, vol. 192, pp.
75–102. Springer (2006)

23. He, X., Zhao, K., Chu, X.: Automl: A survey of the state-of-the-art. Knowl. Based
Syst. 212, 106622 (2021)

24. Heindorf, S., Blübaum, L., Düsterhus, N., Werner, T., Golani, V.N., Demir, C.,
Ngonga Ngomo, A.: Evolearner: Learning description logics with evolutionary
algorithms. In: WWW. pp. 818–828. ACM (2022)

25. Huang, Q., Yamada, M., Tian, Y., Singh, D., Chang, Y.: Graphlime: Local
interpretable model explanations for graph neural networks. IEEE Trans. Knowl.
Data Eng. 35(7), 6968–6972 (2023)

AutoCL: AutoML for Concept Learning 19

26. Jin, H., Song, Q., Hu, X.: Auto-keras: An efficient neural architecture search
system. In: KDD. pp. 1946–1956. ACM (2019)

27. Jovic, A., Brkic, K., Bogunovic, N.: A review of feature selection methods with
applications. In: MIPRO. pp. 1200–1205. IEEE (2015)

28. Kang, C., Huo, Y., Xin, L., Tian, B., Yu, B.: Feature selection and tumor
classification for microarray data using relaxed lasso and generalized multi-class
support vector machine. Journal of theoretical biology 463, 77–91 (2019)

29. Khaire, U.M., Dhanalakshmi, R.: Stability of feature selection algorithm: A review.
J. King Saud Univ. Comput. Inf. Sci. 34(4), 1060–1073 (2022)

30. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell.
97(1-2), 273–324 (1997)

31. Kouagou, N.J., Heindorf, S., Demir, C., Ngomo, A.N.: Neural class expression
synthesis. In: ESWC. vol. 13870, pp. 209–226. Springer (2023)

32. Kouagou, N.J., Heindorf, S., Demir, C., Ngomo, A.N.: Neural class expression
synthesis in ALCHIQ(D). In: ECML/PKDD. vol. 14172, pp. 196–212. Springer
(2023)

33. Kouagou, N.J., Heindorf, S., Demir, C., Ngonga Ngomo, A.: Learning concept
lengths accelerates concept learning in ALC. In: ESWC. pp. 236–252. Springer
(2022)

34. Lehmann, J.: Dl-learner: Learning concepts in description logics. J. Mach. Learn.
Res. 10, 2639–2642 (2009)

35. Lehmann, J.: Learning OWL Class Expressions, Studies on the Semantic Web,
vol. 6. IOS Press (2010)

36. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for
ontology engineering. J. Web Semant. 9(1), 71–81 (2011)

37. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement
operators. Mach. Learn. 78(1-2), 203–250 (2010)

38. Li, L., Yang, H., Jiao, Y., Lin, K.Y.: Feature generation based on knowledge graph.
IFAC-PapersOnLine 53(5), 774–779 (2020)

39. Li, L., Jamieson, K.G., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
A novel bandit-based approach to hyperparameter optimization. J. Mach. Learn.
Res. 18, 185:1–185:52 (2017)

40. Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.E., Stoica, I.: Tune: A
research platform for distributed model selection and training. CoRR
abs/1807.05118 (2018)

41. Liu, H., Motoda, H.: Computational methods of feature selection. CRC press
(2007)

42. Mikriukov, G., Schwalbe, G., Hellert, C., Bade, K.: Evaluating the stability of
semantic concept representations in cnns for robust explainability. In: XAI.
Communications in Computer and Information Science, vol. 1902, pp. 499–524.
Springer (2023)

43. Montgomery, D.C.: Design and analysis of experiments. John wiley & sons (2017)
44. Olson, R.S., Moore, J.H.: TPOT: A tree-based pipeline optimization tool for

automating machine learning. In: AutoML@ICML. JMLR Workshop and
Conference Proceedings, vol. 64, pp. 66–74. JMLR.org (2016)

45. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E.Z., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J.,
Chintala, S.: Pytorch: An imperative style, high-performance deep learning library.
In: NeurIPS. pp. 8024–8035 (2019)

20 Li et al.

46. Pearson, K.: X. on the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 50(302), 157–175 (1900)

47. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

48. Peng, X., Shuai, Y., Gan, Y., Chen, Y.: Hybrid feature selection model based on
machine learning and knowledge graph. In: Journal of Physics: Conference Series.
vol. 2079. IOP Publishing (2021)

49. Rizzo, G., Fanizzi, N., d’Amato, C.: Class expression induction as concept space
exploration: From dl-foil to dl-focl. Future Gener. Comput. Syst. 108, 256–272
(2020)

50. Santu, S.K.K., Hassan, M.M., Smith, M.J., Xu, L., Zhai, C., Veeramachaneni, K.:
Automl to date and beyond: Challenges and opportunities. ACM Comput. Surv.
54(8), 175:1–175:36 (2022)

51. Schwalbe, G., Finzel, B.: A comprehensive taxonomy for explainable artificial
intelligence: a systematic survey of surveys on methods and concepts. Data Mining
and Knowledge Discovery pp. 1–59 (2023)

52. Smetannikov, I., Filchenkov, A.: Melif: filter ensemble learning algorithm for gene
selection. Advanced Science Letters 22(10), 2982–2986 (2016)

53. Tang, H., Yu, J., Lin, B., Geng, Y., Wang, Z., Chen, X., Yang, L., Lin, T., Xiao,
F.: Airport terminal passenger forecast under the impact of covid-19 outbreaks: A
case study from china. Journal of Building Engineering 65, 105740 (2023)

54. Tran, A.C., Dietrich, J., Guesgen, H.W., Marsland, S.: Parallel symmetric class
expression learning. J. Mach. Learn. Res. 18, 64:1–64:34 (2017)

55. Westphal, P., Bühmann, L., Bin, S., Jabeen, H., Lehmann, J.: Sml-bench - A
benchmarking framework for structured machine learning. Semantic Web 10(2),
231–245 (2019)

56. Wu, J., Chen, X.Y., Zhang, H., Xiong, L.D., Lei, H., Deng, S.H.: Hyperparameter
optimization for machine learning models based on bayesian optimization. Journal
of Electronic Science and Technology 17(1), 26–40 (2019)

57. Zheng, W., Eilam-Stock, T., Wu, T., Spagna, A., Chen, C., Hu, B., Fan, J.:
Multi-feature based network revealing the structural abnormalities in autism
spectrum disorder. IEEE Trans. Affect. Comput. 12(3), 732–742 (2021)

58. Zhou, K., Huang, X., Song, Q., Chen, R., Hu, X.: Auto-gnn: Neural architecture
search of graph neural networks. Frontiers Big Data 5 (2022)

