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Abstract.
Purpose: SPARQL is a highly expressive query language for knowledge graphs;

yet, formulating precise SPARQL queries can be challenging for non-expert users.
A potential solution is translating natural questions into SPARQL queries, known
as SPARQL generation. This paper addresses the challenges of translating natural
language questions into SPARQL queries for different knowledge graphs.

Methodology: We propose COT-SPARQL, our approach to generate SPARQL

queries from input questions. Our approach employs Chain-of-thoughts prompting
that guides large language models through intermediate reasoning steps and facili-
tates generating precise SPARQL queries. Furthermore, our approach incorporates
entities and relations from the input question, and one-shot example in the prompt
to provide additional context during the query generation process.

Findings: We conducted several experiments on benchmark datasets and showed
that our approach outperforms the state-of-the-art methods by a large margin. Our
approach achieves a significant improvement in F1 score of 4.4% and 3.0% for the
QALD-10 and QALD-9 datasets, respectively.

Value: Our COT-SPARQL approach contributes to the semantic web community
by simplifying access to knowledge graphs for non-expert users. In particular, COT-
SPARQL enables non-expert end-users to query knowledge graphs in natural lan-
guages, where COT-SPARQL converts user natural languages queries into SPARQL

queries, which can be executed via the knowledge graph’s SPARQL endpoint.

Keywords., SPARQL Generation, Large Language Models, Chain-of-Thoughts.

1. Introduction

Knowledge graphs (KGs) are valuable sources of structured information that can be
queried using SPARQL, a standard query language for the Semantic Web. However,
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Question: Which persons that received both Academy Award and Nobel Prize?

User

wd:Q19185 George Bernard Shaw

wd:Q392 Bob Dylan

SELECT DISTINCT ?Person ?PersonLabel ?NobelPrizeLabel ?AcademyAwardLabel WHERE {

?NobelPrize wdt:P279?/wdt:P31? wd:Q7191 .    # <- subtypes of nobel prize

?AcademyAward wdt:P279?/wdt:P31? wd:Q19020 . # <- subtypes of academy award

?Person wdt:P166? ?NobelPrize .              # <- people awarded a nobel prize

?Person wdt:P166? ?AcademyAward .            # <- people awarded an academy award

SERVICE wikibase:label {

bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en" . } }

Answer:

Figure 1. Example of SPARQL query used to answer an input question from Wikidata

SPARQL is an expressive language that requires users to have a deep knowledge of its
syntax and semantics, as well as the specification of knowledge graph’s schema [16, 25,
34]. This poses challenges for non-expert users to formulate and execute SPARQL queries,
consequently limiting the accessibility and usability of knowledge graphs. To mitigate
these challenges, SPARQL generation, has emerged as an active research area to bridge
the gap between natural language and SPARQL [29].

SPARQL generation is the task of automatically converting natural language ques-
tions into SPARQL queries (e.g., see Figure 1), which can be executed over knowledge
graphs. Current methods for SPARQL generation involve several challenges, such as
mapping natural language terms to their corresponding entities and relations in knowledge
graphs [9]. For example, template-based methods for SPARQL generation often require
multiple steps and are tailored to specific knowledge graphs, which limit their applicability
across different systems [12]. These challenges increase significantly when dealing with
large and diverse knowledge graphs, such as Wikidata. Additionally, machine learning
approaches for SPARQL generation aim to learn mapping and transformation rules from a
large corpus of question-SPARQL pairs [8, 43]. However, these approaches require huge
annotated data to train effective models. Recently, large language models (LLMs) have
shown remarkable capabilities in generating database queries, such as SQL, from natural
questions [27, 47]. However, generating SPARQL queries from a natural language question
is more challenging, as it: 1) involves mapping natural language terms to entities and
relations in knowledge graphs, and 2) requires constructing complex queries that match
the semantics of questions.

To address these challenges, we leverage Chain-of-Thoughts Prompting (CoT), which
has been shown to elicit the reasoning skills of LLMs for various tasks with few-shot
examples [41]. We propose COT-SPARQL, our approach for SPARQL generation based
on Chain-of-Thoughts reasoning. Our approach guides LLMs to think step-by-step and
generate SPARQL queries similar to given few-shot examples. Unlike existing methods
that rely on pre-defined templates or fixed rules, our approach can dynamically adapt to
different knowledge graphs, and generate queries that capture natural language semantics.
We conducted several experiments on benchmark datasets and evaluated the performance
against several baselines. Our approach outperforms state-of-the-art methods in terms of



accuracy, error-free SPARQL queries on several benchmark datasets. We summarize the
main contributions of our paper as follows:

- We propose a new approach for SPARQL generation from natural questions using
Chain-of-Thoughts prompting.

- Unlike existing methods, our approach adapts to different questions and KGs,
and generates queries that capture the complex and diverse semantics of natural
language.

- We show that our approach outperforms the state-of-the-art baselines on different
datasets. Our implementation is open source and publicly available.2

2. Related Works

2.1. SPARQL Generation

Generating SPARQL queries is an essential task for accessing and analyzing Semantic
Web data. Previous studies have primarily focused on two directions: manual- and schema-
based SPARQL generation. In manual approaches, human experts create SPARQL queries
to test ontology systems [15, 23] or to identify query features from existing datasets [10,
13, 31]. However, these approaches are not scalable to large and dynamic knowledge
graphs such as Wikidata [40], which require a diverse set of queries to cover various aspects
of the data. In contrast, schema-based approaches automatically generate SPARQL queries
from pre-defined schemas or templates, which can overcome the limitations of manual
approaches [1, 2, 37]. Such schemas define the structure and semantics of queries and use
rules to insert data values from knowledge graphs into the queries. While these methods
have shown promising results in generating complex and diverse queries [5, 37, 46], but
they rely on a pre-defined set of templates, which limits the variety and scope of the
queries. Moreover, creating new schemas for different question types involves manual
effort, which reduces the scalability and automation of SPARQL generation process.

Another research direction has investigated the use of neural machine translation
for SPARQL generation. For instance, Soru et al. [35] presented a sequence-to-sequence
model that learns to generate SPARQL patterns from natural language questions. The
authors used a semi-supervised approach with pre-defined templates to align questions
and queries, and train their model on large-scale knowledge graphs. This approach can
generate complex queries that involve multiple graph patterns, but also requires a lot of
training data. Moreover, Zafar et al. [45] developed a method called SQG, which generates
SPARQL queries from large-scale knowledge graphs. The proposed method has a modular
design to integrate with other question answering components. Notably, this method can
handle questions that are noisy or complex by finding a minimal sub-graph. However,
this method encounters several challenges, such as handling out-of-vocabulary words,
generalizing to unseen questions, and finding relevant query patterns.

On the other hand, Rony et al. [32] proposed the SGPT model that converts natural
questions into SPARQL queries. SGPT is a comprehensive approach that does not depend
on specific knowledge graphs or manual query templates. Specifically, SGPT leverages
the GPT-2 language model and incorporates both linguistic and graph-specific features

2https://github.com/dice-group/CoT-Sparql

https://github.com/dice-group/CoT-Sparql


into its parameters. In contrast to the previous studies, our approach employs LLMs (e.g.,
LLaMA2-Code) to generate SPARQL queries using Chain-of-thoughts prompting without
requiring predefined schemas or graph structures.

2.2. Chain-of-Thoughts Prompting

LLMs prompting has significantly improved the performance across various natural lan-
guage processing tasks [7]. However, recent studies indicate that basic prompts (e.g.,

“Generate a SPARQL code for the input question”) may not always lead to precise re-
sults [41]. Recently, researchers have adopted Chain-of-Thoughts prompt as a means to
enhance the capabilities of large language models in reasoning and generating tasks [44].
COT reflects the step-by-step learning process of humans, methodically moving through
stages towards a solution, and leveraging context and supplementary information as nec-
essary to achieve its objectives. Since our study focuses on code generation, we review
related studies that apply Chain-of-Thoughts for this purpose. For example, Li et al. [26]
leveraged COT approach in combination with zero-shot and In-context learning to extract
specialized coding abilities from large language models. Furthermore, Jiang et al. [20]
investigated the application of LLMs for code generation through a COT-based approach,
including planning and implementation steps. Their structured approach demonstrates
clear advantages over traditional direct generation methods using language models. Ad-
ditionally, Pourreza and Rafiei [30] developed a COT-based approach for text-to-SQL
generation, achieving a notable improvement of 10% in performance.

For SPARQL generation, Yang et al. [42] proposed an LLM-based approach to gen-
erate SPARQL queries for Chinese knowledge graphs. Their method involves prompting
an LLM with an input question, including entity mentions and their URIs, followed
by the phrase "the SPARQL statement corresponding to the graph is". However, this
approach has limitations such as prompting the LLM without additional context, such
as few-shot examples (question and SPARQL pairs), may not be efficient for generating
complex SPARQL queries. Furthermore, the authors employed a generic pre-trained LLM,
ChatGLM-6B, in contrast, we used a specialized model, LLaMa-Code, which is potentially
better suited for tasks involving code and logical form generation. Similarly, Kovriguina
et al. [24] introduced the SPARQGen approach, a one-shot prompt method for instructing
the GPT-3 model to generate SPARQL queries. Their approach involves a basic LLM
prompt, which contains a single example of a question, and its corresponding SPARQL

query, instructions to explain the task of SPARQL generation for LLM and a test question.
This method only considers a fixed set of questions/SPARQL pairs known as guiding
examples. During the experiments, the author randomly selected a guiding example to
provide a context for the LLM prompt. However, the randomly-selected example may not
be relevant to the input question. In contrast, our approach consider few-shot examples
based on semantic similarity. In particular, we cluster the training set into groups of
⟨question, SPARQL⟩ pairs, then select the most semantically similar example to the input
question from the appropriate cluster. Furthermore, SPARQGen approach employs a
basic LLM prompt (“Given the following user question and RDF graph ...
generate the corresponding sparql query...”), our Chain-of-Thoughts prompt
incorporates the instruction “Let’s think step by step” which triggers the reason-
ing capabilities of LLM during token generation, resulting in more precise results [17].
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Figure 2. Overview of our approach (COT-SPARQL) with LlaMA-Code model. Context (A) includes the entities
and relations extracted from the input question and Context (B) include one-shot example.

3. Approach

In this section, we present our approach (CoT-SPARQL) for generating SPARQL queries
from natural questions, including the components: prompt building, in-context learning
and query validation, as shown in Figure 2. COT-SPARQL starts by introducing the
phrase “Let’s think step by step” into the prompt, to enforce structured reasoning
capabilities of the LLM is initiated. In our study, we consider LLaMA2-code model due
to it’s strong performance in code generation, positioning it as one of the best open-source
models for this task [33]. COT-SPARQL then define the task in the prompt building step
(see Section 3.1 for more details), where it providing additional context from the input
question, and including a few-shot example. This additional in-context learning helps
the LLM better understand the question and generate accurate SPARQL queries (See
Section 3.2 for more details). Finally, we verify the correctness of the SPARQL queries
prior to their execution (See Section 3.3 for more details).

3.1. Prompt building.

In this component, we use the CoT prompting [22] to enhance the reasoning capabilities
of LLMs for Text-to-SPARQL generation. Specifically, we incorporate the phrase “Let’s
think step by step” into the LLM prompt to initiate a structured reasoning process
and sequentially convert the given question into a SPARQL query. Figure 3 shows an
example run of the prompt building process for the user input query “Was Gerald Gibbs
the cinematographer of X the unknown?”. In particular our prompt building pro-



cess includes three parts: i) [INST]· · ·[\INST], where we define the the task and its
description to the LLM to be SPARQL generation for a target knowledge graph (e.g.,
DBpedia in Figure 3), ii) Context (A) provides the LLM with additional information
such as entities and relations extracted from the input question, and iii) Context (B)
presents a few-shot example for generating SPARQL query with the same syntax.

3.2. In-context learning.

In this component, we add two contexts (Context (A) and Context (B) as shown
in Figure 2) in our CoT prompt to provide the LLM with additional information for
generating precise SPARQL queries.

3.2.1. Context (A)

We enrich the LLM prompt with entities and relations information from the input question.
This information helps the LLM to disambiguate entities and understand the intended
meaning correctly, thus reducing the chance of getting irrelevant or incorrect results (i.e,
hallucination). For this purpose, we preprocess the input question using two libraries:
spaCy fishing3 (for entity linking in Wikidata) and Falcon4 (for entity linking in
DBpedia) and REBEL5 (for relations extraction). The libraries also handle the issues of
prefixes and IRIs in the SPARQL query generation.

3.2.2. Context (B)

We include a one-shot example in our prompt to show the LLM how to convert text
to a SPARQL query. This one-shot example contains a (question, SPARQL) pair rel-
evant to the input question. To achieve this, we embed all questions in the training
set (i.e., Examples) as semantic vectors using sentence-transformer6 library. The
sentence-transformer captures semantic similarities between sentences, enabling
effective clustering of textual data. We apply K-means clustering to group similar ques-
tions together into clusters. We calculate the cosine similarity to identify the most similar
example as one-shot for the input question. We further refine our process by adopting the
K-means++ initialization method7, which optimizes the selection of initial cluster centers,
thereby improving convergence and reducing the likelihood of poor clustering outcomes.
Finally, we append the relevant information, such as entities and relations in the SPARQL
query, for the selected question as shown in example of Figure 3 in Context B.

3.3. Query validation.

In the final step, we use the SPARQLWrapper library8 to ensure that the generated SPARQL
queries are syntactically correct, avoiding the execution of invalid ones. This library
allows for the execution of SPARQL queries on remote endpoints connected to respective
knowledge graphs. For example, we use the public endpoints of Wikidata and DBpedia

3https://github.com/Lucaterre/spacyfishing
4https://labs.tib.eu/falcon/
5https://github.com/Babelscape/rebel
6https://github.com/UKPLab/sentence-transformers
7We use the Silhouette Score to determine the optimal number of clusters
8https://sparqlwrapper.readthedocs.io/en/latest/main.html

https://github.com/Lucaterre/spacyfishing
https://labs.tib.eu/falcon/
https://github.com/Babelscape/rebel
https://github.com/UKPLab/sentence-transformers
https://sparqlwrapper.readthedocs.io/en/latest/main.html


Let's think step by step

[INST] 
Task: Convert question to SPARQL query for {DBpedia} knowledge graph.
Description: given an input question and a list of DBpedia URIs for the mentioned entities
and relations in the question. Write a correct SPARQL code to query the {DBPedia}
knowledge graph. Please wrap your SPARQL code answer using ``` : 
You can formulate your SPARQL query as the following examples. 
[/INST]

Instruction

Was Gerald Gibbs the cinematographer of X the unknown?

Question

Entities:[Gerald Gibbs:dbr:Gerald_Gibbs_(cinematographer),   X the unknown:
dbr:X_the_Unknown ] 

Relations: [cinematographer: dbo:cinematography ]

Context (A)

Was X the Unknown edited by James needs?
ASK WHERE { 

<http://dbpedia.org/resource/X_the_Unknown> <http://dbpedia.org/ontology/editing>
<http://dbpedia.org/resource/James_Needs> }

[James: dbr:LeBron_James, X the Unknown: dbr:X_the_Unknown]
[editing: dbo:editing]

Context (B)

CoT Prompt

Figure 3. CoT prompt of generating SPARQL queries of DBpedia. Entities are in orange and relations in blue.

knowledge graphs. Our evaluation study (detailed in Table 3) shows that prompting LLMs
without In-context and CoT instruction often results in generating invalid queries with
multiple syntactic errors. We aim to build an end-to-end system that processes natural
language questions, generates SPARQL queries, and validates their correctness.

4. Experiments

We conducted our experiments to answer the following research questions:

RQ1. Does In-context learning enhance the performance of LLMs in generating sparql
queries?

RQ2. How accurate and precise are the the SPARQL queries generated by our approach?
RQ3. How does the performance of our approach compare to state-of-the-art approaches

of the question answering task?

4.1. Datasets.

We used four benchmark datasets in our evaluation, namely: LC-QuAD 2.0, VQuAnDa,
QALD-9, and QALD-10. Table 1 shows an overview of the datasets, including number of



Table 1. Summary of datasets used in our experiments.

Dataset KG Test Valid Train Language
QALD-9 DBpedia 150 58 350 Multilingual
VQuAnDa DBpedia 1000 500 3500 English
LC-QuAD 2.0 Wikidata 5969 2389 21497 English
QALD-10 2.0 Wikidata 394 - 412 Multilingual

questions in train, valid and test splits and the language of questions. LC-QuAD 2.0 [11]
contains 30k question-query pairs over Wikidata and DBpedia, with 10 categories that vary
in complexity and structure, where each question is annotated with its answer type and
entities. VQuAnDa [21] has 5k question-query pairs over DBpedia with their verbalised an-
swers, covering different question types, such as Boolean, list, and resource. QALD-9 [28]
has 558 total question-query pairs over DBpedia and Wikidata, with temporal, spatial,
comparative, superlative, and other reasoning. This dataset supports multilingual question
answering over knowledge graphs in 10 languages. QALD-10 [39] has 412 training set
question-query pairs over Wikidata, with temporal, spatial, comparative, superlative, and
other reasoning. This dataset supports multilingual question answering over knowledge
graphs in 9 languages. We used this dataset for our pilot study (see Section 5.3) to evaluate
the correctness of generated SPARQL queries in questions answering.

4.2. Baselines.

We compared our approach against different baselines (state-of-the-art approaches and
LLMs with standard prompt (“generate a sparql query for the input question”):

State-of-the-art approaches:

• SQG [45], which extracts sub-graph patterns from the question and ranks candidate
queries by their structural similarity with the question, using a Tree-LSTM model.

• NSpM [35], which trains a Bi-LSTM model with a sequence-to-sequence technique
to map natural language questions to template SPARQL queries.

• TeBaQA [18], which predicts the SPARQL query structure from template classes
derived from the training dataset, and combines them with a sequence-to-sequence
model to generate the SPARQL query.

• SGPT [32] uses a stack of Transformer-encoders to encode linguistic features of
input language questions and a fine-tuned GPT-2 model to decode and generate
SPARQL queries.

• SPARQLGen [24], this is the state-of-the-art baseline that prompts the GPT-3 model
with a fixed one-shot example to generate SPARQL queries.

LLM baselines with standard prompt9:

• LLaMA2-code [33], is a variant of the LLaMA2 language model specifically de-
signed for code generation tasks. In particular, we used the Code Llama-Instruct
variant, a 34-billion-parameters model as a baseline for generating SPARQL queries
from natural language prompts.

9By standard prompt, we mean to directly prompt the LLM for generating SPARQL queries using natural
language questions without neither context learning nor example queries.



• CodeQwen1.5 [3] is a code-specific variant of Qwen1.5 model that has been pre-
trained on a large corpus of code data, enabling to handle long context understanding
and generation, supporting a context length of up to 64K tokens. Additionally,
CodeQwen1.5 offers extensive languages support, supporting a total of 92 coding
languages, including SPARQL.

• Mistral-Code [19] is an advanced language model with 7.3B parameters. It is
designed to perform on coding tasks, outperforming other models such as Llama
34B in various benchmarks.

4.3. Metrics.

We adopt the evaluation metrics from Rony et al. [32] (F1 and BLEU scores) to measure
the performance of generating SPARQL queries across three datasets. The F1 score
measures the harmonic mean of Precision and Recall, providing a balanced evaluation
of both accuracy and completeness of the generated SPARQL queries compared to the
gold-standard, as defined by Equation (1):

F1 =
2×Precision×Recall

Precision+Recall
(1)

The BLEU score evaluates the generated queries based on n-gram overlap with one
or more reference (gold-standard) queries. It is calculated as shown in Equation (2):

BLEU = BP× exp

(
N

∑
n=1

wn × log(pn)

)
(2)

where pn represents the precision of n-grams, wn is the weight assigned to each n-gram,
and BP is the brevity penalty applied for shorter outputs.

In addition, we used the QALD-specific Macro F1 metric (F1-QALD), designed for
evaluating performance over linked data benchmarks [38]. In particular, we employed
F1-QALD metric to evaluate the systems performance for the third research question
(RQ3). Moreover, F1-QALD metric considers additional semantic information in certain
scenarios. If the set of golden answers is not empty and question answering system returns
empty set, then precision is set to 1, while recall and F-measure are set to 0.

4.4. Setup and Hardware Requirement

We run our experiments on a server equipped with an AMD EPYC 9334 Processor (64
Threads, 32 cores), 1032GB RAM, and NVIDIA A100 80GB PCIe GPUs. Furthermore,
we implemented our approach using Python 3.10 and PyTorch 2.1.1 frameworks. We
obtained the pre-trained checkpoints of all models (LlaMA-Code10, Mistral-Code11,
CodeQwen1.512) from the Hugging Face repository.

10https://huggingface.co/TheBloke/CodeLlama-34B-Instruct-GPTQ
11https://huggingface.co/TheBloke/Mistral-7B-codealpaca-lora-GPTQ
12https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat

https://huggingface.co/TheBloke/CodeLlama-34B-Instruct-GPTQ
https://huggingface.co/TheBloke/Mistral-7B-codealpaca-lora-GPTQ
https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat


Table 2. Performance evaluation using F1 and BLEU metrics (RQ1). Best results are in bold, a dash ( - ) means
no results are available from those baselines using this metric or on this dataset.

LC-QuAD 2.0 VQuAnDa QALD-9

Models BLEU F1 BLEU F1 BLEU F1

Non-LLM baselines
NSpM 34.74 66.47 37.75 59.96 18.23 45.34
SQG - 74.00 05.09 37.70 04.44 27.85
TeBaQA - 22.7 13.30 22.41 12.82 28.81

LLM Baselines
SPARQLGEN - - - - - 67.07
SGPT 73.78 89.04 72.58 88.87 35.68 67.82
LlaMA2-Code 06.57 18.41 05.61 33.9 08.28 27.09
Mistral-Code 0.87 10.19 0.57 08.57 04.54 16.50
CodeQwen1.5 04.90 15.01 03.20 14.9 13.01 27.10

Our approach
COT-SPARQL(ent) 50.67 68.94 63.87 84.38 30.68 67.3
COT-SPARQL(ent+rel) 58.08 76.91 71.61 89.36 34.65 70.45

5. Results and Discussion

5.1. Evaluating the performance of SPARQL generation

In research question (RQ1), we investigate the impact of in-context learning within our
COT-SPARQL approach in generating precise SPARQL queries. In particular, we conduct
a comparative analysis against different baselines, employing F1 and BLEU as evaluation
metrics. We present the results of the baselines NSpM [35], SQG [45], TeBaQA [18],
SGPT [32] and SPARQLGen [24]) as reported in their respective papers. As shown
in Table 2, our approach (COT-SPARQL) outperforms the baselines on two of three
datasets. For example, on the VQuAnDa dataset, COT-SPARQL achieves a BLEU score
of 71.61 and an F1 score of 89.36. In contrast, the best Seq2Seq baseline (i.e., SGPT)
achieves a BLEU score of 72.58 and an F1 score of 88.87. Moreover, these findings
demonstrate that COT-SPARQL, which incorporates entities and relations into the LLM
prompt, achieves the highest F1 scores on two datasets (i.e., 89.36 on VQuAnDa and
70.45 on QALD-9) and the second-best performance on the LC-QuAD 2.0 dataset with
an F1 score 89.04. These results indicate that COT-SPARQL can effectively leverage
the pre-trained knowledge in large language models, and robustly encode the semantic
information (e.g., entities and relations) from the input question, to generate accurate
SPARQL queries.

5.2. Evaluating the correctness of generated SPARQL queries

To answer RQ2, we reported the number and percentage of valid queries that return
correct answers without errors via DBpedia and Wikidata endpoints, and invalid queries
that return syntax errors or empty answers, in Table 3. Since the queries generated by
the other baselines (NSpM, SQG, TeBaQA, and SGPT) are not publicly available, we



Table 3. Evaluating the correctness of generated SPARQL queries (RQ2). Best results are in bold.

LC-QuAD 2.0 VQuAnDa QALD-9

Models Valid Invalid Valid Invalid Valid Invalid

LlaMA2-Code 1216 (25.3%) 3651 759 (75.9%) 241 103 (68.7%) 47
Mistral-Code 121 (2.5%) 4746 46 (4.6%) 954 6 (4%) 144
CodeQwen1.5 998 (20.5%) 3869 505 (50.5%) 495 80 (53.5%) 70
COT-SPARQL(ent) 3243 (75.0%) 1642 951 (95.0%) 49 139 (92.7%) 11
COT-SPARQL(ent+rel) 4640 (96.0%) 227 975 (95.5%) 25 143 (95.4%) 7

were unable to evaluate their validness and only compare our approach with the LLM
baselines (LlaMA2-Code, Mistral-Code and CodeQwen1.5). The evaluation results show
that COT-SPARQL significantly outperforms the LLaMA2-Code model significantly on
all datasets. For instance, on the LC-QuAD 2.0 dataset, (COT-SPARQL(ent+rel)), which
incorporates both entities and relations, generates 4640 (96%) Valid queries and only
227 invalid queries. In comparison, the LLaMA2-Code model generates 1216 (25.3%)
Valid queries and 3651 (74.7%) Invalid queries. These findings suggest that prompts
enriched with In-context Learning and few-shot examples significantly enhance the ability
of LLMs to generate valid and correct SPARQL queries than relying only on their pre-
trained knowledge. Furthermore, the results show that our approach with both entities and
relations (COT-SPARQL(ent+rel)) consistently achieves the highest performance, compared
to the variant with only entities (COT-SPARQL(ent)).

5.3. Executing SPARQL queries in question answering (Pilot Study)

To address RQ3, which investigates the performance of our approach in question an-
swering task, we used the GERBIL benchmark framework [38] to execute the generated
SPARQL queries. Our goal is to evaluate the effectiveness of our approach in an end-to-end
setting, where a natural language question is given as an input, converted into a SPARQL
query and then executed to retrieve answers. In particular, we performed a pilot study on
the QALD-10 dataset [39], the most recent benchmark dataset for questions answering
over linked data. Furthermore, we compared the performance of our approach with the
state-of-the-art baselines from GERBIL framework, namely:

- Kovriguina et al. [24] employed the GPT-3 model with one-shot example to generate
a SPARQL query.

- Borroto and Ricca [6] combined neural machine translation with named entity
recognition to convert natural language questions into SPARQL queries.

- Guo et al. [14] developed a system that classifies questions and generates SPARQL
queries using templates and a knowledge base.

- Steinmetz et al. [36] introduced a pattern-based method to transform natural lan-
guage into SPARQL queries by matching patterns and fill variables with relevant
information from the question.

- Baramiia et al. [4] presented a ranking method to optimize question answering over
knowledge graph, focusing on ranking items to construct SPARQL queries.



Table 4. A pilot study of question answering task over the QALD-10 dataset. For the system of Kovriguina
et al. [24], we were unable to find results on the QALD-10 leaderboard, therefore we obtained results from [24]
(RQ3). Best results are in bold.

Approach Precision Recall F1 F1-QALD
Kovriguina et al. [24] - - - 0.29*
Borroto and Ricca [6] 0.4538 0.4574 0.4538 0.5947
Guo et al. [14] 0.5068 0.5238 0.5070 0.5776
Steinmetz et al. [36] 0.3206 0.3312 0.3215 0.4909
Baramiia et al. [4] 0.4289 0.4272 0.4277 0.4281
COT-SPARQL(ent+rel) 0.4944 0.5072 0.4978 0.6387

Figure 4. The detail results of our approach in GERBIL benchmark framework.

As shown in Table 4, COT-SPARQL(ent+rel) outperforms the state-of-the-art baseline [6]
by achieving the higher macro F1-QALD score of 63.87. The full results from GERBIL
13 are also shown in Figure 4. Overall, the evaluation results (shown in the top row
of Figure 4) indicates that our queries are more reliable in retrieving correct answers from
knowledge graphs. Furthermore, the second row of Table 4 represents GERBIL’s [38]
sub-experiment called Concept to Knowledge Base (C2KB), which identifies all resources
that are relevant for the given question. In particular, GERBIL calculates the measures
precision, recall and F-measure based on the comparison of the expected resource URIs
and the URIs returned by the QA system. The third row of Table 4 shows the Properties to
Knowledge Base (P2KB) sub-experiment, where GERBIL identifies all properties that are
relevant for the given question. The last row of Table 4 represents Relation to Knowledge
Base (RE2KB) sub-experiment, which focuses on the triples that have to be extracted
from the question and are needed to generate the SPARQL query for retrieving correct
answers. The full evaluation results can be accessed via the public KGQA leaderboard.14

13Experiment link at GERBIL framework https://gerbil-qa.aksw.org/gerbil/experiment?id=202405140002
14https://github.com/KGQA/leaderboard/blob/gh-pages/wikidata/qald.md#qald-10

https://gerbil-qa.aksw.org/gerbil/experiment?id=202405140002
https://github.com/KGQA/leaderboard/blob/gh-pages/wikidata/qald.md#qald-10


6. Conclusion and Future Work

This paper presents a novel approach for SPARQL generation, leveraging In-context
learning and Chain-of-Thoughts prompt in large language models to generate high-quality
SPARQL queries from natural language. Specifically, we incorporate additional context
information from the input question, including entities and relations, into the Chain-of-
Thought prompt. Furthermore, we include a semantically similar one-shot example within
the prompt to facilitate generating precise SPARQL queries. In contrast to existing methods
relying on pre-defined templates or fixed rules, our approach is capable of adapting to
generate diverse SPARQL syntax tailored to a target knowledge graph. To assess the
effectiveness of our approach, we conducted experiments on various benchmark datasets.
The results demonstrate that our method outperforms state-of-the-art methods in terms of
both accuracy and the validity of generated SPARQL queries. In our future research, we
plan to investigate fine-tuning large language models (e.g., LlaMA2-Code) on multitask
learning for both SPARQL generation and question answering over knowledge graphs.
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