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Abstract
We consider the problem of class expression learn-
ing using cardinality-minimal sets of examples.
Recent class expression learning approaches em-
ploy deep neural networks and have demonstrated
tremendous performance improvements in exe-
cution time and quality of the computed solu-
tions. However, they lack generalization capabil-
ities when it comes to the number of examples
used in a learning problem, i.e., they often per-
form poorly on unseen learning problems where
only a few examples are given. In this work, we
propose a generalization of the classical class ex-
pression learning problem to address the limitations
above. In short, our generalized learning problem
(GLP) forces learning systems to solve the classical
class expression learning problem using the small-
est possible subsets of examples, thereby improv-
ing the learning systems’ ability to solve unseen
learning problems with arbitrary numbers of exam-
ples. Moreover, we develop ROCES, a learning
algorithm for synthesis-based approaches to solve
GLP. Experimental results suggest that post train-
ing, ROCES outperforms existing synthesis-based
approaches on out-of-distribution learning prob-
lems while remaining highly competitive overall.

1 Introduction
Class expression learning (CEL) in description logics (DLs)
refers to the task of finding a class expression that describes
a given set of (positive) examples. A class expression is
human-readable and interpretable and is hence a white-box
model. For instance, a class expression to describe penguins
is (Bird ⊓ CanSwim) ⊔ (Animal ⊓ HasWings ⊓
¬CanFly), which stands for birds that can swim or ani-
mals that have wings and cannot fly. Note that this expres-
sion might also describe other birds that are not penguins,
e.g., ostriches. To describe penguins exclusively, one can fur-
ther refine the expression above, e.g., by using data values to
specify their maximum leg length or maximum weight. In
bio-medicine, class expressions can be used to formally de-
scribe diseases or chemical compounds [Hartel et al., 2005;
Schulz et al., 2008; Boeker et al., 2016] and facilitate further

investigations by domain experts. Other application domains
of CEL include ontology engineering [Lehmann et al., 2011],
and Industry 4.0 [Demir et al., 2022].

Early approaches for CEL are search-based [Lehmann
and Hitzler, 2010; Lehmann, 2010; Lehmann et al., 2011;
Rizzo et al., 2020]. These approaches employ a refine-
ment operator [Badea and Nienhuys-Cheng, 2000; Lehmann
and Hitzler, 2007] to construct an infinite conceptual space,
and a heuristic function to traverse the latter. Consequently,
search-based approaches are time-inefficient and often yield
poor solutions—especially on large datasets [Kouagou et al.,
2023a; Kouagou et al., 2023b]. Other types of approaches
have hence been proposed to overcome the limitations of
search-based approaches. These include neural class expres-
sion synthesizers [Kouagou et al., 2023a; Kouagou et al.,
2023b], approaches based on reinforcement learning (e.g.,
DRILL) [Demir and Ngonga Ngomo, 2023], pruning-based
approaches (e.g., CLIP) [Kouagou et al., 2022], meta-learners
(e.g., EvoLearner) [Heindorf et al., 2022], and sampling-
based approaches [Baci and Heindorf, 2023]. The latter em-
ploys sampling algorithms to construct a subset of the input
knowledge base which then serves as the background knowl-
edge for the considered learning problem. EvoLearner is
based on evolutionary algorithms and initializes its popula-
tion (class expressions) by random walks on the input knowl-
edge base. CLIP steers the search space of search-based ap-
proaches by using concept length predictors which are ini-
tially trained in an unsupervised manner. DRILL learns to op-
timally traverse the search space via deep Q-learning [Mnih et
al., 2013]. Neural class expression synthesizers use deep neu-
ral networks to learn mappings between sets of examples and
class expressions without a search process. They have proven
to be hundreds of times faster than all approaches mentioned
above while maintaining the quality of the computed solu-
tions. This makes synthesis-based approaches suitable for
web-scale applications of CEL.

Despite their scalability, the performance of synthesis-
based approaches remains highly dependent on their training
data which, in fact, is generated in a self-supervised manner.
The training data consists of non-redundant arbitrary class
expressions coupled with their sets of positive/negative ex-
amples. Positive examples for a class expression are a sub-
set of its instances. Likewise, negative examples for a class
expression are a subset of individuals that are not instances



of that particular class expression. For the sake of scalabil-
ity and to enable support for batched inputs, synthesis-based
approaches require a fixed number N which represents the
maximum number of examples per class expression. Hence,
the generated training data induces a probability distribution
over the sizes of the sets of positive and negative examples.
This distribution is inevitably injected into the trained neu-
ral class expression synthesizers. As we show in our experi-
ments, synthesis-based approaches perform poorly on learn-
ing problems with small sets of examples, which are most
likely to be encountered in practical applications of CEL. For
instance, in ontology engineering, knowledge engineers man-
ually inspect and label a few individuals at a time. A naive
way to improve neural class expression synthesizers in this
regard would be to set the maximum number of examples N
to a low value. However, this would fail because many posi-
tive/negative examples would be omitted, thereby leading to
poorly trained neural synthesizers.

In this paper, we propose a new synthesis-based approach
dubbed ROCES that can solve learning problems with arbi-
trary numbers of examples. ROCES has the same expressive
power and scalability capability as NCES2 [Kouagou et al.,
2023a], but enjoys a better predictive performance on out-of-
distribution learning problems. In a nutshell, our contribu-
tions are:

1. We propose a generalization of the classical learning
problem that aims to improve the robustness of learn-
ing systems w.r.t. the number of input examples. Our
new formulation constrains learning systems to find and
use a subset of the provided examples to solve a given
learning problem. If such a subset cannot be found, the
learning system then uses all examples as in the classical
case.

2. We establish connections between the classical learning
problem and our generalized learning problem (GLP) in
terms of solution existence.

3. We develop a learning algorithm to solve GLP . The
algorithm is applicable to any neural synthesis-based
approach. In our experiments, we apply it to the ap-
proach in [Kouagou et al., 2023a] because it is the best
synthesis-based approach to date.

4. We provide the source code, pretrained models, and
open-access datasets for reproducible research.1

2 Preliminaries
This paper exploits techniques from different well-
established fields of research, including description logics,
deep learning, and knowledge graphs. In this section, we
briefly present the prerequisites needed throughout the paper.

2.1 Description Logics
Description logics [Nardi et al., 2003] are a family of lan-
guages for formal representation of knowledge in a vari-
ety of application domains such as artificial intelligence,

1https://github.com/dice-group/ROCES

bio-informatics, the semantic web, and automated reason-
ing. They are generally more expressive than proposi-
tional logic [Büning and Lettmann, 1999] but less expressive
than first-order logic [Barwise, 1977]. Following [Kouagou
et al., 2023a], our approach targets the description logic
ALCHIQ(D) whose syntax and semantics are given in Ta-
ble 1.

Syntax Construct Semantics
ALC

r abstract role rI ⊆ ∆I ×∆I

⊤ top concept ∆I

⊥ bottom concept ∅
C atomic concept CI ⊆ ∆I

¬C negation ∆I \ CI

C ⊔D disjunction CI ∪DI

C ⊓D conjunction CI ∩DI

∃ r.C existential restriction {aI ∈ ∆I | ∃ bI ∈ CI , (aI , bI) ∈ rI}
∀ r.C universal restriction {aI ∈ ∆I | ∀ bI , (aI , bI) ∈ rI ⇒ bI ∈ CI}

H
r1 ⊑ r2 abstract role hierarchy rI1 ⊆ rI2

I
r− inverse abstract role {(bI , aI) ∈ ∆I ×∆I | (aI , bI) ∈ rI}

Q
≤ n r.C max. card. restriction {aI ∈ ∆I | |{bI ∈ CI : (aI , bI) ∈ rI}| ≤ n}
≥ n r.C min. card. restriction {aI ∈ ∆I | |{bI ∈ CI : (aI , bI) ∈ rI}| ≥ n}

(D)
d concrete role dI ⊆ ∆I ×D
d = v exact value restriction {aI ∈ ∆I | (aI , v) ∈ dI}
d ≤ v max. restriction {aI ∈ ∆I | ∃ w ∈ D, (aI , w) ∈ dI ∧ w ≤ v}
d ≥ v min. restriction {aI ∈ ∆I | ∃ w ∈ D, (aI , w) ∈ dI ∧ w ≥ v}

Table 1: Syntax and semantics of ALCHIQ(D). I = (∆I , ·I) is
an interpretation where ∆I is its domain and ·I is the interpretation
function. D denotes the set of data values, e.g., strings, numbers,
Boolean values, etc.

2.2 Refinement Operators
Definition 1 ([Lehmann and Hitzler, 2010; Kouagou et al.,
2023b]). Given a quasi-ordered space (S,⪯), a downward
(respectively upward) refinement operator on S is a mapping
ρ : S → 2S such that for all C ∈ S, C ′ ∈ ρ(C) implies
C ′ ⪯ C (respectively C ⪯ C ′).

Search-based approaches, e.g. CELOE, employ a refine-
ment operator and a heuristic function to construct and tra-
verse their search space. In contrast, our proposed approach
only needs a refinement operator to generate its training data.

2.3 Class Expression Learning
We now give the classical definition of CEL in descrip-
tion logics (Definition 2), and propose a generalized version
thereof (Definition 3) in Section 3.
Definition 2 (Classical Learning Problem (CLP)). Given a
knowledge base K, a target concept T , a set of positive ex-
amples E+ = {e+1 , e

+
2 , . . . , e

+
n1
}, and a set of negative ex-

amples E− = {e−1 , e
−
2 , . . . , e

−
n2
}, the learning problem is to

find a class expression C such that T does not occur in C and
for K′

C = K ∪ {T ≡ C}, we have that K′
C |= C(E+) and

K′
C ̸|= C(E−).

https://github.com/dice-group/ROCES


We write K′
C |= C(E) (respectively, K′

C ̸|= C(E)) to
express that ∀ e ∈ E, K′

C |= C(e) (respectively, ∀ e ∈
E, K′

C ̸|= C(e)). Here, K′
C |= C(e) means e is an instance

of C according toK′
C . We denote the classical learning prob-

lem defined by K, T , E+, and E− by CLP(K, T, E+, E−).
Our proposed approach uses continuous vector representa-
tions of examples to compute a solution. These repre-
sentations are provided by a knowledge graph embedding
model—a notion that we elucidate in the next subsection.

2.4 Knowledge Graph Embedding
A Knowledge graph (KG) is a “graph of data intended to
accumulate and convey knowledge of the real world, whose
nodes represent entities of interest and whose edges represent
relations between these entities” [Hogan et al., 2022]. They
can also be defined as collections of assertions in the form
of triples. To facilitate downstream applications, KGs are of-
ten projected onto continuous vector spaces such as Rd. This
process is known as knowledge graph embedding.

Several KG embedding techniques have been developed
ever since the introduction of the pioneering approaches.
Roughly, embeddings are computed by learning the vector
representations of nodes and relation types in a way that
the relationships between nodes can be established by using
the learned vectors. KG embeddings are useful for down-
stream tasks such as link prediction [Bordes et al., 2013],
knowledge completion [Lin et al., 2015], recommendation
systems [Zhang et al., 2016], and natural language process-
ing [Chen and Zaniolo, 2017]. Some KG embedding ap-
proaches solely use facts observed in the input knowledge
graph [Nickel et al., 2012; Bordes et al., 2014] while oth-
ers leverage additional information about entities and rela-
tions, such as textual descriptions [Xie et al., 2016; Wang and
Li, 2016] or sameAs links to external sources [Kouagou et
al., 2024]. Our proposed neural network-based approach for
CEL uses the embedding method ConEx [Demir and Ngonga
Ngomo, 2021] whose specificity is to apply convolutions on
complex-valued vector representations of nodes and relation
types to model interactions. We chose this model because it
was compared to other models for CEL and was found to be
the most efficient, see for example [Kouagou et al., 2023b].

2.5 Set Transformer
One desired property for the approach we aim to build in
this paper is permutation invariance w.r.t. the input exam-
ples. In other words, the prediction of our approach must re-
main the same for any re-ordering of the input examples. Set
Transformer [Lee et al., 2019], which we use in ROCES, is
a permutation-invariant deep learning architecture which can
also capture pairwise and higher-order interactions between
the elements of the input set via a self-attention mechanism.
Set Transformer achieves state-of-the-art results on set-input
tasks such as maximum value regression, unique character
counting, and point cloud classification. The Multi-head
Attention Block (MAB), the Set Attention Block (SAB), the
Induced Set Attention Block (ISAB), and the Pooling by
Multi-head Attention (PMA) are the building blocks of Set
Transformer. For more details, we refer to the original paper
[Lee et al., 2019].

3 Iterative Sampling for Class Expression
Learning

We first give a modification of Definition 2 that encourages
learning systems to compute solutions without using all the
provided examples. Second, we establish the connections be-
tween classical solutions and those from our new formulation.
Finally, we describe our learning algorithm in detail and dis-
cuss potential limitations.

3.1 Generalized Learning Problem
Our proposed definition below is motivated by the fact that
in real-world applications of CEL, one deals with small sets
of examples (see an example in the introduction). In this con-
text, a good learning system should be able to compute a solu-
tion that is as specific as possible but general enough to cover
other relevant examples that are not given. In the next para-
graphs, we denote the set of all solutions to the classical learn-
ing problem CLP(K, T, E+, E−) by SCLP(K, T, E+, E−).
Definition 3 (Generalized Learning Problem (GLP)). Given
a knowledge base K, a target concept T , and sets of posi-
tive/negative examples E+ = {e+1 , e

+
2 , . . . , e

+
n1
} and E− =

{e−1 , e
−
2 , . . . , e

−
n2
}, the learning problem is to find non-empty

subsets E+ ⊆ E+, E− ⊆ E− with the following properties
1. SCLP(K, T, E+, E−) ̸= ∅
2. SCLP(K, T, E+, E−) ⊆ SCLP(K, T, E+, E−)

3. There do not exist non-empty subsets E ′+ ⊆ E+, E ′− ⊆
E− such that |E ′+| + |E ′−| < |E+| + |E−| and ∅ ̸=
SCLP(K, T, E ′+, E ′−) ⊆ SCLP(K, T, E+, E−),

where |.| denotes the cardinality of a set. Properties 1.
and 2. in the above definition require that the set of
all solutions (class expressions) to the learning problem
CLP(K, T, E+, E−) is non-empty and each of its elements
is a solution to CLP(K, T, E+, E−). Property 3. further en-
sures that such subsets E−, E+ are minimal in size. We say
that a solution (E+, E−) to GLP is ideal if E+ ̸= E+ or
E− ̸= E−.
Theorem 1. GLP has a solution if and only if CLP has one.

Proof. First, assume that GLP has a solution. Then
(by definition), there exist non-empty subsets E+ ⊆
E+, E− ⊆ E− such that SCLP(K, T, E+, E−) ̸= ∅
and SCLP(K, T, E+, E−) ⊆ SCLP(K, T, E+, E−) (prop-
erties 1. and 2.). Let C be an arbitrary element in
SCLP(K, T, E+, E−). Then, C ∈ SCLP(K, T, E+, E−) and
therefore C is a solution to CLP .

It remains to prove that if CLP has a solution, then GLP
also has one. For this, we provide a proof sketch and refer the
reader to the supplemental material2 for a complete proof. We
define the size of (E+, E−) as |(E+, E−)| := |E+|+ |E−|. Let
C be a solution to CLP . Then, there is an example set pair
(E+, E−) that satisfies properties 1 and 2 (e.g., take E+ =
E+ and E− = E−). Example set pair sizes are integers and
are bounded by 2 from below since example sets are non-
empty. Hence, there exist a size-minimal example set pair

2https://github.com/dice-group/ROCES/blob/
master/supplemental_material.pdf
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that satisfies properties 1 and 2. Such an example set pair
also satisfies property 3, i.e., it is a solution to GLP .

Theorem 1 provides sufficient and necessary conditions for
our formulated learning problem (GLP) to have a solution. In
particular, we have shown (see complete proof of Theorem 1
in the supplemental material) how ideal solutions to GLP
can be sought starting from an arbitrary solution to CLP .
Given the sequential nature and complexity of this search
process—see for example the use of existential quantifiers
which often require search over the complete space—more
efficient search strategies are necessary. In the following
subsection, we propose an iterative stochastic search method
coupled with gradient-based optimization to construct an ap-
proach that approximates solutions to GLP .

3.2 Learning Algorithm
Our approach uses the ConEx embedding model [Demir and
Ngonga Ngomo, 2021] to obtain embeddings for input exam-
ples, and the Set Transformer [Lee et al., 2019] to synthesize
class expressions from embeddings. The embedding model
and the Set Transformer instance are fused into a learner fΘ
and trained jointly. Algorithm 1 below describes how fΘ
can be used together with our iterative sampling technique
to solve GLP .

Algorithm Description. In lines 1 and 2, we construct pos-
sible sizes S+ and S− for the subsets E+ and E− (see Def-
inition 3), respectively. Next, we define discrete probability
functions3 p+ and p− over S+ and S− (lines 3 and 4). In
lines 5–8, we sample candidate example set sizes k+ and k−

following p+ and p−, and construct candidate subsets of ex-
amples E+ and E− by uniformly sampling k+ positive and
k− negative examples, respectively. Finally, the parameter-
ized learner fΘ synthesizes an expression Ĉ which we com-
pare to the target C, compute the loss and backpropagate to
update the parameters Θ (lines 9–11). Note that Algorithm 1
describes a single learning step with one training data point
for the sake of simplicity. In practice (e.g. in our experi-
ments), a batch of training data points is given and parameter
updates are performed based on the input batch. Once the
learner fΘ is trained using Algorithm 1, it can be employed
to solve learning problems with arbitrary example set sizes;
we provide more details in Section 4. In the rest of the pa-
per, we refer to the parameterized learner fΘ trained using
Algorithm 1 as our approach ROCES.

Limitations. As mentioned earlier, our learning algorithm
computes approximate solutions to GLP . The search for the
exact solution can require up to 2|E

+| × 2|E
−| checks (for

|E+| = |E−| = 100, this is approximately 1060 checks).
Hence, the optimal subsets of examples (E+, E−) computed
in Algorithm 1 might fail to satisfy property 3. (minimality)
in Definition 3 but they remain, in most cases, strictly smaller

3The density functions p+ and p− are defined in such a way that
higher probabilities are given to smaller values. In this way, we en-
courage the learner fΘ to learn target expressions with small sets
of examples. Of course, the search for the most suitable probabil-
ity functions remains an interesting topic which we leave for future
work.

Algorithm 1 Learning Step
Input: (C,E+, E−), fΘ
Hyper-parameters: k, Opt (optimization algorithm)
Output: fΘ

1: S+← [min(k, |E+|), 2k, 3k, . . . , |E+|]
2: S−← [min(k, |E−|), 2k, 3k, . . . , |E−|]

# Define probability functions over S+ and S−; [s]S de-
notes the position of s in S

3: ∀ x ∈ S+, p+(x) =
1/[x]S+∑

s∈S+(1/[s]S+)

4: ∀ x ∈ S−, p−(x) =
1/[x]S−∑

s∈S−(1/[s]S−)
# Determine the number of examples to sample

5: Draw k+ from S+ following p+

6: Draw k− from S− following p−

7: E+ ← U(E+, k+) # Uniform sampling
8: E− ← U(E−, k−)

9: Ĉ = fΘ(E+, E−) # Synthesize a class expression
10: L = Loss(Ĉ, C) # Compute the loss
11: Θ← Opt(Θ,∇ΘL) # Update the parameters Θ
12: return fΘ

than the initial sets E+ and E− as suggested by the results in
Table 3.

4 Experiments
4.1 Datasets
We used four benchmark datasets in our experiments:
Semantic Bible4, Vicodi [Nagypál, 2005], Carcinogene-
sis [Westphal et al., 2019], and Mutagenesis [Westphal et al.,
2019]. Vicodi describes the European history, and Semantic
Bible, the New Testament. Carcinogenesis and Mutagenesis
describe chemical compounds and how they relate to each
other. On the last two datasets, CEL can provide insights into
hidden properties shared by different compounds and facili-
tate further investigations by domain experts. For instance, a
class expression learner in [Bühmann et al., 2016] found that
a chemical compound is carcinogenic if it can be described
by the expression: ¬(∃ hasAtom.(Nitrogen-35
⊔ Phosphorus-60 ⊔ Phosphorus-61 ⊔
Titanium-134)) ⊓ (≥3 hasStructure.(Halide
⊓ ¬Halide10) ⊔ ∃ amesTestPositive.{True} ⊓ ≥5
hasBond.(¬Bond-7)). In natural language, this would
translate into: <<A chemical compound is carcinogenic if
and only if it does not contain a Nitrogen-35, Phosphorus-60,
Phosphorus-61, or Titanium-134 atom and it has at least three
Halide—excluding Halide10—structures or the ames test
of the compound is positive and there are at least five atom
bonds which are not of bond type 7>> (cf. [Bühmann et al.,
2016], Section 6.1). In our experiments, the test set consists
of 100 learning problems on each benchmark dataset; we
refer to [Kouagou et al., 2023a] (Table 2, Section 5.1) for
complete statistics.

4https://www.semanticbible.com/ntn/
ntn-overview.html

https://www.semanticbible.com/ntn/ntn-overview.html
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4.2 Hyper-parameter Configuration
Because of its efficiency, we used the random search ap-
proach [Bergstra and Bengio, 2012] to find the best hyper-
parameter values for our approach, namely the learning rate,
the training batch size, the embedding dimension d for the
embedding model ConEx, and the number of inducing points
in the Set Transformer model. In the case of class expression
learning, the authors of [Kouagou et al., 2023a] argue that it
is sufficient to search hyper-parameter values on one dataset,
e.g. Carcinogenesis, and use the same values on the rest of
the datasets; we adopt the same approach in this work. We
report hyper-parameter settings in the supplemental material
due to space constraints.

4.3 Hardware
We trained the learner fΘ using Algorithm 1 (that is, RO-
CES) on a virtual machine equipped with 64 AMD EPYC
9334 32-Core Processors @3.91GHz, and a NVIDIA A100
80GB GPU. Post training, we used a server with 16 Intel
Xeon E5-2695 CPUs @2.30GHz and 128GB RAM to con-
duct experiments on CEL where we compared our approach
against the state-of-the-art CELOE, CLIP, EvoLearner, and
NCES2. This is because CELOE and EvoLearner do not sup-
port GPU computations, and we needed to ensure a fair com-
parison regarding runtimes.

4.4 Results and Discussion
ROCES was trained for 400 epochs on each dataset. The eval-
uation metrics used during training are the “hard accuracy”
and the “soft accuracy” as defined in [Kouagou et al., 2023b].
We plot the training curves for the hard accuracy in Figure 1,
and the rest in the supplemental material due to space con-
straints. From the figure, we can observe a rapid increase in
accuracy in the early epochs and fast convergence on Carcino-
genesis and Vicodi, which are the largest datasets. This sug-
gests that on large datasets, ROCES learns better mappings
between sets of examples and class expressions that describe
them. At inference time, the quality of a solution is com-
puted in terms of the number of positive/negative examples
covered/ruled out (given by the F1 score in Table 2).

To validate the effectiveness of ROCES, we conducted sev-
eral experiments on the test sets. First, we compare ROCES
against the state of the art on learning problems involving
small sets of examples: we varied the number of examples
between 4 and 264 using powers of 4 (cf. Figures 2, 3, and
Table 2). In a second experiment, we compare all approaches
on learning problems with full sets of examples (see columns
named “Full” in Table 2). Finally, we measure how many
times our approach ROCES outperforms EvoLearner without
using all the provided examples (Table 3).

From Table 2, we can observe that ROCES significantly
outperforms the state-of-the-art (up to +10% F1 score) on the
largest datasets Carcinogenesis and Vicodi when only 16 or
64 input examples are used. Moreover, ROCES appears to be
competitive with the strongest baseline CLIP on Carcinogen-
esis when the complete sets of examples are used, and ranks
second on Vicodi behind NCES2. On learning problems with
limited input examples, NCES2 lags behind; it ranks last in 6
out of 8 cases when 16 or 64 examples are used. The same
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Figure 1: Hard accuracy curves of our proposed approach ROCES
during training. m is the number of inducing points in the Set Trans-
former model. The probability functions p+, p− defined in Algo-
rithm 1 are used.

can be observed on Figure 2 where we plot the quality of
the computed solutions for various input example set sizes.
This is because NCES2 applies the naive approach of training
on static input example sets predefined by the data generator.
Search-based approaches (CELOE, CLIP, and EvoLearner)
show a more stable performance across different input exam-
ple set sizes as they use classification metrics at each step of
the search process. However, they fall short when it comes to
runtimes especially on large datasets, see e.g. Figure 3 and
the lower part of Table 2. On average, they are over 1000×
slower than ROCES and NCES2. While the prediction times
of search-based approaches remain volatile across different
learning problem sizes, deep learning-based approaches such
as ROCES maintain a nearly constant prediction time (see
Figure 3). The prediction time of CLIP decreases slightly as
the number of examples in learning problems increases. This
is probably due to the fact that CLIP uses the refinement oper-
ator ExpressRefinement [Kouagou et al., 2022] which
is also used to generate the learning problems in test sets.
Hence, CLIP is able to quickly retrieve solutions when more
examples are available. ROCES remains the only approach to
achieve both speed and high predictive performance on learn-
ing problems with various input example set sizes. Its superi-
ority on large datasets can be attributed to the fact that its deep
neural network-based synthesizer performs better when it has
enough training data to learn from. Meanwhile, search-based
methods struggle to navigate the vast search space induced
by large datasets. They perform better on small datasets (e.g.,
Mutagenesis and Semantic Bible), where ROCES does not
generalize well with the available training data.

In Table 3, we report the frequency at which ROCES out-
performs EvoLearner—one of the best baselines—without
using the complete sets of examples. More precisely, we
let ROCES explore 50 random pairs (E+, E−) of subsets
of examples and compute a solution for each. The re-
sults in the table suggest that with just 50 trials, ROCES
outperforms EvoLearner on at least 63% (the highest
being 91%) of the learning problems. The average F1



Dataset Carcinogenesis Mutagenesis Semantic Bible Vicodi

k 16 64 Full 16 64 Full 16 64 Full 16 64 Full

F1 (%)

CELOE 37.33 32.59 29.24 78.50 78.15 74.46 76.21 85.01 88.60 27.16 26.68 22.63
CLIP 69.63 84.37 96.57* 88.55* 91.76 95.65* 80.75* 88.24* 92.24* 48.78 53.06 68.78
EvoLearner 71.52 82.93 89.34 88.27 92.12* 95.37 77.66 82.47 88.38 60.49 57.39 76.99
NCES2 15.16 37.03 91.29 28.30 21.50 85.12 22.68 33.21 77.00 18.65 42.87 91.06*

ROCES (ours) 92.46* 93.45 93.73 62.54 79.11 90.36 67.39 77.15 75.12 70.39* 85.31* 84.51
ROCESU (ours) 80.42 94.04* 94.54 50.75 79.23 91.75 68.86 75.90 76.43 64.94 81.47 87.81

Runtime (sec.)

CELOE 217.08 240.93 268.90 67.45 124.69 165.27 95.38 163.80 172.04 233.18 300.01 300.01
CLIP 201.32 200.29 33.00 197.93 205.42 107.19 188.58 186.06 188.22 300.01 249.64 151.14
EvoLearner 40.96 49.42 89.34 27.65 48.51 70.77 12.36 17.93 18.44 170.78 248.55 236.92
NCES2 0.01 0.01 0.09 0.01 0.01 0.09 0.01 0.01 0.05 0.01 0.01 0.10

ROCES (ours) 0.01 0.01 0.07 0.01 0.01 0.06 0.01 0.01 0.03 0.01 0.01 0.10
ROCESU (ours) 0.01 0.01 0.07 0.01 0.01 0.05 0.01 0.01 0.03 0.01 0.01 0.10

Table 2: Comparison of different approaches on learning problems with various input example set sizes (k). ROCESU is our approach
ROCES where p+ and p− are uniform probability functions. We report the mean across 100 learning problems on each dataset. Bold (resp.,
underlined) values represent the best (resp., second best) across different approaches. The asterisk represents the Wilcoxon Signed-Rank
significance test between ROCES and the best among the other approaches.

Carcino. Mutag. Sem. B. Vicodi

Freq. F1 Freq. F1 Freq. F1 Freq. F1

Min 80 90 42 72 44 63 73 78
Max 91 95 81 93 63 81 85 90
Avg. 82 94 56 88 47 75 79 85

Table 3: Frequency (Freq. in %) at which ROCES—with limited
input examples—outperforms EvoLearner, and average quality (F1

in %) of the solutions computed by ROCES. Min, Max, and Avg.
are aggregations accross the 50 trials.

score of the computed solutions is 90% and above on
three datasets; the lowest performance being 81% and
observed on Semantic Bible—see the row Max. Nonethe-
less, ROCES found the exact solution for 34% of the
learning problems on this dataset. For example, it found
the exact solution Mountain ⊔ (GeopoliticalArea
⊓ (City ⊔ (∃ subregionOf.⊤))) where EvoLearner
computed City ⊔ (∃ location.⊤) ⊔ (Mountain
⊓ GeographicArea) ⊔ (∃ subregionOf.(∃
subregionOf.GeographicArea)) with 97.59% F1

score. The solutions computed by other approaches are
reported in the supplemental material.

5 Related Work
5.1 Ontology Learning
Ontology learning (OL) can be defined as the automatic or
semi-automatic creation of ontologies using a pre-existing
source of information such as natural language text [Wong
et al., 2012]. This creation process involves the extraction
of domain-specific terms or concepts and the links between
them. Links between concepts are represented using hier-
archical data structures, e.g., class inclusions (CIs) in de-
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Figure 2: Average F1 score of the computed solutions for different
values of the input examples’ set sizes.

scription logics. As an example, the statement “penguins
are birds that can swim or animals that have wings and can-
not fly” would be translated into Penguin ⊑ (Bird ⊓
CanSwim) ⊔ (Animal ⊓ HasWings ⊓ ¬CanFly).
As a result, CI learning is a fundamental component in
OL. CI learning approaches are tasked to build a hierar-
chy between concepts in the provided source of informa-
tion. Neural network-based approaches [Petrucci et al., 2016;
Ma and Distel, 2013] leverage NLP techniques [Cambria and
White, 2014] to translate text into description logic class
hierarchy axioms. Inductive logic programming (ILP) ap-
proaches [Muggleton, 1991] learn CIs from positive and neg-
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Figure 3: Average runtime per approach for different values of the
input examples’ set sizes.

ative examples. These examples are provided by an oracle,
e.g., a domain expert or even a neural network [Weiss et al.,
2017]. Association rule mining (ARM) approaches [Agrawal
et al., 1993; Galárraga et al., 2015; Meilicke et al., 2019]
rely on support and confidence score functions. In this work,
we do not aim to learn CIs but rather class expressions from
given positive and negative examples. CEL can be regarded
as a step beyond OL as it can be applied to cure or enrich the
created ontology [Lehmann et al., 2011].

5.2 Class Expression Learning Approaches
Several approaches have been developed to tackle CEL prob-
lems. These approaches can be classified into three main
groups: 1.) (pure) search-based approaches [Heindorf et
al., 2022; Lehmann et al., 2011; Sarker and Hitzler, 2019],
2.) neural symbolic-based approaches [Demir and Ngonga
Ngomo, 2023; Kouagou et al., 2022], and 3.) neural network-
based (a.k.a synthesis-based) approaches [Kouagou et al.,
2023b; Kouagou et al., 2023a]. Our approach ROCES be-
longs to the third category. EvoLearner [Heindorf et al.,
2022] employs evolutionary algorithms, and initializes its
population (class expressions) by random walks on the in-
put knowledge base. It then subsequently applies mutations,
cross-over operations, and a heuristic function to construct
the next generations of the initial population until a solution
is found. CELOE [Lehmann et al., 2011] is a CEL algorithm
developed specifically for ontology engineering. It is imple-
mented in DL-Learner [Lehmann, 2009] and regarded as the
best algorithm in the framework. ECII [Sarker and Hitzler,
2019] is a search-based algorithm that constructs its search
space by using disjunctions, conjunctions and negations of
pre-selected complex class expressions. It does not use a re-
finement operator and invokes a reasoner only once for each
learning problem. CLIP [Kouagou et al., 2022] steers the
search space by using concept length predictors which are
initially trained in an unsupervised manner. DRILL learns
to optimally traverse the search space via deep Q-learning.

NCES [Kouagou et al., 2023b] and NCES2 [Kouagou et al.,
2023a] use deep neural networks to learn mappings between
sets of examples and class expressions without a search pro-
cess. NCES2 runs in the description logicALCHIQ(D) and
is regarded as the most mature synthesis-based approach for
CEL to date. Synthesis-based approaches are known to be
highly scalable and well suited for web-scale applications of
CEL.

Despite their effectiveness, current synthesis-based ap-
proaches are not robust to variations in learning problem
sizes. Their performance decreases drastically on learning
problems whose example sets are larger or smaller than those
encountered during training. Our approach ROCES addresses
this limitation by repeatedly constructing multiple, different-
size subsets of examples during training via a probability
distribution on possible example set sizes, see Algorithm 1.
We show empirically that ROCES is robust to changes in the
number of input examples while remaining highly scalable.

6 Conclusion and Outlook
We proposed a generalization of the class expression learn-
ing problem dubbed GLP and established the connections
between the solutions of the classical and generalized prob-
lem. In particular, we showed how solutions to GLP can
be sought starting from an arbitrary solution to the classi-
cal problem. We also proposed ROCES, a neural network-
based approach to solve GLP , which uses predefined proba-
bility functions to construct subsets of examples with various
sizes during training. ROCES consistently outperformed ex-
isting synthesis-based approaches on learning problems with
limited input examples while remaining highly scalable and
competitive on full-size learning problems.

The probability functions p+ and p− (skewed towards
smaller values) in Algorithm 1 are better than uniform proba-
bility functions when only a few examples are used (cf. RO-
CES vs. ROCESU in Table 2). However, as the number of
examples increases, uniform probability functions catch up
rapidly. The search for the best probability functions in this
context is an interesting topic which we plan to investigate
further.
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Gayo, Roberto Navigli, Sebastian Neumaier, Axel-
Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid,
Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Stef-
fen Staab, and Antoine Zimmermann. Knowledge graphs.
ACM Comput. Surv., 54(4):71:1–71:37, 2022.

[Kouagou et al., 2022] N’Dah Jean Kouagou, Stefan Hein-
dorf, Caglar Demir, and Axel-Cyrille Ngonga Ngomo.
Learning concept lengths accelerates concept learning in
ALC. In ESWC, volume 13261 of Lecture Notes in Com-
puter Science, pages 236–252. Springer, 2022.

[Kouagou et al., 2023a] N’Dah Jean Kouagou, Stefan Hein-
dorf, Caglar Demir, and Axel-Cyrille Ngonga Ngomo.
Neural class expression synthesis in ALCHIQ(D). In
ECML/PKDD (4), volume 14172 of Lecture Notes in Com-
puter Science, pages 196–212. Springer, 2023.

[Kouagou et al., 2023b] N’Dah Jean Kouagou, Stefan Hein-
dorf, Caglar Demir, and Axel-Cyrille Ngonga Ngomo.
Neural class expression synthesis. In European Semantic
Web Conference, pages 209–226. Springer, 2023.

[Kouagou et al., 2024] N’Dah Jean Kouagou, Caglar Demir,
Hamada M. Zahera, Adrian Wilke, Stefan Heindorf, Jiayi
Li, and Axel-Cyrille Ngonga Ngomo. Universal knowl-
edge graph embeddings. In Companion Proceedings of
the ACM on Web Conference 2024, WWW ’24, page
1793–1797, New York, NY, USA, 2024. Association for
Computing Machinery.

[Lee et al., 2019] Juho Lee, Yoonho Lee, Jungtaek Kim,
Adam Kosiorek, Seungjin Choi, and Yee Whye Teh.



Set transformer: A framework for attention-based
permutation-invariant neural networks. In Interna-
tional conference on machine learning, pages 3744–3753.
PMLR, 2019.

[Lehmann and Hitzler, 2007] Jens Lehmann and Pascal Hit-
zler. Foundations of refinement operators for description
logics. In ILP, volume 4894 of Lecture Notes in Computer
Science, pages 161–174. Springer, 2007.

[Lehmann and Hitzler, 2010] Jens Lehmann and Pascal Hit-
zler. Concept learning in description logics using refine-
ment operators. Machine Learning, 78, 2010.

[Lehmann et al., 2011] Jens Lehmann, Sören Auer, Lorenz
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