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Abstract

Argumentation is a well-established formalism
for nonmonotonic reasoning with popular frame-
works being Dung’s abstract argumentation (AFs)
or logic-based argumentation (Besnard-Hunter’s
framework). Structurally, a set of formulas forms
support for a claim if it is consistent, subset-
minimal, and implies the claim. Then, an argument
comprises a support and a claim. We observe that
the computational task (ARG) of asking for support
of a claim in a knowledge base is “brave”, since
many claims with a single support are accepted. As
a result, ARG falls short when it comes to the ques-
tion of confidence in a claim, or claim strength. In
this paper, we propose a concept for measuring the
(acceptance) strength of claims, based on counting
supports for a claim. Further, we settle classical and
structural complexity of counting arguments favor-
ing a given claim in propositional knowledge bases
(KBs). We introduce quantitative reasoning to mea-
sure the strength of claims in a KB and to determine
the relevance strength of a formula for a claim.

1 Introduction
Argumentation is a nonmonotonic formalism in artificial in-
telligence around which an active research community has
evolved [Atkinson et al., 2017; Amgoud and Prade, 2009;
Rago et al., 2018; Baroni et al., 2018]. The popular frame-
works dealing with the theory of argumentation include the
abstract [Dung, 1995] and the logic-based [Besnard and
Hunter, 2001; Besnard and Hunter, 2008; Chesnevar et al.,
2000; Prakken and Vreeswijk, 2002] approach. The abstract
setting, also known as Dung’s theory of argumentation, fo-
cuses on formalizing the interaction between arguments in a
graph-theoretic way. In other words, arguments are nodes in
a directed graph, and the ‘attack relation’ determines the in-
teraction between arguments. Given such a framework, one
is interested in computing the sets of arguments (called exten-
sions) simultaneously accepted under a given semantics.

In the logic-based setting, one starts with a knowledge
base (KB) and searches for inclusion-minimal and consis-
tent sets of formulas Φ (the support) that logically entail a

claim α. The pair (Φ, α) is then called an argument for the
claim α. The computational problem of interest is the ex-
istence of an argument supporting a claim (ARG), and the
relevance problem (ARG-Rel) is to determine whether a for-
mula ψ is relevant to the claim α. Formally, ARG asks,
given a set of formulas ∆ (the knowledge base) and a for-
mula α, whether there exists a subset Φ ⊆ ∆ such that
(Φ, α) is an argument in ∆, and ARG-Rel asks, whether
there is an argument (Φ, α) in ∆ such that ψ ∈ Φ. The
complexity of both reasoning problems is well understood
for KBs formulated in propositi onal logic [Parsons et al.,
2003] as well as in fragments thereof [Creignou et al., 2011;
Creignou et al., 2014]. In addition, a structural complexity
analysis has recently been employed to better understand the
source of intractability [Mahmood et al., 2023] using differ-
ent parts of the input as parameters.

Despite the significant interest in the reasoning problems
for logic-based argumentation, no prior research has explored
the associated counting complexity. We argue that counting
the number of arguments in support of a given claim is a log-
ical choice when investigating the extent to which a claim is
favored within the given knowledge base.

Example 1. We want to evaluate the arguments for and
against candidates in an election. The argument A favors
candidateX based on her education policy, which leads us to
accept that “X is favorable”. Another argument (B) opposes
this claim targeting the health care policy. Therefore, both
claims are equally likely and have an acceptance strength of
50%. Subsequently, an argument C supports X in foreign
policy. This increases the probability and thus the strength of
the claim that X is indeed a favorable candidate.

Reasoning problems focusing on claims (instead of ar-
guments) have received growing interest in abstract argu-
mentation [Dvorák and Woltran, 2020; Dvořák et al., 2023;
Bernreiter et al., 2023; Baumann et al., 2023]. Specifically,
claim-augmented argumentation frameworks (CAF) [Dvorák
and Woltran, 2020] extend Dung’s AF by employing a
conclusion-oriented perspective. Further, with the aim of ex-
ploring the justification status of claims, Fichte et al. (2023)
introduced a quantitative measure of extensions supporting
a particular claim. The increasing interest in the abstract set-
ting focused on claim-based reasoning naturally motivates the
exploration of claim strength in logic-based argumentation.



This leads to the definition of a quantitative measure of the
arguments supporting a given claim in the knowledge base.
Contributions. As our first contribution, we categorize the
classical and parameterized complexity of counting argu-
ments to a claim (#ARG), as well as counting arguments
where a given formula is also relevant (#ARG-Rel). We
prove that both these problems are intractable and # · coNP-
complete. Then we turn to parameterized complexity, which
considers different parameters. We observe that both prob-
lems become FPT when parameterized by the number of
variables in ∆ or the treewidth of the primal graph [Flum and
Grohe, 2006] of the input KB. Table 1 gives a summary. For
omitted proof details (marked by ⋆), we refer to the appendix.

We introduce a quantitative measure to determine the
strength or likelihood of a claim in the given KB. Note that the
argument existence problem (ARG) concerns only whether a
claim is accepted in a given argument, and does not convey
any further information about the given claim, such as how
likely it is to be accepted within a given KB. As the follow-
ing example illustrates, in certain corner cases, the problem
ARG in logic-based argumentation can accommodate disput-
ing claims that may not be acceptable even under the most le-
nient (admissible: defended against all attacking arguments)
argumentation semantics. Accepting claims based solely on
support in a knowledge base leads to the undesirable con-
sequence of being unable to distinguish between weak and
unlikely claims and those that are more likely.
Example 2. Let ∆ = {x} ∪ {¬x ∧ ϕi | i ≤ n} be a KB
where each ϕi is a CNF. Then the claim x is accepted since
A = ({x}, x) is an argument. Now, for y ̸= x, any argument
that supports y in ∆ also supports y ∧ ¬x. In other words,
a single argument A over ∆ claims x and every other argu-
ment B claims ¬x. Consequently, while both x and ¬x are
acceptable (as per ARG), ¬x is clearly more likely than x.

The main ingredient for our quantitative reasoning involves
counting the arguments for a claim. Then, counting the rel-
evant arguments for a claim with respect to a formula ψ in-
forms how relevant ψ is for the given claim. We establish that
one can also determine the claim strength in FPT-time when
parameterized by the treewidth of an extended primal graph.
Related Work. Probabilistic argumentation [Hunter and
Thimm, 2017; Fazzinga et al., 2015; Alfano et al., 2020]
focuses on weighting arguments with probabilities. Further-
more, a similar work in logic-based argumentation [Hunter,
2012; Hunter, 2013; Riveret et al., 2007] provides a proba-
bility distribution for arguments to model the degree of an ar-
gument being true. This whole research area is orthogonal to
our setting, since we focus on the (conditional) plausibility of
claims, as in the Bayesian setting. Further, our approach does
not focus on the uncertainty of arguments, since we evaluate
the strength of claims corresponding to certain arguments.

Existing research on the justification status of argu-
ments [Wu and Caminada, 2010; Baroni et al., 2016; Baroni
and Riveret, 2019] explores different levels of acceptance or
rejection for arguments. In addition, Baroni et al. (2016) also
emphasized statement justification as a topic of independent
interest. Nevertheless, their approach explores the status of an
argument (or statement) in different extensions by finding all

Parameter Problem Complexity Ref.
− #ARG(-Rel) # · coNP-c. T. 12, C. 13

| var(∆)| #ARG(-Rel) FFPT C. 14
| var(α)| #ARG(-Rel) #W[1]-h. C. 14

Problem Runtime UB Runtime LB Ref.
#ARG(-Rel) exp(2,O(k)) exp(2, o(k)) T. 19, C. 20/22

Table 1: Results overview. For the runtime bounds, k = tw(Ge
I)

and the polynomial factors in | var(∆)∪ var(α)| have been omitted.

the acceptance labels for an argument (statement). Recently,
Fichte et al. (2023) introduced a fine-grained mode between
credulous and skeptical reasoning (some, respectively, any
extension covering a claim) for the acceptability of claims.
They propose assigning a probability value in [0, 1] depend-
ing on how many extensions in an AF cover the given claim.
In this work, our focus lies (as the name suggests) in the quan-
titative aspect of claim justification in logic-based setting.

There exists research aiming to assess the strength of an
argument based on the number of attackers and defenders of
the target argument. Besnard & Hunter (2001) proposed ag-
gregation functions to evaluate the relative strength of an ar-
gument, considering its (recursive) argument tree (attackers,
their attackers, etc.). Although the authors suggest count-
ing arguments for and against a claim, a complexity analy-
sis for counting arguments is still missing. Similarly, Pu et
al. (2015) considered the problem of counting the number
of attackers and defenders for a topic argument in the ab-
stract setting. This distinguishes their work from our logic-
based approach. Gradual semantics [Amgoud et al., 2018;
Amgoud and Doder, 2018] are methods for evaluating the
overall strength of arguments in a (weighted) argumentation
framework, which assumes a set of arguments, the relation-
ship between them, and an initial weight of each argument.

Finally, Amgoud et al. (2008) presented an approach to
compare different arguments with the goal of evaluating the
status for each claim (option in their terminology). Their pro-
posed system takes as input a set of arguments together with
an attack and a preference relation between arguments, and
returns a status for each option. While our approach deter-
mines the acceptance status for each claim, we do not con-
sider argumentation semantics from the AFs and focus on the
logic-based approach instead. So, we assume a KB and a set
of claims as input, rather than the set of arguments and the
interaction between them, as required by the former.

2 Preliminaries
We assume familiarity with basic notions in complex-
ity theory (cf. [Sipser, 1997]) and use complexity classes
P,NP, coNP,NPNP = ΣP

2 . For a set S, we write |S| for its
cardinality. Abusing notation, we will use |w|, for a string w,
to denote its length. If φ is a formula, var(φ) denotes its set
of variables. Symbols ⊤ and ⊥ denote the constants 1 and
0, respectively. Further, we assume a reasonable encoding
computable in polynomial time encoding variables in binary.
Quantified Boolean Formulas. For a Boolean for-
mula F , we write F (X1, . . . , Xl) to indicate that



X1, . . . , Xl ⊆ var(F ). A quantified Boolean for-
mula (qBf) ϕ (in prenex normal form) is of the form
ϕ = Q1X1.Q2X2. · · ·QℓXℓ.F (X1, . . . , Xℓ), where
for 1 ≤ i ≤ ℓ (ℓ is the (quantifier) rank), we have
Qi ∈ {∀,∃} and Qi ̸= Qi+1, the Xi are disjoint, non-
empty sets of Boolean variables, and F is a Boolean
formula. We let matrix(ϕ) := F and say that ϕ is
closed if var(matrix(F )) =

⋃
i∈ℓXi. The seman-

tics are defined as ∃x.ϕ ≡ ϕ[x 7→ 1] ∨ ϕ[x 7→ 0] and
∀x.ϕ ≡ ϕ[x 7→ 1] ∧ ϕ[x 7→ 0] for a variable x. W.l.o.g.,
assume that matrix(ϕ) = ψCNF ∧ ψDNF, where ψCNF is
in CNF (conjunctive normal form) and ψDNF is in DNF
(disjunctive normal form). Note that, depending on Qℓ,
either ψCNF or ψCNF is optional, more precisely, ψCNF might
be ⊤, if Qℓ = ∀, and ψDNF is allowed to be ⊤, otherwise.
The problem ℓ-QBF asks for a closed qBf ϕ = ∃X1.ϕ

′ of
rank ℓ, whether ϕ ≡ 1. The problem #ℓ-QBF asks for a
closed qBf ∃X1.ϕ of rank ℓ, to count assignments α to X1

such that ϕ[α] ≡ 1. For brevity, we sometimes omit ℓ.

Counting Complexity. A witness function w is a mapping
w : {0, 1}∗ → P<ω({0, 1}∗), i.e., mapping to a finite subset
of {0, 1}∗ (note that this notion can easily be generalized to
arbitrary alphabets, not just the binary one). Such functions
associate with the counting problem “given x ∈ Σ∗, find
|w(x)|”. If C is a decision complexity class then # ·C is the
class of all counting problems whose witness function w sat-
isfies (1.) there is a polynomial p such that for all y ∈ w(x),
we have that |y| ≤ p(|x|), and (2.) the decision problem
“given x and y, is y ∈ w(x)?” is in C. A parsimonious
reduction between two problems #A, #B preserves the car-
dinality between the witness sets and is computable in P.

Typical counting complexity classes associated with hard
counting problems are # ·P and # ·coNP. Both classes com-
prise complete problems that are believed not to be polyno-
mial time solvable. For more background on counting com-
plexity classes we refer the reader to [Durand et al., 2005].

Parameterized Complexity. We give a brief introduction
to parameterized complexity [Downey and Fellows, 1999].

A parameterized problem (PP) is a subset of Σ∗ × N for
some alphabet Σ. For an input (x, k) of a PP, we call k the
parameter of that input. The parameterized complexity class
FPT is the class of all parameterized problems that can be
solved in time f(k) · |x|c for some computable function f and
constant c. An FPT-reduction from a parameterized problem
A to a parameterized problem B is a FPT-time computable
function f such that (i) (x, k) ∈ A if and only if f(x, k) ∈ B,
and (ii) if there exists some computable function g such that
for all f(x, k) = (x′, k′) we have k′ ≤ g(k).

The complexity class W[1] is defined as the set of all prob-
lems that can be accepted by a tail-nondeterministic and k-
bounded Turing machine1.

Parameterized Counting. The area of parameretized
counting complexity has been initiated by Flum and

1A tail-nondeterministic TM reads all nondet. bits at the end of
the computation while for a k-bounded one, the number of nondet.
bits is limited to f(k) · log |x| many for all inputs (x, k).

Grohe [Flum and Grohe, 2004] as well as McCartin [Mc-
Cartin, 2006]. Similarly, as on the decision side, the com-
plexity class #W[1] is the class of all parameterized count-
ing problems reducing to counting k-cliques in a given
graph. Two good surveys in this area are [Curticapean, 2019;
Haak et al., 2023]. A parameterized function is a function
F : {0, 1}∗ × N → N. If C is a complexity class and a
parameterized function F belongs to C, we say that F is C-
computable. Intuitively, we count the number of “solutions”
of a parameterized function F and associate them directly
with the function value F (x, k). We let FFPT be the class
of parameterized functions that are computable in FPT-time.
Tree Decompositions (TD) and Treewidth. We use rooted
(directed) trees T = (N,A) with a root root(T ) and a
node t ∈ N . Here, we denote by children(t) the set of all
nodes t′, which have an edge (t, t′) ∈ A. Let G = (V,E)
be a graph. A tree decomposition (TD) of a graph G is a pair
T = (T, χ), where T is a rooted tree, and χ is a mapping
assigning to each node t of T a set χ(t) ⊆ V , called bag, s.t.:

1. V =
⋃
t of T χ(t) and E ⊆

⋃
t of T {{u, v} | u, v ∈ χ(t)}

2. for each s lying on any r-t-path: χ(r) ∩ χ(t) ⊆ χ(s).
Then, define width(T ) := maxt of T |χ(t)|−1. The treewidth
tw(G) of G is the minimum width(T ) over all tree decompo-
sitions T of G. Notice that for all v ∈ V , we have a unique
node t∗ with v ∈ χ(t∗) such that either t∗ = root(T ) or there
is a node t of T with children(t) = {t∗} and v /∈ χ(t). De-
note the node t∗ by last(v). Finally, notice that for any fixed
w ≥ 1, one can decide in linear time if a graph has treewidth
at most w and, if so, to compute a TD of width w [Bodlaen-
der, 1996]. Here, we assume only TDs (T, χ), where for ev-
ery node t of T , we have that |children(t)| ≤ 2. Such a TD,
while maintaining the same width, can be computed from any
TD in linear time [Bodlaender and Koster, 2008].
Treewidth and qBfs. For a qBf ϕwith matrix(ϕ) = ψCNF∧
ψDNF, define the primal graph Gϕ := Gmatrix(ϕ), whose ver-
tices are var(matrix(ϕ)). Two vertices of Gϕ are adjoined
by an edge, whenever the corresponding variables share a
clause/term of ψCNF/ψDNF. Let exp(i, p) be exp(i − 1, 2p)
if i > 0 and p otherwise. For the following result, assume
that poly(n) is any polynomial for given positive integer n.
Proposition 3 (Chen, 2004). For any arbitrary qBf ϕ of
quantifier rank ℓ > 0, the problem ℓ-QBF can be solved in
time exp(ℓ,O(tw(Gφ))) · poly(|var(ϕ)|).

Note that, under the exponential time hypothe-
sis (ETH) [Impagliazzo et al., 2001], one cannot significantly
improve this runtime: ETH implies that SAT = 1-QBF can
not be decided in time better than 2o(|var(φ)|) for a formula φ.
Proposition 4 (Fichte et al., 2020). Under ETH, for any ar-
bitrary qBf φ of quantifier rank ℓ > 0, problem ℓ-QBF cannot
be solved in time exp(ℓ, o(tw(Gφ))) · poly(|var(φ)|).
Logic-based Argumentation (LBA). Formulas are propo-
sitional; we follow the notion of Creignou et al. [2014].
Definition 5 (Besnard and Hunter [2001]). Given a set of for-
mulas Φ and a formula α, one says that (Φ, α) is an argument
(for α) if (1) Φ is consistent, (2) Φ |= α, and (3) Φ is subset-
minimal w.r.t. (2). In case of Φ ⊆ ∆, (Φ, α) is an argument



in ∆. We call α the claim, Φ the support of the argument, and
∆ the knowledge-base.

We consider two problems from the area of logic-based
argumentation, namely ARG, and ARG-Rel. The problem
ARG asks, given a set of formulas ∆ and a formula α, is
there a set Φ ⊆ ∆ such that (Φ, α) is an argument in ∆?
The problem ARG-Rel asks, given a set of formulas ∆, and
formulas ψ ∈ ∆ and α, is there a set Φ ⊆ ∆ with ψ ∈ Φ
such that (Φ, α) is an argument in ∆? Given a KB ∆ and for-
mula α, then Args(α,∆) denotes the set of all arguments for
α in ∆. Further, given a formula ψ, then Rel-Args(ψ, α,∆)
denotes the set of (relevant) arguments for α in ∆ contain-
ing ψ. We define the counting problem #ARG of comput-
ing |Args(α,∆)| for input (∆,α) and the counting variant of
#ARG-Rel to compute |Rel-Args(ψ, α,∆)|.
TDs for LBA. If φ is a formula in CNF, then the primal
graph Gφ is the undirected graph G = (V,E) such that the
vertex set V is var(φ) and {u, v} ∈ E if and only if the vari-
ables u, v share a clause in φ. Similarly, if φ is in DNF, then
the edges are drawn w.r.t. shared term variables instead. For
a graph G = (V ′, E′), we also write V (G) for V ′ and E(G)
for E′. For an LBA-instance (∆,α) the primal graph G(∆,α),
is defined as the union of the primal graphs of each for-
mula from ∆ ∪ {α}. That is, the vertex set V (G(∆,α)) =⋃
φ∈∆∪{α} V (Gφ) and E(G(∆,α)) =

⋃
φ∈∆∪{α}E(Gϕ).

Decomposition-Guided Reductions. Inspired by work of
Fichte et al. (2021), a decomposition-guided (DG) reduc-
tion R is a function that takes both a problem instance I
and a TD T = (T, χ) of GI , and returns a qBf φ with
matrix(ϕ) := F . A DG reduction has to yield a TD T ′ =
(T, χ′) of GF . Such a reduction has to construct φ from
a TD node’s point of view. In that point of view, for
any node t of T , the constructed bag χ′(t) functionally de-
pends on the original bag χ(t), but also on the constructed
bags χ′(t1), . . . , χ

′(to) of its child nodes {t1, . . . , to} =
children(t). This results in a function f with an input of
a TD node t, its bag χ(t), and a set χ′(children(t)) =
{ χ′(ti) | ti ∈ children(t) } of constructed bags for the
child nodes of t. It follows that, as the width(T ) is bounded
by O(maxt of T (|χ(t)|)), also the treewidth of the resulting
qBf is at most O(maxt of T {|f(t, χ(t), χ′(children(t))|}).

2.1 Quantitative Claim-Centric Reasoning
We propose a mode of reasoning that captures the quantita-
tive (probabilistic) aspects of claim acceptance in logic-based
argumentation. Accordingly, rather than asking whether a
claim is accepted or not, a natural reasoning problem is to
inquire how strongly (or how likely) the claim is supported
in the KB. This mode of reasoning in argumentation allows
to draw reasonable conclusions about claims, rather than just
deciding whether a claim is accepted or not. Furthermore,
this quantitative reasoning also allows us to directly compute
a justification score or probability for claims at the level of
KBs. The question we pose is: given a claim α (for simplic-
ity, a literal), how strongly (or likely) is α acceptable in ∆.
We observe that counting supports (Φ) for a claim (α) has not
been considered (up to our knowledge). We first characterize
its computational complexity.

Example 6 (Counting Arguments). Let C consist of all the
candidates in an election, α := X be our favorite candi-
date, and the KB ∆ contain poll results appropriately en-
coded in propositional logic. For example, a proposition
xs encodes that candidate X promotes policy s, along with
ps (participant p desires s) and ds (s is desirable), where
s ∈ {education, health, taxes,welfare}. Then for each par-
ticipant p and candidate X , ∆ contains formulas of the form
(xs ∧ ds → X) and ps → ds. Clearly, {xed, ped, ped →
ded, (xed ∧ ded → X)} yields a support for X if ∆ con-
tains both xed and ped. Then |Args(X,∆)| counts the num-
ber of arguments from all participants in favor of X and
|Rel-Args(ded, X,∆)| gives the number of arguments in fa-
vor of X relevant to their education policy.

We want to point out some interesting properties concern-
ing the counting of (relevant) arguments for claims in propo-
sitional KBs. Notice that the support for a claim is a subset
of the KB ∆, and there are at most exponentially many of
them (precisely, 2n many where n is the number of formulas
in ∆). It is easy to construct examples where the number of
arguments for a claim is indeed exponential.

Example 7. Let ∆ = {xi → (yi ∧ zi), yi → xi+1, zi →
xi+1 | 0 ≤ i ≤ n} and α = (x0 → xn). Then, a support for
α contains each xi → (yi∧zi) and at least one of yi → xi+1

or zi → xi+1 for i ≤ n. Clearly, there are exponentially
many (minimal) supports for α in total.

Also note that counting relevant arguments is indeed an
interesting problem, since certain formulas in a KB may be
more essential than others when constructing support for a
claim. This phenomenon is further highlighted next.

Example 8. Let∆ = {x→ yi, (y1∨ . . .∨yn) → z, | i ≤ n}
and α = (x→ z). Then, a support for α contains the formula
(x → yi) for some i ≤ n and the formula (

∨
i yi) → z.

Clearly, the formula (
∨
i yi) → z is more relevant than any

other formula in ∆ for α.

While the number of supports is an interesting measure for
claims, it falls short when it comes to assessing and com-
paring the likelihood of different claims. Consequently, one
would like to compute the strength or likelihood of a claim
compared to other claims in a given knowledge base.

Claim Strength and Likelihood. We assume a set C of
possible claims is given as input. This is indeed a reasonable
assumption, since in the abstract setting for AFs and claim-
augmented AFs [Dvorák and Woltran, 2020], a set of argu-
ments and their claims is always given. The set C can be
all the claims for which arguments can be constructed in ∆,
or only the claims we want to compare against the given α.
Furthermore, if we do not restrict the set of claims, one can
construct infinitely many arguments from a finite KB, since
an argument for x also yields an argument for x ∧ x, and so
on. Indeed, it seems natural to consider all claims and com-
pare the strength of justification relative to each other.

Given a KB ∆, claim α and a set C of claims, we denote
βC =

∨
c∈C c. Then, the following formula allows us to

compute the strength of α relative to all the claims in C:

str(α,∆,C) = |Args(α,∆)|
/
|Args(βC , ∆)|.



Moreover, we define the likelihood of α relative to claims in
C via the following formula:

lhd(α,∆,C) = |Args(α,∆)|
/
Σc∈C |Args(c,∆)|.

The term in the denominator is a notable factor that distin-
guishes the strength of a claim from its likelihood. Interest-
ingly, the presence of the disjunction (βC) in Args(βC , ∆)
results in an undercount of arguments for claims due to the
minimality of the supports. In contrast, summing over all ar-
guments for claims in set C, expressed as Σc∈C |Args(c,∆)|,
leads to overcounting. This is further emphasized below.

Example 9. Let ∆ = {x, x → c, c → zi, zi → d | i ≤ 3}
and C = {c, d}. Then Args(c) = {({x, x → c}, c)}
and Args(d) contains ({x, x → c, c → zi, zi → d}) for
i ≤ 3. Now, Args(c ∨ d) = {({x, x → c}, c)} since argu-
ments corresponding to d are not subset-minimal. As a re-
sult, str(d,∆,C) = 3 · str(c,∆,C). Intuitively, arguments
supporting claim d inherently serve as arguments for d ∧ c,
establishing d as a stronger claim than c.

Example 10. Let ∆ = {c ∧ d} and C = {c, d}. Then,
Args(c) = {({c∧d}, c)} and Args(d) = {({c∧d}, d)}. Now,
lhd(c,∆,C) = 0.5 = lhd(d,∆,C). Both claims are equally
likely and equally strong as str(c,∆,C) = str(d,∆,C). In-
tuitively, both claims are acceptable with a likelihood of 50%.

Indeed, both measures are valuable for comparing the jus-
tification of claims within logic-based argumentation. In ad-
dition, the probability of a claim is further motivated from a
fact-checking perspective: the truth value of a fact is calcu-
lated by considering the number of arguments in favor of the
fact and then determining the ratio of all possible arguments
over the given knowledge base [Syed et al., 2019].

The relevance strength of a formula ψ for a claim α is
based on counting relevant arguments (|Rel-Args(ψ, α,∆)|):

str(ψ, α,∆) = |Rel-Args(ψ, α,∆)|
/
|Args(α,∆)|.

Example 11 (Claim Strength & Likelihood). We count all
the arguments in ∆ favoring X and take the ratio with the
count of arguments favoring any candidate in C. This indi-
cates how much X is favored in our KB compared to other
candidates in C. Similarly, the ratio of |Args(X,∆)| and
Σy∈C |Args(y,∆)| gives the probability thatX is the favorite
among C. Interestingly, the two measures for each candidate
X coincide in ∆. Finally, str(ded, X,∆) informs the impact
of the policy on education (ded) behind X being the favorite.

3 Complexity of Counting Arguments
We now establish the complexity of counting arguments for
knowledge bases formulated in propositional logic.

3.1 Classical Complexity
We characterize the classical complexity of counting (resp.,
relevant) arguments for a claim (with respect to a formula).

Theorem 12 (⋆). #ARG is # · coNP-complete.

Note that the relevance problem (ARG-Rel) has higher
complexity than the existence problem (ARG) due to the re-
duction (∆,α) 7→ (∆ ∪ {x}, α ∧ x, x), where x is a new

proposition that does not appear in ∆ ∪ {α}. It turns out that
this is in fact a parsimonious reduction, preserving the num-
ber of supports Φ for α in∆ and relevant supports for α∧x in
∆∪ {x}. Furthermore, the membership in # · coNP can also
be established in a similar way as for #ARG, resulting in
the same complexity of counting the relevant supports for the
claim given a formula. This leads to the following corollary.
Corollary 13. The problem #ARG-Rel of counting relevant
arguments is # · coNP-complete.

3.2 Parameterized and Structural Complexity
We derive various parameterized complexity results.

Parameters: Size of Claim and KB
Mahmood et al. (2023) explored the parameterized complex-
ity of the decision problems ARG and ARG-Rel. For pa-
rameter | var(∆)| both problems are FPT (Thm 5.13) and the
algorithm can be easily extended to count the number of so-
lutions. For | var(α)| both problems are W[1]-hard (Lem 5.8,
Thm 5.10). Close inspection reveals that the employed reduc-
tions are parsimonious, yielding the following corollary.
Corollary 14 (⋆). #ARG and #ARG-Rel parameterized by
| var(∆)| are in FFPT, and by | var(α)| are #W[1]-hard.

Parameter: Treewidth
We derive treewidth-aware reductions between #ARG and
#2-QBF to count the extensions as well as compute the claim
strength and likelihood in FPT-time when parameterized by
treewidth of a suitable graph representation of the input. To
achieve this, we reduce an instance (∆,α) of ARG to an in-
stance of 2-QBF using a similar idea as employed by Fichte
et al. (2021). Note that the known-reductions between ARG
and 2-QBF (given below) are restricted to the case when ∆
includes clauses and do not preserve the number of solutions
for the two instances.
DG-reductions for Clausal KBs. Let ∆ = {Ci, | 1 ≤
i ≤ n} be a collection of clauses and α be a Boolean
formula in DNF. Towards the reductions, a variable ei for
each Ci ∈ ∆ encodes whether Ci is contained in the sup-
port, resulting in the set E := {ei | 1 ≤ i ≤ n} of
support variables. Then, let M denote the set of variables
over var(∆) =

⋃
i≤n var(Ci). Moreover, let N := var(∆ ∪

{α}) and let Ñ denote the renaming of variables in N . That
is Ñ := {x̃i | xi ∈ N} and each x̃i is a fresh variable.
Finally, β̃ denotes each β ∈ {C,α,∆} over renamed vari-
ables Ñ . Then, let cons∆(E,M) :=

∧
Ci∈∆(¬ei ∨ Ci) and

ent∆,α(E, Ñ) :=
∨
Ci∈∆(ei ∧ ¬C̃i) ∨ α̃. To preserve the

treewidth linearly, both subformulas are split into a conjunc-
tion from each node’s perspective in the tree-decomposition.
To achieve this, let T = (T, χ) be a TD of G(∆,α). Then,
define a labeled TD (LTD) T ′ = (T, χ, δ) of T , where label-
ing δ : T → ∆ is such that δ(t) ∈ ∆t and ∆ =

⋃
t of T {δ(t)}.

An LTD can be easily obtained from any TD without chang-
ing the width by copying nodes accordingly. The labeling
function guarantees that δ(t) contains Ci if, and only if,
Ci ∈ t. Next, assume such an LTD T ′ = (T, χ, δ) of T
and construct the following formula RARG→2-QBF(I, T ′) :=



y, p, q

y, r, s

r, s, t

y, z, p, q

x, y p, q, z

β1

β2

β3, ϕ3

ψ1, ϕ2

ϕ1 ψ2

Figure 1: A TD for ∆ from Example 15 (left) together with the
clause-labeling for each bag (right)

∃E,M.∀Ñ .φARG(E,M, Ñ), where φARG is built for every
node t of T by cons{δ(t)}(E,M) ∧ ent{δ(t)}(E, Ñ). We ex-
tend the DG-reductions from above in three folds. First, the
KB ∆ includes formulas in CNF, not just clauses. Second,
the presented reduction is a bijection and hence the number
of solutions to the resulting 2-QBF-instance is same as the
number of arguments for the given claim in ∆. Third, the re-
duction incorporates the minimality of supports and therefore
only counts “valid” arguments as presented in Definition 5.

Generalization to CNFs. The first extension poses a non-
trivial challenge, since the clauses of a formula can be spread
over multiple bags. Recall that (by definition) in the clausal
KBs, for each clause C ∈ ∆ and a TD T for ∆, there is a
node t ∈ T such that the bag χt covers C. Then, the label-
ing (δ) of T relates each bag in T to the clauses it contains.
However, if∆ contains formulas ϕ in CNF, then it is not guar-
anteed that all clauses of ϕ are contained in a bag. This chal-
lenge can alternatively be attributed to the graph representa-
tion (G∆) of the KB ∆. If G∆ is considered as the union of
primal graphs Gϕ for each formula ϕ ∈ ∆, the graph encodes
only the connectivity of variables in clauses. However, it does
not represent the participation of variables or clauses in a for-
mula. The following example further illustrates this issue.

Example 15. Let ∆ := {ϕ, ψ, β} where each γ ∈ ∆ is a
CNF with clauses named as γi for i ≤ 3. Precisely, let ϕ1 =
(x ∨ ¬y), ϕ2 = (y ∨ z ∨ ¬p), ϕ3 = (r ∨ ¬s ∨ ¬t), ψ1 =
(y∨z∨¬p∨q), ψ2 = (p∨q∨¬z), β1 = (¬y∨¬p∨¬q), β2 =
(y ∨ r ∨ ¬s) and β3 = (¬r ∨ s ∨ ¬t). Now, consider the TD
for G∆ depicted in Figure 1. For clarity, we label bags with
corresponding clauses it covers (2nd TD on right). Then, the
bag covering ϕ3 (variables r, s, t) is disconnected from the
bags covering the remaining clauses (ϕ1 and ϕ2) of ϕ.

As Example 15 shows, clauses within the same formula
can be covered by unrelated bags. Now, following a similar
strategy as for the clausal KBs, one would use a support vari-
able ei for i ≤ 3. Then additionally the bags covering clauses
β1 and β2 in the TD must contain e1. But this is undesirable
due to the resulting blow-up in the treewidth of the primal
graph if ∆ contains many formulas stretched in this way.

To overcome this limitation, we extend the graph represen-
tation for ∆ by considering the extended primal graph de-
noted as Ge∆. More precisely, each formula ϕi ∈ ∆ contains
a new proposition fi (called formula name), so that the vari-
ables in ϕi are also connected to fi. This extension of the pri-
mal graph encodes the participation of variables in a formula
and the relationship between variables that do not share a
clause but a formula. This yields a set F = {fi | 1 ≤ i ≤ n}
of variables encoding the formula names for a KB ∆. Addi-
tionally, the label (δ) in a LTD can be extended to guarantee

that δ(t) contains part of the formula ϕi if and only if fi ∈ t.
This way, we can still access a formula ϕi from a TD even
if there is no single bag that covers entire ϕi. Note also that
connecting fi to each var(ϕi) increases the treewidth for ϕi
by at most one over the treewidth for ϕ (simply add fi to each
bag for the TD of ϕ). To incorporate the addition of these
variables into our reduction, we use fi for ϕi ∈ ∆ to also
encode whether ϕi is contained in the support, and use the
set F := {fi | 1 ≤ i ≤ n} to serve the support variables.
As before, let M denote the set of variables over var(∆) =⋃
ϕ∈∆ var(ϕ). Moreover, let N := var(∆ ∪ {α}) and let

Ñ := {x̃i | xi ∈ N} denote the renaming of variables in N .
Finally, by β̃, we denote each β ∈ {ϕ,C, α,∆} over renamed
variables. Then, we let cons∆(F,M) :=

∧
ϕi∈∆(¬fi ∨ ϕi)

and ent∆,α(F, Ñ) :=
∨
ϕi∈∆(fi ∧ ¬ϕ̃i) ∨ α̃. Equivalently,

we have cons∆(F,M) :=
∧
ϕi∈∆

∧
Cij∈ϕi

(¬fi ∨ Cij), and

ent∆,α(F, Ñ) :=
∨
ϕi∈∆

∨
Cij∈ϕi

(fi ∧ ¬C̃ij) ∨ α̃. Then,

ψ′
ARG = ∃F,M.∀Ñ .(cons∆(F,M) ∧ ent∆,α(F, Ñ)) yields

the desired (intermediate) 2-QBF.
If we consider the extended primal graph for (∆,α), ψ′

ARG
already preserves the treewidth linearly. This is due to the ad-
ditional edges between fi and var(ϕi) of each ϕi ∈ ∆. How-
ever, this linear preservation of treewidth will break down
when imposing the minimality condition over arguments.
Thus, we split the two formulas.

Let T = (T, χ) be a TD of Ge(∆,α). Moreover, let ϕti
(resp., αt) denote the clauses of ϕi (terms of α) contained
in bag t and ∆t denote the collection of all such ϕti. We de-
fine a labeled TD (LTD) T ′ = (T, χ, δ) of T , where label-
ing δ : T → ∆ is such that δ(t) ∈ ∆t ∪ {αt}.

Finally, we let δ(t1) ⊓ δ(t2) denote the set {ϕt1i ∧ ϕt2i |
ϕi ∈ ∆}, then ∆ = ⊓t∈T {δ(t)}. An LTD can be easily
obtained from any TD without changing the width by copying
nodes accordingly. Furthermore, our labeling function also
guarantees that δ(t) contains ϕti if, and only if, fi ∈ t. Next,
we assume such an LTD T ′ = (T, χ, δ) of T , and let E =
F ∪ {eti | i ≤ n, t ∈ T}, L = {ℓt | t ∈ T}, S = {sti | i ≤
n, t ∈ T} sets of variables. Then, we construct the formula

ψARG:=∃E(∃M.φcons(E,M)∧∀LS Ñ.φent(E,L, S, Ñ)),

where φcons(E,M) is built for every node t of T as the con-
junction of Formulas (1)–(2), which can be converted into
CNF. Formula φent(E,L, S, Ñ)) is built for every t of T as the
disjunction of (3)–(6), which can be converted into DNF. To
obtain CNF and DNF as claimed, one can use Tseitin [Tseitin,
1983] or assume each bag considers at most one clause in ϕti
(easily obtainable by, e.g., just duplicating bags). This does
not increase the treewidth and only increases TD size linearly.

eti ↔
(
ϕti ∧

∧
t′∈children(t)

et
′

i

)
for ϕti ∈ ∆t, t ∈ T (1)

fi ↔ e
last(i)
i for ϕi ∈ ∆ (2)

¬(sti ↔
(
eti ∧ ¬ϕ̃ti

)
∨

∨
t′∈children(t)

st
′

i ) for ϕti ∈ ∆t, t ∈ T (3)



¬
(
ℓt ↔

( ∧
D∈αt

D̃ ∧
∧

t′∈children(t)

ℓt
′))

for t ∈ T (4)

s
last(i)
i for ϕi ∈ ∆ (5)

ℓlast(α) (6)

The purpose of Eqs. (1)–(2) is to guide along the TD whether
a formula ϕi is taken in the support or not. Then Eq. (3)
guides a contradiction along the TD, which together with Eqs.
(4)–(6) guarantee that each term of α is indeed explained.
Lemma 16 (Correctness, ⋆). Let (∆,α) be an instance of
ARG. Then, there is a support Φ ⊆ ∆ such that (Φ, α) is an
argument in ∆ if and only if ψARG is true.

Since ψARG is constructed for each node of T, it is easy to
see that the DG reduction preserves the treewidth linearly.
Lemma 17 (TW-Awareness, ⋆). Let I = (∆,α) be
an instance of ARG and T ′ = (T, χ, δ) be an LTD
of a TD T of Ge(∆,α) of width k. Then, the reduc-
tion RARG→2-QBF(I, T ′) constructs a qBf ψARG that lin-
early preserves the width. More precisely, we have
that tw(Gmatrix(ψARG)) ∈ O(k).
Counting Arguments. Our reductions work for the deci-
sion variant, but when it comes to runtime upper bounds for
counting, double exponential bounds are not guaranteed since
only E includes free variables in ψARG. Nevertheless, ob-
serve that if we do not have full quantifier alternations, the
validity of quantified Boolean formulas is easier than in the
general case. This still holds for treewidth (under ETH) and
counting, which we will utilize afterwards.
Proposition 18 (⋆). Let Q be a QBF over free variables V
and with ℓ alternating quantifier blocks such that the inner-
most formula is of the form (∃M.C) ∧ (∀N.D) with C be-
ing in CNF and D being in DNF. There is an algorithm for
counting the number of assignments θ over V such that Q[θ]
evaluates to true, in time exp(ℓ+2,O(k)) · poly(| var(Q)|),
where k is the treewidth of the primal graph GC∧D.

Clearly, in ψARG, there is no quantifier alternation be-
tween variables M of φcons and L, S, Ñ of φent (except those
over E). Consequently, we apply Proposition 18 and reduc-
tion RARG→2-QBF above, where E is not existentially quan-
tified, but the set of free variables, to obtain an upper bound
exp(2,O(k)) · poly(| var(Q)|) for counting solutions.
Theorem 19 (Runtime UB, ⋆). Let I = (∆,α) be an
instance of ARG. Then, #ARG can be solved in time
exp(2,O(k)) · poly(|var(∆) ∪ var(α)|), where k = tw(GeI).

Unluckily, this can probably not be significantly improved.
This follows from the runtime lower bounds for the decision
problem ARG [Fichte et al., 2021, Thm. 12].
Corollary 20 (Runtime LB, ⋆). Let I=(∆,α) be an instance
of ARG. Then, under ETH, the problem #ARG cannot be
solved in time exp(2, o(tw(GeI)) · poly(|var(∆) ∪ var(α)|).
One cannot expect to significantly improve the DG reduction.
Corollary 21 (TW-LB, ⋆). Let I = (∆,α) be an instance
of ARG. Under ETH, there is no reduction R′ from ARG
to 2-QBF yielding a qBf ψARG in time exp(2, o(tw(GeI))) ·
poly(| var(∆) ∪ var(α)|) with tw(GψARG

) ∈ o(tw(GeI)).

Adding Minimality. Next, we modify our reductions such
that only subset-minimal supports are selected and counted.
The idea is to use an additional formula ensuring that, when-
ever E provides a support, then for all other sets Ê: ei-
ther Ê is not a support for α, or Ê ̸⊂ E. To achieve
this, we use variables Ê = {êti | i ≤ n, t ∈ T} and
M̂ . Moreover, we use Q = {qt, qi | t ∈ T, ϕi ∈ ∆},
called equality variables to guide along the TD whether
E and Ê are (un)equal. Let ψm(E) denote the formula
∀Ê, M̂ ,Q, L, S, Ñ(¬φcons(Ê, M̂) ∨ ¬φent(Ê, L, S, Ñ) ∨
φÊ ̸⊂E(E, Ê,Q)),where formulas φcons and φent are built for
every node t of T as before, and φÊ ̸⊂E(E, Ê,Q) a collection
of DNF formulas:
f̂i ∧ ¬fi for ϕi ∈ ∆ (7)

¬(qi ↔ fi ∧ ¬f̂i) for ϕi ∈ ∆ (8)

¬
(
qt ↔

∨
ϕt
i∈δ(t)

qi ∨
∨

t′∈children(t)

qt
′
)

for t ∈ T (9)

¬qroot(T ) (10)

Eq. (7) allows a support given by Ê to contain a formula
not in E, then Eq. (8) defines inequality and Eq. (9) guides
the inequality along TD. Finally, Eq. (10), allows equal sup-
ports over E and Ê. Then our reduction yields the formula
∃E(ψARG(E)∧ψm(E)). Again, since the additional formu-
las are constructed for each node of T , it is easy to see that the
DG reduction is correct and preserves the treewidth linearly.
Counting Relevant Arguments. In order to compute
#ARG-Rel(ψ, α,∆) for a formula ψ and claim α in ∆,
we force a support to contain ψ by simply plugging-in the
formula name (say f0) for ψ in RARG→2-QBF(I, T ′). This
achieves that only those supports are counted that contain ψ.
Corollary 22 (Tight runtime bounds for #ARG-Rel,
⋆). Let I = (∆,ψ, α) be an instance of ARG-Rel.
Then #ARG-Rel can be solved in time exp(2,O(k)) ·
poly(|var(∆) ∪ var(α) ∪ var(ψ)|), where k = tw(GeI). Un-
der ETH, the problem #ARG-Rel cannot be solved in
time exp(2, o(tw(GeI)) · poly(|var(∆) ∪ var(α) ∪ var(ψ)|).

4 Conclusion
We explored the classical and structural complexity for count-
ing arguments in propositional knowledge bases. To the
best of our knowledge, this is the first paper to address the
complexity of counting in logic-based argumentation. Re-
garding the structural complexity, we established tight run-
time bounds for #ARG and #ARG-Rel under the parameter
treewidth. The upper bounds were determined using a tech-
nique described in Proposition 18, which is interesting and
useful in itself for solving QBFs. Finally, we proposed and
motivated quantitative reasoning for claims to determine their
relative strength and likelihood in a given knowledge base.
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