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Abstract. Entity summarizers for knowledge graphs are crucial in var-
ious applications. Achieving high performance on the task of entity sum-
marization is hence critical for many applications based on knowledge
graphs. The currently best performing approaches integrate knowledge
graphs with text embeddings to encode entity-related triples. However,
these approaches still rely on static word embeddings that cannot cover
multiple contexts. We hypothesize that incorporating contextual lan-
guage models into entity summarizers can further improve their per-
formance. We hence propose ESLM (Entity Summarization using Lan-
guage Models), an approach for enhancing the performance of entity
summarization that integrates contextual language models along with
knowledge graph embeddings. We evaluate our models on the datasets
DBpedia and LinkedMDB from ESBM version 1.2, and on the FACES
dataset. In our experiments, ESLM achieves an F-measure of up to 0.591
and outperforms state-of-the-art approaches in four out of six experi-
mental settings with respect to the F-measure. In addition, ESLM out-
performs state-of-the-art models in all experimental settings when eval-
uated using the NDCG metric. Moreover, contextual language models
notably enhance the performance of our entity summarization model,
especially when combined with knowledge graph embeddings. We ob-
served a notable boost in our model’s efficiency on DBpedia and FACES.
Our approach and the code to rerun our experiments are available at
https://github.com/dice-group/ESLM.

Keywords: Entity Summarization · Language Models · Knowledge Graph
Embeddings.

1 Introduction

Entity summarizers are extensively utilized across user-facing applications driven
by knowledge graphs (e.g., Web search [11], RDF browsers [7], and recommender
systems [23]) to provide succinct summaries of entities, and hence facilitate user
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comprehension. Recent methods (e.g., ESA [29], DeepLENS [16], GATES [8],
and ESCS [4]) have achieved improved effectiveness by employing deep learning
algorithms to encode triples containing entity descriptions and generate accurate
summaries. For instance, ESA combines word embeddings [2] with Knowledge
Graph Embeddings (KGEs) (e.g., computed using TransE [3]) to transform the
predicate and object of each triple into vectors. By combining word embeddings
and KGEs, ESA significantly outperforms previous methods based on unsuper-
vised learning [5,10,26,28].

While approaches based on embeddings are effective, they exhibit an impor-
tant limitation: They all rely on static word embeddings such as Word2Vec [2]
and GloVe [21]. These static models are unable to account for the various con-
texts of a word, particularly in cases where homonyms appear in different entity
descriptions. The motivation behind our work was hence to validate the following
hypothesis: Integrating contextual language models (LMs) into entity summariza-
tion methods can enhance their performance. We hence present ESLM (Entity
Summarization using Language Models), an entity summarization that leverages
contextual LMs alongside the topological information of KGEs. In our implemen-
tation of ESLM, we use the contextual LMs BERT [6] and ERNIE [24] because
of the differing representations they compute: BERT acquires dynamic represen-
tations based on the transformer architecture using purely textual data, while
ERNIE enhances these representations with external knowledge from KGs [33].
Additionally, ESLM incorporates a transformed-based large LM based on the T5
model [22]. We conduct a comprehensive evaluation of ESLM using the ESBM
(Entity Summarization BenchMark, version 1.2) dataset [14], which comprises
datasets based on DBpedia and LinkedMDB. We also evaluate our approach
on the FACES [10] dataset. ESLM consistently outperforms the current state-
of-the-art (SOTA) methods on these datasets w.r.t. the normalized discounted
cumulative gain (NDCG) measure. Additionally, ESLM achieves an F-measure
of up to 0.591 on the DBpedia dataset.

Our contributions to entity summarization are as follows:

– We introduce a new approach for entity summarization dubbed ESLM, which
leverages contextual LMs combined with KGE to enhance the performance
of entity summarization.

– We conduct a detailed ablation study to analyze the impact of contextual
LMs and their integration with KGE within our model. This study aids in
understanding the contribution of key components to the overall performance
of ESLM.

– We conclude from our findings that the utilization of contextual LMs and
their integration with KGE significantly outperforms SOTA, particularly on
the DBpedia and FACES datasets.

The rest of this paper is organized as follows: Section 2 provides a summary
of related works. Section 3 defines the entity summarization problem formally
and introduces our ESLM model. Section 4 details the implementation of our
approach. Our evaluation is described in Section 5. Finally, Section 6 concludes
the paper and suggests directions for future work.
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2 Related Work

2.1 Entity Summarization

Unsupervised learning has previously been used in entity summarization tasks
on single and combined features [15] such as frequency, centrality, informative-
ness, and similarity. For example, RELIN [5] computes the relatedness between
RDF triples and uses the informativeness measurement of each triple in a ran-
dom surfer model. DIVERSUM [25] employs the concept of diversification to
address the entity summarization problem, incorporating it into its summariz-
ing algorithm. FACES [10] utilizes all the aforementioned dimensional features
to generate entity summaries.

Recently, deep learning techniques are being used for entity summarization.
ESA [29], the first model to use deep learning for this purpose, employs bidirec-
tional long short-term memory (BiLSTM) networks. It combines a word embed-
ding technique [2] with TransE [3] to encode the predicate and object of a triple,
identifying these components as crucial for summarizing an entity’s triples [28].
ESA applies BiLSTM with an attention mechanism, selecting the top-k triples
for the entity summary. In contrast, DeepLENS [16] relies solely on word em-
beddings, specifically fastText [12] to encode triples containing text-based entity
descriptions. The authors argue that word embeddings provide richer textual
semantics than KGEs for this task. They proceed to show that DeepLENS out-
performs ESA on benchmark datasets like ESBM (version 1.2) [14]. GATES [8]
combines GloVe word embeddings [21] with KGE (such as ComplEx [27]) using
graph neural networks (GNNs). This method aims to enhance the quality of
entity summaries by encoding topological information through KGE. GATES
outperforms both DeepLENS and ESA on the ESBM (version 1.2) and FACES
datasets. Most recently, ESCS [4] was introduced. It employs an approach simi-
lar to DeepLENS by using Word2Vec [19], and introduces a novel method for the
computation of triple scores and the construction of summary sets for any target
entity. This method is based on the idea of salience, which is computed by eval-
uating the similarity between an entity’s semantic embeddings and a particular
property (predicate). Additionally, it computes and exploits the complementar-
ity of predicates and aims to optimise the complementary of the relationships it
returns in entity summaries.

2.2 Contextual Language Models

In recent years, contextual LMs have significantly impacted various downstream
tasks, such as question answering (QA) [32], text summarization [18,20], and
relation extraction [1]. These models achieve the current SOTA performance
in numerous Natural Language Processing (NLP) tasks. Contextual LMs, as
opposed to static word embeddings, provide each token with a representation
derived from the entire input sequence. This approach allows them to capture
more contextual information than static embeddings. For example, BERT [6]
is a pre-trained contextual LM that is built upon a multi-layer bidirectional
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transformer encoder. The model is trained on a corpus that includes the English
Wikipedia and the BooksCorpus. During training, BERT employs a masked lan-
guage modeling technique, wherein certain tokens within an input sequence are
randomly replaced with a [MASK] token. BERT consequently learns to predict
these masked tokens based on the context provided by the unmasked tokens
in the sequence. To further enhance LMs, ERNIE [33] incorporates knowledge
graphs into the computation of word embeddings. ERNIE constructs entity rep-
resentations from words, encoding them using KGE models such as TransE.
Similarly to BERT, it then utilizes masked LMs and next-sentence prediction
for pre-training, and for the extraction of lexical and syntactic information from
text tokens. Like BERT, ERNIE uses English Wikipedia for pre-training and
aligns text with Wikidata through KGE.

Unlike BERT and ERNIE, T5 models every NLP problem as a text-to-text
problem [22]. The model is trained using a denoising autoencoder objective,
where it learns to reconstruct the original text from a corrupted version. The
T5 model does not require task-specific heads. It distinguishes tasks in the input
text through prefixes that guide the model during the output computation and
generation. For example, the user may provide an input in the form of classify:
text to prompt the model to output a class label for the input text.

3 Approach

3.1 Problem Statement

Entity Description Let E be a set of entities, R be a set of relations, C be a set
of classes and L denote a set of literals. A knowledge graph T ⊆ E×R×(C∪L∪E)
is a set of triples (s, p, o). s is called the subject, p the predicate, and o the object
of the triple. We define an entity description, Desc(e, T ), as follows:

Desc(e, T ) = {(e, r, o) ∈ T ∨ (s, r, e) ∈ T} (1)

where s, e ∈ E, o ∈ (C ∪ L ∪ E), and r is a predicate. An example of such
as description is provided in Figure 1. Note that the triples (3WAY FM, Type,
Radio Station) and (Warrnambool, Broadcast Area of, 3WAY FM) belong to
the description of 3WAY FM, i.e., as per Eq. 1, the target entity e can function as
either a subject or an object in the elements of its description Desc(e, T ).

Entity Summarization Let e be an entity e, Desc(e, T ) be its entity descrip-
tion, and k ∈ N be a size constraint. We define an entity summary ES(e) as a
subset of Desc(e, T ) with |ES(e)| ≤ k , where k = 5 or k = 10 is often used in
practice. The purpose of entity summarization techniques is to compute ES(e)
by selecting the k best suited triples from Desc(e, T ).

3.2 ESLM Model

The ESLM relies on a Transformer-based language model [17], allowing for
context-aware processing and prediction. The attention mechanism allows the
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model to focus on the most relevant aspects of data sequences. Additionally,
ESLM employs a multi-layer perceptron (MLP) for accurate triple scoring, which
aids in selecting the most relevant triples for each entity. Moreover, we enrich
the model with KGEs to augment the model’s effectiveness, leveraging the rich
semantic information from the knowledge graphs. The architecture of ESLM is
detailed in Figure 1. In the following subsections, we discuss each of our model’s
components.

ESLM

V1.VGE1

Language Model Encoder

<http://dbpedia.org/resource/3WAY_FM> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://schema.org/RadioStation> .
<http://dbpedia.org/resource/3WAY_FM> <http://xmlns.com/foaf/0.1/name> "3WAY FM"@en .
<http://dbpedia.org/resource/Warrnambool>  <http://dbpedia.org/ontology/broadcastAreaOf> <http://dbpedia.org/resource/3WAY_FM> 

Knowledge Graph Embeddings
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Fig. 1. The ESLM model architecture

Language Model Encoder This encoder relies on a pre-trained model based
on the Transformer architecture (e.g., BERT, ERNIE, or T5), which is further
fine-tuned using labeled data from the input representations. The encoder’s con-
figuration includes the number of layers (i.e., transformer blocks) denoted by NL

set to 12, the number of hidden layers marked by H set to 768, and the number
of self-attention heads denoted by AH set to 12.

Each component (subject (s), predicate (p), object (o)) from the triple t is
represented in their textual form. When RDF resources are identified as IRIs
(Internationalized Resource Identifiers), we utilize their rdfs:label for textual
representation; otherwise, the local name of the IRI is used as the textual rep-
resentation. The local name, extracted from the IRI segment after the last slash
(’/’), acts as a unique, concise identifier within the IRI’s namespace, serving as
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a human-readable term when a label is absent. Using the text form allows the
LM to process and vectorize IRIs effectively, ensuring that the lexical and se-
mantic nuances of the triples are captured during encoding. As proposed in [31],
each triple t within the entity description Desc(e, T ) is structured as a single
sequence-packed sentence (s, p, o). Furthermore, all these single sequences are
formatted as input representations for the ESLM model. Every sequence begins
with the special classification token ([CLS]). Additionally, we use a special sep-
arator token ([SEP]) to distinctly separate each component of the triple. For
example, a triple t such as (3WAY FM, Type, Radio Station) is transformed into
textual input such as (3WAY FM [SEP] Type [SEP] Radio Station) and then
translated into a series of tokens denoted as {Tok1, T ok2, . . . , T okN}, where N is
the count of tokens. Furthermore, the input tokens of t are converted into embed-
dings by implementing a transformer-based encoder. Moreover, the LM encoder
generates two kinds of outputs. The first is the final hidden state of the special
classification token, denoted as ([CLS]) and represented by C ∈ RH , which is an
aggregate representation of the entire input sequence often used in classification
tasks. The second output consists of the last hidden states for each input token
in the sequence. These are denoted as Vi, leading to set a V = {V1, V2, . . . , VN},
where each Vi ∈ RH corresponds to the ith input token. Here, N is the sequence
length, and H is the hidden state dimension.

Attention Mechanism In the ESLM model, the attention mechanism is ap-
plied through a three-step process to assess the importance of each token in the
LM encoder output. Initially, attention scores are assigned to each token using
a linear transformation represented by Aweights = VWattn + battn. Here, V is
the LM encoder output. Meanwhile, Wattn and battn are the weights and bias of
the linear transformation, which are hence normalized to form a valid probabil-
ity distribution. The Softmax function is then applied to transform these scores
into probabilities that sum up to 1, reflecting the relative significance of each
token in the sequence. This mechanism enables the model to focus selectively on
the most relevant parts of the input, enhancing its language understanding and
generation capabilities. The complete equation is shown in Eq. 2:

Aweights = Softmax(VWattn + battn). (2)

Subsequently, these normalized scores are applied to the output V of the LM
encoder using element-wise multiplication, which is shown by ⊙, resulting in the
attention-weighted output A, which can be seen in Eq. 3:

A = Aweights ⊙ V. (3)

This process allows the model to focus selectively on the most relevant parts
of the input sequence, enhancing its ability to interpret and generate language
by considering both the context and significance of each element in the sequence.

Triple Scoring This step relies on the MLP, which is applied to learn the output
from the attention mechanism process A into a form that is more amenable



ESLM: Improving Entity Summarization by Leveraging Language Models 7

for the subsequent operations—calculating the mean and applying the softmax
function. The mean operation suggests an aggregation or summarization of the
features learned by the MLP, and the softmax function indicates that the final
goal might be to interpret these aggregated features probabilistically, possibly
for a task like regression or probabilistic classification. The scoring function for
a triple is denoted St, where St ∈ R, is calculated as shown in Eq. 4:

St = softmax(mean(MLP (A))). (4)

3.3 ESLM Model Enrichment

Figure 1 demonstrates that the triple-scoring computation is based on semantic
information generated by a pre-trained LM (PLM) that does not consider the
structural information of KGs. We now enhance our model by incorporating
KGEs based on the ComplEx method to obtain information from the structure
information of the KG.

KGE using ComplEx Let GE : E ∪ R ∪ L ∪ C → Cd be an embedding
function that computes vectors for the elements of a knowledge graph. In this
work, we use ComplEx with d = 300, i.e., every component of a triple (s, p, o)
is represented by a 300-dimensional complex-valued vector. The vector for a
given triple, VGEti

, is constructed by concatenating the embeddings for each
component of the triple (sti, pti, oti), thus creating a single vector that holds all
the structural information for that triple, as indicated in Eq. 5:

VGEti
= GE(sti)||GE(pti)||GE(oti). (5)

Integration of LM with KGE To leverage both structured and unstructured
information, the model concatenates the last hidden vectors Vti from the LM
encoder with the KGE vectors VGEti

, resulting in a new vector V ′
ti as shown

in Eq. 6. This concatenated vector V ′
ti holds both the contextualized semantic

information from the LM and the structural relationships from the KG, yielding
a more comprehensive representation for each triple:

V ′
ti = Vti||VGEti

. (6)

By concatenating these vectors, we literally fuse textual information (Vti)
with knowledge graph information (VGEti

). An attention mechanism is applied
to the concatenated vectors V ′

ti to focus on the most relevant parts of the com-
bined embedding while generating the summary. Therewith, the model learns the
relation between the embedding dimensions in LM and KGE representations. As
shown in our experiments, this enables our model to better discern the salience
of triples for entities to summarise. The exact computation of this operation is
given by the formulae outlined in Eqs. 2 and 3, and involve calculating attention
weights and context vectors. With the attention-enriched vectors V ′, the model
computes the triple scoring as specified in Eq. 4. The scoring process evaluates
the relevance of each triple for the summary using the enriched embeddings that
now incorporate both semantic and structural insights.
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3.4 Entity Summarization

Finally, the entity summary ES(e) is generated for an entity e by selecting the
top-k triples from Desc(e, T ), which is a set of entity descriptions for entity e
in a KG. The parameter k represents a size constraint, indicating the number
of triples to be included in the summary. The selection is based on Eq. 7, as
defined by [9].

∀t′ ∈ ES(e)\Desc(e, T ) : Sti ≤ min
ti∈Desc(e,T )

Sti . (7)

4 Experimental Setup

4.1 Baselines

Since supervised learning with a deep learning approach in entity summarization
tasks substantially outperforms unsupervised learning-based entity summariza-
tion tasks, we only consider the following methods as the baselines:

1. ESA [29] exploits graph embedding to encode triples of entity descriptions.
Triple scores are calculated by leveraging normalized attention weights based
on output vectors of BiLSTM computation.

2. AutoSUM [30] improves the ESA model by incorporating multi-user pref-
erence simulations such as entity and user phase attention.

3. NEST [13] leverages a KG encoder that represents structural and textual
representations from KGs, employing joint learning from salience and diver-
sified summary learning to produce the entity summary.

4. DeepLENS [16] uses textual semantics for triple encoding, and employs
a deep learning model (such as BiLSTM) and MLP to generate scores for
triples of entity descriptions.

5. GATES [8] computes triple scores using a combination of information from
textual and structural representations generated by GNNs. Additionally, en-
semble learning is used to improve triple-scoring performance.

6. ESCS [4] exploits description complementary and salience learning to score
components of the input knowledge graphs. It then employs joint learning
to calculate triple scores.

We used the DeepLENS, AutoSUM, and ESA experimental results presented
in [8] as the code for these evaluation is open and the evaluation can be replicated.
However, we could not use the NDCG approach to compare our model to NEST
and ESCS due to unavailable codes.

4.2 Datasets

We used two types of benchmark datasets, including the ESBM (version 1.2)4

and FACES. The ESBM comprises 125 and 50 entities which are from the DBpe-
dia and LinkedMDB datasets, respectively. From the FACES dataset, we utilize

4 https://github.com/nju-websoft/ESBM/tree/master/v1.2

https://github.com/nju-websoft/ESBM/tree/master/v1.2
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50 entities that are from the DBpedia dataset. The DBpedia dataset in ESBM
separates the entities into five classes: agent, event, location, species, and work.
The LinkedMDB dataset contains two distinct categories: films and persons.
Each entity in every dataset is described by at least 20 triples. Additionally,
FACES contains at least four manually generated entity summaries, while the
ESBM provides six manually constructed ground truth summaries for each en-
tity.

4.3 Experimental Settings

The ESLM is initialized by incorporating pre-trained LMs to leverage the knowl-
edge already acquired. Specifically, we utilized bert-base-uncased5 for integrating
the BERT model and ernie-2.0-en6 for ERNIE. Both models comprise 12 layers,
12 self-attention heads, and 768 hidden layers H. For the T5 model integration
within ESLM, we employed the t5-base’ LM7. The fine-tuning process was imple-
mented on ESLM with varied learning rates ∈ {1− 5× 10−5}. Furthermore, we
employed the binary cross-entropy (BCE) loss function as the primary criterion
for training. The BCE loss is particularly well-suited for binary classification
tasks, which aligns with the nature of our entity summarization problem where
the model needs to predict the relevance of each entity triple within a given
context. During training, the AdamW optimizer was employed alongside BCE.
Throughout our evaluation, we used a five-fold cross-validation. In subsequent
experiments, we used the ComplEx [27] method generated by the DGLKE frame-
work8 to enrich a PLM with KGE.

We conducted a statistical significance test to check whether the findings
obtained by our models were significantly different from those of SOTA methods.
In particular, we utilized the Wilcoxon signed ranked test with a 95% significance
level. All experiments were conducted on a 64-core AMD EPYC 7713 CPU (2.0
GHz) with 1024 GB of RAM, running on Debian with CUDA using 2 NVIDIA
GeForce RTX A5000 24GB GPUs.

5 Results & Analysis

5.1 Comparison with state-of-the-art approaches

The baselines ESCS, GATES, DeepLENS, AutoSUM, NEST, and ESA are to-
gether referred to as SOTA. Table 1 shows average F-measure scores for different
entity summarization models across three datasets: DBpedia, LinkedMDB, and
FACES. These models include baseline models and our approach (ESLM) model,
evaluated at the cut-offs k = 5 and k = 10, representing the top-5 and top-10
retrieved sets of triples, respectively. A clear pattern emerges: models generally

5 https://huggingface.co/bert-base-uncased
6 https://huggingface.co/nghuyong/ernie-2.0-base-en
7 https://huggingface.co/t5-base
8 https://github.com/awslabs/dgl-ke

https://huggingface.co/bert-base-uncased
https://huggingface.co/nghuyong/ernie-2.0-base-en
https://huggingface.co/t5-base
https://github.com/awslabs/dgl-ke
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improve their scores as the k value increases. This suggests a greater capacity
to capture relevant triples of entities within a larger retrieval window. Notably,
the ESLM model, which employs a combination of BERT, ERNIE, and T5 LMs
determined to be suitable for entity summarization through an ablation study
(see Section 5.3), outperforms others in DBpedia and FACES at both k = 5 and
k = 10, indicating its superior summarization performance on these datasets.

The lower F-measure scores of ESLM model on the LinkedMDB dataset,
specifically at k = 5 and k = 10, indicate that it may not be as well calibrated
to the specific domain of the dataset as the ESCS and DeepLENS models. Al-
though ESLM’s performance shows improvement when considering a broader
range of top predictions, it still falls behind models such as AutoSUM, GATES,
and ESCS. The results underscore the need for ESLM to optimize its feature
extraction and integrate KGE more effectively to enhance its summarization
quality, indicating room for further refinement of the model’s approach.

Table 1. Average F-measure score based on our model testing via five-fold cross-
validation processes to all entities of the benchmark.

DBpedia LinkedMDB FACES

k=5 k=10 k=5 k=10 k=5 k=10

ESA 0.332 0.532 0.353 0.435 0.153 0.261
NEST 0.354 0.540 0.332 0.465 0.272 0.346
AutoSUM 0.372 0.555 0.430 0.520 0.241 0.316
DeepLENS 0.404 0.575 0.469 0.489 0.130 0.248
GATES 0.423 0.574 0.437 0.535 0.254 0.324
ESCS 0.415 0.582 0.494 0.512 - -

ESLM 0.427 0.591 0.467 0.498 0.301 0.369

NDCG scores for ESLM and the baselines across DBpedia, LinkedMDB, and
FACES datasets are presented in Table 2. NDCG is a performance metric for
the quality of ranked order outputs, with higher scores indicating that a model
is effectively ranking highly relevant triples of entities at the top of the list. Our
model ESLM clearly outperforms other methods in all datasets at both k = 5
and k = 10, with its peak score on DBpedia at k = 10 being 0.913. In compari-
son, while DeepLENS, GATES, and AutoSUM demonstrate strong performance
with scores over 0.800 in several instances, they fall short of ESLM ’s consistency
across datasets and cutoff values. The improvement from k = 5 to k = 10 for all
models suggests that they are more adept at providing quality entity summa-
rizations when more results are included. In particular, ESLM’s superior NDCG
scores at both levels indicate its robust capacity to synthesize and rank entity
information effectively using LM-driven approaches. This performance implies
that ESLM has a significant advantage in tasks requiring nuanced discernment
of entity triple relevance, especially in larger result sets.
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Table 2. Average NDCG score based on our model testing via five-fold cross-validation
processes to all entities of the benchmark.

DBpedia LinkedMDB FACES

k=5 k=10 k=5 k=10 k=5 k=10

ESA 0.755 0.846 0.737 0.799 0.601 0.707
AutoSUM 0.797 0.882 0.809 0.856 0.693 0.768
DeepLENS 0.825 0.905 0.855 0.888 0.585 0.715
GATES 0.798 0.893 0.804 0.881 0.697 0.759

ESLM 0.850 0.913 0.868 0.893 0.735 0.793

We also ran a statistical test to see whether our method significantly out-
performs the current SOTA benchmarks. We regard a p-value less or equal to
0.05 as significant. As shown in 3, ESLM performs significantly better than the
compared models in most cases. In particular, the results show that ESLM out-
performs the existing SOTA significantly in at least one experimental setting on
the DBpedia dataset from ESBM and the FACES datasets. Additionally, ESLM
significantly outperforms ESA, AutoSUM, and GATES across all evaluated k = 5
in the LinkedMDB dataset. The provided p-values confirm the statistical signif-
icance of our findings, with ESLM demonstrating a clear advantage over ESA,
AutoSUM, DeepLENS, and GATES in almost all settings.

Table 3. Comparison of ESLM and SOTA using a Wilcoxon-rank test on the F-
measure scores. The leftmost column shows the approaches ESLM was compared with.
The values in the table are p-values.

DBpedia LinkedMDB FACES

k=5 k=10 k=5 k=10 k=5 k=10

ESA 0.000 0.000 0.000 0.004 0.000 0.000
AutoSUM 0.000 0.000 0.028 - 0.003 0.004
DeepLENS 0.013 0.015 - 0.672 0.000 0.000
GATES 0.505 0.002 0.000 - 0.016 0.001

5.2 Example Findings

This section describes two examples found in our on test results. Due to space
constraints, we chose the strongest baseline, GATES, and our model, ESLM,
as well as a form of ground truth. In Figure 2, we see a direct comparison
between entity summaries produced by the ESLM and GATES models for a given
entity, Ludwigsburg University. The output of ESLM is well aligned with the
ground truth summary, capturing a subset of triples that directly correspond
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to the essential information about the entity. This is reflected in its higher F-
measure score of 0.666, surpassing GATES’ score of 0.600. A key observation is
that GATES omits crucial label and type information in its summary, which
indicates a gap in capturing and presenting significant details. ESLM’s ability
to include these important triples results in a more accurate and comprehensive
summary enhances the model’s utility in applications that depend on detailed
entity representations.

ESLM (F-Measure: 0.666)

GATES (F-Measure: 0.600)
Predicate Object

homepage http://www.ph-ludwi
gsburg.de/

label Ludwigsburg 
University

name Pädagogische …
city Ludwigsburg
country Germany

Predicate Object
country Germany
city Ludwigsburg

label Ludwigsburg 
University

almaMater Ludwigsburg 
University

type University

Predicate Object

almaMater Ludwigsburg 
University

type University

name Pädagogische 
…

city Ludwigsburg

country Germany

Ground Truth Summary

Entity: Ludwigsburg University
Predicate Object

homepage http://www.ph-lu
dwigsburg.de/

almaMater Ludwigsburg 
University

type University

label Ludwigsburg 
University

name Pädagogische …
type Organisation
country Germany

city Ludwigsburg

subject Category:Ludwigs
burg

type Educational 
Institution

Fig. 2. Effectiveness of ESLM compared to GATES in use case one.

Figure 3 shows another example where ESLM outperforms GATES concern-
ing entity summary results. Here, ESLM’s F-measure improves from 0.533 to
0.733 by providing a wide range of information on the target entity, whereas
the GATES lacks diversity in the information it provides, as it tends to repeat
information about places.

According to both use cases, ESLM demonstrates that the use of LMs for
entity summarization tasks relatively improves the quality of the summaries.

5.3 Ablation study

In a preliminary assessment of the ESLM model, we compared the performance
of pre-trained LMs such as BERT, ERNIE, and T5 on the DBpedia, LinkedMDB,
and FACES datasets without the enhancement of KGE. The F-measure served
as the basis for this comparison. As evidenced by the results in Table 4, ERNIE
demonstrates consistent superiority over BERT and T5 for k = 5 across all
datasets. When examining the results for k = 10, T5 marginally outperforms
BERT on DBpedia, whereas BERT maintains a slight advantage over T5 on
LinkedMDB.

The second ablation study’s results are shown in Table 4. These results in-
dicate that KGEs contribute positively to the F-measure performance of the
BERT, ERNIE, and T5 LMs on three distinct datasets. On the DBpedia and
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ESLM (F-Measure: 0.733)

GATES (F-Measure: 0.533)
Predicate Object
Type MilitaryConflict
Date 1746-08-12
Place Province of 

Piacenza
Place Italy
Place Rottofreno

Predicate Object
Date 1746-08-12
Type MilitaryConflict
Result French victory
isPartOfMilit
aryConflict

War of the 
Austrian 
Succession

Place Italy

Predicate Object
Type MilitaryConflict
Result French victory

Label Battle of 
Rottofreddo

Date 1746-08-12
Place Italy

Ground Truth Summary

Entity: Battle of Rottofreddo
Predicate Object
Type MilitaryConflict
isPartOfMilitar
yConflict

War of the Austrian 
Succession

Result French victory
Label Battle of 

Rottofreddo
Date 1746-08-12
Place Province of 

Piacenza
Place Italy
Place Rottofreno
Subject Category:1746 in 

France
Subject Category:1746 in 

Italy
Subject Category:Conflicts 

in 1746

Fig. 3. Effectiveness of ESLM compared to GATES in use case two.

LinkedMDB datasets, BERT and T5’s performances are notably boosted by
KGE, with T5 showing the most significant enhancement in DBpedia for k = 5,
increasing its score from 0.410 to 0.427. ERNIE exhibits smaller gains with
the addition of KGE, suggesting its pre-existing pre-training might already in-
clude some of the relational knowledge that KGEs introduce. In contrast, on
the FACES dataset, T5 especially gains at k = 10. These results suggest that
the degree of alignment between a model’s pre-training and a dataset can be
a crucial determinant of the effectiveness of integrating KGEs. The consistent
increase in F-measure scores from k = 5 to k = 10 suggests that KGEs provide
supplementary information that can improve the models’ capability to effectively
rank relevant information.

Table 4. Highest F-measure performance of BERT, ERNIE, and T5 on ESLM

Models DBpedia LinkedMDB FACES

k=5 k=10 k=5 k=10 k=5 k=10

BERT 0.411 0.574 0.444 0.494 0.286 0.355
BERT + KGE 0.417 0.586 0.445 0.482 0.301 0.347

ERNIE 0.421 0.583 0.448 0.482 0.292 0.348
ERNIE + KGE 0.423 0.586 0.467 0.494 0.295 0.369

T5 0.410 0.584 0.442 0.486 0.287 0.352
T5 + KGE 0.427 0.591 0.455 0.498 0.300 0.361

We also used NDCG scores to examine the BERT, ERNIE, and T5 models on
the ESLM model, evaluating their ranking effectiveness both with and without
KGE, as shown in Table 5. BERT exhibits marginal improvements with KGE
integration, with the NDCG score slightly increasing across the DBpedia and
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LinkedMDB datasets for both the top-5 and top-10 results but showing mini-
mal change on the FACES dataset. ERNIE’s performance with KGE is mixed.
It experiences a slight decrease in the DBpedia dataset but improvements in
LinkedMDB and FACES, particularly at k = 10 in LinkedMDB. T5 demon-
strates the most significant gains from KGEs across all datasets, especially at
k = 10 in LinkedMDB, suggesting that T5’s architecture effectively utilizes the
additional relational knowledge provided by KGEs to enhance ranking accuracy.
The consistently higher scores at k = 10 across all models imply that the models
perform better when evaluating a larger set of predictions, which is crucial for
tasks involving entity summarization where multiple correct answers are possi-
ble.

Table 5. Highest NDCG scores of BERT, ERNIE, and T5 on ESLM

Models DBpedia LinkedMDB FACES

k=5 k=10 k=5 k=10 k=5 k=10

BERT 0.841 0.904 0.836 0.848 0.736 0.797
BERT + KGE 0.842 0.908 0.835 0.840 0.733 0.796

ERNIE 0.841 0.910 0.831 0.837 0.740 0.788
ERNIE + KGE 0.838 0.909 0.867 0.858 0.744 0.795

T5 0.852 0.908 0.862 0.869 0.742 0.785
T5 + KGE 0.850 0.913 0.868 0.893 0.736 0.790

5.4 Computational Requirements and Efficiency of ESLM

Table 6 outlines the training times and processing efficiencies of among ESLM
models with and without KGE, trained on the DBpedia, LinkedMDB, and
FACES datasets over 50 epochs using 1 GPU. The integration of contextual LMs
and KGEs slightly increases training times across all models, suggesting a modest
rise in computational requirements. The T5 model is the most time-consuming.
All configurations process a comparable number of entities per second, with a
negligible increase when KGE is included. This observation is important as it
implies that the addition of KGEs enhances the performance of supervised entity
summarization approaches without increasing their computational needs.

6 Conclusion and future work

In this study, we introduced ESLM, an entity summarization method leveraging
LMs enhanced with KGEs. Our analysis showed that ERNIE-based implementa-
tions of ESLM outperform BERT-based approaches, with further improvements
when these models are enriched with KGEs, particularly in the T5 model. Our
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Table 6. Comparative Analysis of Training Times and Entity Processing Efficiency
among ESLM models. All times are seconds, and the total number of epochs is 50.

Models Topk Input Output Training Time Prediction Time

Triples Triples Total Mean Single Triples

BERT 5 4436 750 329.56 6.59 0.060
BERT + KGE 5 4436 750 404.50 8.09 0.060
ERNIE 5 4436 750 327.39 6.55 0.067
ERNIE + KGE 5 4436 750 328.88 6.58 0.070
T5 5 4436 750 402.96 8.06 0.071
T5 + KGE 5 4436 750 411.86 8.24 0.072
BERT 10 4436 1500 333.62 6.67 0.060
BERT + KGE 10 4436 1500 329.91 6.60 0.059
ERNIE 10 4436 1500 333.32 6.67 0.069
ERNIE + KGE 10 4436 1500 329.24 6.58 0.069
T5 10 4436 1500 403.83 8.07 0.070
T5 + KGE 10 4436 1500 413.38 8.27 0.073

BERT 5 2148 125 184.06 3.68 0.123
BERT + KGE 5 2148 125 185.14 3.70 0.125
ERNIE 5 2148 125 184.85 3.70 0.144
ERNIE + KGE 5 2148 125 185.82 3.72 0.144
T5 5 2148 125 188.05 3.76 0.151
T5 + KGE 5 2148 125 189.40 3.79 0.154
BERT 10 2148 250 185.65 3.71 0.173
BERT + KGE 10 2148 250 185.71 3.71 0.123
ERNIE 10 2148 250 185.92 3.72 0.157
ERNIE + KGE 10 2148 250 185.82 3.72 0.145
T5 10 2148 250 189.70 3.79 0.153
T5 + KGE 10 2148 250 188.20 3.76 0.155

BERT 5 2152 125 186.47 3.73 0.122
BERT + KGE 5 2152 125 186.22 3.72 0.126
ERNIE 5 2152 125 186.32 3.73 0.142
ERNIE + KGE 5 2152 125 186.37 3.73 0.154
T5 5 2152 125 188.09 3.76 0.171
T5 + KGE 5 2152 125 189.31 3.79 0.154
BERT 10 2152 250 188.55 3.77 0.124
BERT + KGE 10 2152 250 186.85 3.74 0.126
ERNIE 10 2152 250 187.27 3.75 0.147
ERNIE + KGE 10 2152 250 187.02 3.74 0.146
T5 10 2152 250 191.41 3.83 0.156
T5 + KGE 10 2152 250 190.75 3.82 0.157

results also suggest that ESLM achieves significantly better results than the cur-
rent SOTA methods, as evidenced by ESLM superior performance on benchmark
datasets such as DBpedia and FACES. Despite these advancements, we recog-
nize a limitation in the scale of current gold standard datasets, such as ESBM
and FACES. This highlights a broader issue in the field’s lack of comprehensive
benchmarking datasets for entity summarization. To address this challenge, we
plan to develop an extensive silver dataset to support the creation of robust and
reliable entity summarization models. Additionally, we aim to explore the inte-
gration of ESLM with graph neural networks, potentially enhancing our model’s
capabilities further.
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