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Abstract. Recent analyses of real-world queries show that a prominent
type of queries is that of conjunctive regular path queries. Despite the
increasing popularity of this type of queries, only limited efforts have
been invested in their efficient evaluation. Motivated by recent results
on the efficiency of worst-case optimal multi-way join algorithms for the
evaluation of conjunctive queries, we present a novel multi-way join algo-
rithm for the efficient evaluation of conjunctive regular path queries. The
hallmark of our algorithm is the evaluation of the regular path queries
found in conjunctive regular path queries using multi-way joins. This
enables the exploitation of regular path queries in the planning steps of
the proposed algorithm, which is crucial for the algorithm’s efficiency, as
shown by the results of our detailed evaluation using the Wikidata-based
benchmark WDBench. The results of this evaluation also show that our
approach achieves a value of query mixes per hour that is 4.3 higher than
the state of the art and that it outperforms all of the competing graph
storage solutions in almost 70% of the benchmark’s queries.

Keywords: knowledge graphs · conjunctive regular path queries · multi-
way joins

1 Introduction

The ability to express queries requesting paths of arbitrary length between enti-
ties of a knowledge graph, also known as (two-way) regular path queries (RPQs)
[3, 10], is a unique characteristic of graph query languages [18]. Finding paths
of arbitrary length is crucial for many applications on knowledge graphs, such
as path-based fact checking [27] and class expression learning [14]. As a result,
many recent works have focused on developing approaches for the efficient eval-
uation of RPQs (e.g., [4, 6, 30]). However, most of these works do not take the
fact that RPQs are usually part of more complex queries into account [1]. In
fact, the results of two detailed studies of Wikidata’s query logs [11, 21] show
that conjunctive two-way regular path queries (C2RPQs), which are conjunctive
queries extended with regular path queries [11], have received a lot of attention
recently and are often used in practice.
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Recently, Cucumides et al. [13] performed a theoretical analysis of the evalua-
tion of C2RPQs using worst-case optimal multi-way join algorithms. Worst-case
optimal multi-way join algorithms [22] are a recent advancement in query pro-
cessing and have achieved state-of-the-art performance in evaluating conjunctive
queries. Among other contributions, Cucumides et al. proposed the algorithm
GenericJoinCRPQ that evaluates C2RPQs using multi-way joins. However, as
previous theoretical analyses of such algorithms, they do not discuss the involve-
ment of RPQs in aspects of multi-way joins that are crucial for their efficiency in
practice. First, they assume a given variable ordering. Second, given a particular
variable, they do not discuss the order in which operations should be carried out.
For example, provided the SPARQL graph pattern {?x <p1> <o1> . ?x <p2>

<o2> . ?x <p3>* <o3> .}, should the RPQ be evaluated before or after the
join operation between the first two triple patterns? To the best of our knowl-
edge, there have not been any implementations of multi-way join algorithms for
the evaluation of C2RPQs.

In this work, we hence focus on presenting a novel multi-way join algorithm
for the evaluation of C2RPQs over RDF graphs using SPARQL. The main char-
acteristic of our approach is that it evaluates RPQs using multi-way joins. This
evaluation (1) enables the integration of RPQs in multi-way join plans; our ap-
proach is generic and can be integrated in any system supporting multi-way joins,
(2) allows for the evaluation of C2RPQs without the need for materializing the
results of RPQs—which can be large—and (3) enables the accurate size estima-
tion of RPQs, as it allows for their evaluation up to an arbitrary depth, and
thus allows their inclusion in optimization steps of the evaluation, such as the
variable ordering process. The proposed algorithm is implemented in a state-of-
the-art triple store supporting worst-case optimal multi-way joins. We evaluate
our approach using WDBench [2]. We compare the performance of our approach
against the performance of multiple state-of-the-art graph storage solutions. The
results of this comparison suggest that our solution is on average 4.3 times faster
than the second best system. We also carry out a detailed evaluation of different
execution strategies. Its results show the importance of including RPQs in the
optimization steps of the proposed algorithm. Like a number of approaches for
the evaluation of conjunctive queries based on worst-case optimal joins [5, 8, 19],
the performance of our approach depends on the order of variables and the order
in which operations are carried out for a particular variable.

The rest of the paper is structured as follows. In Section 2, we provide back-
ground knowledge on the topics that are covered in this paper. We discuss related
works in Section 3. We present our approach for the evaluation of C2RPQs using
multi-way joins in Section 4. Our experimental results are presented in Section
5. In Section 6, we conclude and discuss possible future research directions.

2 Preliminaries

Below, we cover the features of SPARQL that are relevant to this work and briefly
summarize worst-case optimal multi-way joins and GenericJoinCRPQ [13].
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2.1 RDF and SPARQL

The semantics of SPARQL have been extensively covered in previous works (e.g.,
[20, 24–26]). Here, following standard notation, we recapitulate the semantics and
properties of the features of the language that are used later in this work. More
specifically, we cover basic graph patterns, union graph patterns and property path
patterns. The formal definitions presented below rely on the following pairwise
disjoint sets. Let I be an infinite set of IRIs, B an infinite set of blank nodes, and
L an infinite set of literals. Furthermore, let V be an infinite set of variables. An
RDF graph is a set of subject-predicate-object triples and is formally defined as
G = {(s, p, o) | s ∈ (I ∪B), p ∈ I, o ∈ (I ∪B ∪ L)}.

Basic and Union Graph Patterns [19, 24] A basic graph pattern (BGP) is
a set of triples and is formally defined as P = {(s, p, o) | s ∈ (I ∪ L ∪ V), p ∈
(I∪V), o ∈ (I∪L∪V)}. An element of P is called a triple pattern and is denoted
as tp. As in [19, 24], we do not consider blank nodes in triple patterns because
they behave as variables. The set of variables of a triple pattern is denoted
as var(tp). BGPs are conjunctive queries and their semantics are defined using
mappings. A mapping is a partial function assigning RDF terms (i.e., IRIs, blank
nodes, or literals) to variables and is formally defined as µ : V → (I ∪ B ∪ L).
The set of variables, over which a mapping µ is defined, is called the domain of µ
and is denoted as dom(µ). Provided a triple pattern tp, µ(tp) denotes the RDF
triple obtained by replacing every variable in var(tp) with its corresponding
value in µ. Two mappings µ1 and µ2 are compatible, if and only if for every
variable ?v ∈ dom(µ1) ∩ dom(µ2) holds that µ1(?v) = µ2(?v). The join and
union operations between two sets of mappings Ω1 and Ω2 are defined as:

Ω1 ▷◁ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1, µ2 are compatible} and
Ω1 ∪Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2}.

A triple pattern tp and a BGP P are evaluated over an RDF graph G as follows:

JtpKG = {µ | dom(µ) = var(tp) and µ(tp) ∈ G} and
JP KG = Jtp1, . . . , tpnKG = Jtp1KG ▷◁ . . . ▷◁ JtpnKG.

In SPARQL, braces allow us to form different graph patterns. Both BGPs and
triple patterns are graph patterns. The concatenation (conjunction) and union of
two graph patterns P1 and P2 are denoted as (P1 AND P2) and (P1 UNION P2),
respectively, and they are evaluated as follows:

JP1 AND P2KG = JP1KG ▷◁ JP2KG and JP1 UNION P2KG = JP1KG ∪ JP2KG.

A graph pattern P is in UNION normal form if it is in the form (P1 UNION . . .
UNION Pn) and each Pi, for 1 ≤ i ≤ n, is UNION -free. A graph pattern is
UNION -free, if it does not contain any union graph patterns.

Theorem 1 (Existence of UNION normal form [24]). Every graph pattern
P using the AND and UNION operators is equivalent to a graph pattern P ′,
which is in UNION normal form.
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Property Paths Patterns [20] In SPARQL, two-way RPQs are expressed as
property path patterns. A property path pattern is a triple r = (s, e, o), where
s, o ∈ (I ∪ L ∪V) and e is constructed by the following grammar:

e := α | e− | e · e | e+ e | e+ | e∗ | e? , α ∈ I.

The set of variables of a property path pattern r is denoted as var(r). For
simplicity, we assume that property paths do not have the same variable in both
the subject and object position. The implementation of our approach (Section
4) supports RPQs having the same variable in the subject and object position.
Note that we omit the rules of negated property sets from the grammar. As in [1],
we do not consider negated property sets in this work. Expressions of the shape
e1 ·e2 and e1+e2 can be rewritten as joins and unions, respectively (see Example
1) [17, 25]. Consequently, property path patterns using only the first four rules
of the grammar can be rewritten to equivalent graph patterns consisting only of
basic and union graph patterns and be evaluated as shown above. Property paths
using the transitive closure operators * or + are evaluated under set semantics.
The expression e? is a special case of e∗; it returns solutions for paths of length
0 and length 1. From this point on, we will use the term RPQ only for property
paths using any of the +, ∗, or ? operators, as the remaining expressions can be
rewritten as graph patterns without property paths.

Example 1. The queries provided below are semantically equivalent.

Q1: SELECT ?s WHERE {?s (<e1>/(<e2>/<e3>)+)|(<e4>/<e5>) <o>}
Q2: SELECT ?s WHERE {{?s <e1> ?t . ?t (<e2>/<e3>)+ <o>} UNION

{?s <e4> ?v . ?v <e5> <o>}}

Conjunctive Two-way Regular Path Queries In SPARQL, a C2RPQ is a
pattern that only uses triple patterns, the operator AND, and RPQs [11]. In Q2
of Example 1, the first graph pattern of the UNION is a C2RPQ consisting of
a triple pattern and an RPQ, whereas the second graph pattern is a BGP. As
the property path patterns that we consider in this work use only the AND and
UNION operators, graph patterns comprised of basic, union and property path
patterns can be rewritten to a graph pattern in UNION normal form [25]. Our
approach presented below deals with graph patterns that are in UNION normal
form, where each union operand is either a C2RPQ or a BGP (e.g., Q2). Our
implementation applies the UNION normal form to queries, while parsing them.

2.2 Worst-case Optimal Multi-way Joins

Worst-case optimal multi-way join algorithms [22] satisfy the AGM bound [7],
i.e., their runtime complexity is bounded by the worst-case size of the result of
the input query [19]. Since their recent introduction, they have gained a lot of
attention and, in particular, have achieved state-of-the-art performance when
evaluating graph pattern queries (e.g., [5, 8, 15, 19]). Unlike pair-wise joins that
carry out join operations on two join operands at a time, worst-case optimal
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Algorithm 1 Generic Join for Basic Graph Patterns

1: // Generator function: execution is resumed after a yield operation
2: function GenericJoin(P , G, X) ▷ P : BGP, G: RDF Graph, X: Mapping
3: if all variables are resolved then yield X and return

4: ?x← select an unresolved variable from X
5: K ←

⋂
tp∈P |?x∈var(tp){µ(?x) | µ ∈ JtpKG}

6: for all k ∈ K do
7: X(?x)← k ; P ′ ← assign k to all occurrences of ?x in P
8: yield all GenericJoin(P ′, G, X) ▷ after yielding proceeds with the next k

multi-way join algorithms evaluate queries recursively on a per variable basis [15,
19]. This evaluation method does not store any intermediate results and allows
for mappings to be written to the result incrementally. A worst-case optimal
multi-way join algorithm based on Generic Join [23] is shown in Algorithm 1.
In practice, the performance of Generic Join is mostly affected by the order of
variables (line 4) [19] and the set intersection, which finds the possible values of
the selected variable (line 5). In fact, the set intersection should be guided by the
triple pattern with the smallest set of values for the selected variable [29]. Last,
indices (e.g., [5, 8]) also play an important role in the efficiency of worst-case
optimal multi-way join algorithms [15].

2.3 GenericJoinCRPQ

As mentioned, Cucumides et al. [13] perform a theoretical analysis of the eval-
uation of C2RPQs using worst-case optimal algorithms. In their work, the au-
thors obtain size bounds for several classes of C2RPQs and show that there are
C2RPQs that cannot be evaluated by a worst-case optimal algorithm. Despite
their latter finding, the authors devise algorithms based on existing worst-case
optimal algorithms. One of these algorithms is GenericJoinCRPQ, which is an
extension of Generic Join (Algorithm 1). More specifically, GenericJoinCRPQ
also considers the RPQs of the graph pattern that have the selected variable
?x for the set intersection (line 5). Additionally, GenericJoinCRPQ materializes
the RPQs that have the selected variable ?x, once ?x is replaced with a value k
(line 7). In subsequent steps, materialized RPQs are treated as triple patterns.
However, the materialization of RPQs can be avoided by evaluating them with
multi-way joins. As the authors study the complexity of GenericJoinCRPQ theo-
retically, they assume a given variable ordering (line 4). As discussed, the variable
ordering is crucial for the performance of multi-way join algorithms. Hence, it is
necessary to consider RPQs in the variable selection process. Furthermore, the
authors assume an arbitrary order for the set intersection (line 5). In practice,
should a triple pattern or an RPQ guide the set intersection? Last, the authors
argue that the running time of GenericJoinCRPQ might end up being too high
when there are multiple recursive steps evaluating RPQs. Our experimental re-
sults show that, even in such cases, the evaluation of C2RPQs with multi-way
joins outperforms existing solutions by considering RPQs in planning steps.
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3 Related Work

Multiple algorithms have been proposed for the evaluation of RPQs. A type of
approaches that has received a lot of attention is that based on finite automata
[6, 28, 30] and recently, an approach based on matrix algebra was introduced [4].
As existing SPARQL engines (e.g., Blazegraph and Virtuoso), our work falls
into the category of approaches that use existing relational operations for the
evaluation of RPQs [1]. However, to the best of our knowledge, our work is
the first to use multi-way joins for the evaluation of RPQs. In addition to the
specialized evaluation algorithms, specialized indices have also been proposed
for the efficient evaluation of RPQs (e.g., [6, 16]). We refer the reader to [6] for
a more detailed review of the literature on the evaluation of RPQs.

For the efficient evaluation of C2RPQs, the works in the literature mostly
focus on obtaining accurate cardinality estimations of RPQs that ultimately lead
to good orderings of two-way joins [1]. A recent work in this direction is presented
in [1]. In [1], the authors propose a cost model for RPQs and an approach based
on random walks for estimating the size of RPQs that do not have any nested
transitive closures (i.e., for path expressions α+ and α∗). Given an RPQ, a fixed
number of random walks evaluate the RPQ up to a specified depth and the RPQ’s
estimated cost is ultimately equal to the sum of the number of results returned
by each random walk. A shortcoming of this approach is that random walks use
bag semantics instead of set semantics, which, as per the authors, might lead
to overestimated cardinalities in dense graphs. Our approach presented below
proposes an end-to-end evaluation methodology for C2RPQs based on multi-way
joins and follows set semantics for estimating the size of RPQs.

4 Evaluating C2RPQs with Multi-way Joins

In this section, we present our approach for the evaluation of C2RPQs using
multi-way joins. Note that the proposed algorithm is not worst-case optimal
[13]. The main characteristic of our approach is the evaluation of RPQs found in
C2RPQs using multi-way joins. The evaluation of RPQs using multi-way joins
offers multiple benefits. First, it allows for the easy integration of RPQs into
multi-way join plans. Our approach is generic and can be adopted by any system
supporting multi-way joins. Second, it does not require the materialization of
RPQs. As in multi-way joins for conjunctive queries, we generate the results
of RPQs incrementally. However, as we discuss later, there are cases where the
materialization of RPQs leads to an improved performance. Third, it allows
for the accurate estimation of the size of RPQs up to an arbitrary depth. The
accurate size estimation of RPQs, enables their inclusion in planning steps of
the algorithm, which is crucial for the efficient evaluation of C2RPQs [1].

4.1 Evaluation of RPQs

The SPARQL standard [17] defines the function ALP for the evaluation of tran-
sitive closures (i.e., path patterns using the * or + operators). Consider an RPQ
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r = (s, α+, ?o), with s /∈ V. At depth 1, ALP evaluates the triple pattern
tp1 = (s, α, ?o). At depth 2, ALP evaluates the triple pattern tp2 = (u, α, ?o) for
every term u ∈ {µ(?o) | µ ∈ Jtp1KG}. In general, for i > 1, ALP uses the terms
generated at depth (i − 1)—that have not been visited already—to evaluate a
triple pattern tpi at depth i. This is generalized to BGPs and unions of BGPs
by replacing α+ with e+ in r, provided e does not have any nested transitive
closures. Here, the main observation is that a transitive closure is evaluated by
a recursive procedure, which, in turn, evaluates a graph pattern P that does
not have any RPQs at each recursive step [1]. We leverage this observation and
use multi-way joins to evaluate P . If P is a BGP, we simply use Generic Join.
If P is a union graph pattern, it can be rewritten to an equivalent pattern P ′

in UNION normal form (Section 2.1, Theorem 1). The BGPs of P ′ are then
evaluated independently and in a serialized manner. The UNION normal form
might lead to a large number of joins; however, this is not common in practice.
For nested transitive closures, ALP needs to evaluate a C2RPQ or a union of
C2RPQs at each step. In such cases, we use Algorithm 3 (Section 4.2).

Algorithm 2 presents the evaluation of RPQs using multi-way joins. The
starting point of the evaluation is EvalRPQ. Based on the number of variables
that the provided RPQ has, EvalRPQ calls the appropriate function for its eval-
uation. EvalRPQ TV (TV stands for term and variable) is based on the ALP
function and is called for RPQs that have only one variable (line 5). Here, we
assume that the object of the RPQ is the variable. The function works in the
same manner for the case of the subject being the variable. As their names sug-
gest, the list to visit and the set visited keep track of the nodes of the input
RDF graph that need to be visited and have already been visited, respectively.
EvalRPQ TV checks first if the RPQ should return paths of length 0 (lines 14-
17). This is the case for the ∗ and ? operators. As discussed above, an RPQ
that does not have any nested RPQs can be rewritten to a graph pattern that
does not have any property path patterns after removing its transitive closure
operator. The resulting graph pattern P ′ (line 18) is used to evaluate paths of
length greater than zero (lines 20-29). The while-loop runs until there are no
more nodes left to be visited. The term in P ′ corresponding to the original term
of the RPQ’s subject position is replaced every time with the node that needs
to be visited (line 23). The updated P ′ is then evaluated by Generic Join (line
24). Nodes that have already been visited are discarded (line 26). The RPQ’s
mapping is updated for each distinct node and returned as a result (line 29). If
the max depth is not exceeded, the nodes returned by Generic Join are pushed
into to visit. For the ? operator, max depth is set to one. For the + and ∗
operators, it is set to the largest possible integer value.

We omit the pseudocode for EvalRPQ VV (VV stands for variable and vari-
able) and EvalRPQ TT (TT stands for term and term) due to space consider-
ations. As in the SPARQL standard [17], EvalRPQ VV assigns every node of
the input graph to the subject position of the RPQ and calls EvalRPQ TV. In
fact, for the + operator, it restricts the visited nodes using the first IRI of the
property path expression. EvalRPQ TT treats either the subject or the object
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Algorithm 2 Evaluation of RPQs with Multi-way Joins

1: // The pseudocode for EvalRPQ TT and EvalRPQ VV is omitted for brevity
2: // As in the SPARQL standard [17], it relies on EvalRPQ TV
3: function EvalRPQ(r, G, X) ▷ r: RPQ, G: RDF Graph X: Mapping
4: if |var(r)| = 1 then
5: yield all EvalRPQ TV(r, G, X)
6: else if |var(r)| = 0 then
7: if EvalRPQ TT(r, G, X) is true then yield X

8: else if |var(r)| = 2 then
9: yield all EvalRPQ VV(r, G, X)

10: function EvalRPQ TV(r, G, X)
11: // For brevity, we only cover the case of the subject being known
12: to visit ← [(subject, 0)] ▷ List of (term, depth) pairs
13: visited ← {} ▷ Set of terms
14: if paths of length 0 need to be returned then ▷ * or ? operator
15: X(object var)← subject ▷ mapping is updated
16: yield X ▷ The mapping is yielded
17: insert subject into visited ▷ keep track of visited terms

18: P ′ ← graph pattern corresponding to r without the transitive closure
19: X ′ ← empty solution mapping for P
20: while to visit is not empty do
21: (term, depth) ← last item from to visit

22: remove the last item from to visit

23: replace the value of subject with the value of term in P ′

24: for all GenericJoin(P ′, G, X ′) do
25: object← X ′(object var)
26: if visited contains object then continue

27: X(object var)← object ; insert object into visited

28: yield X ▷ Output the updated mapping of the RPQ r
29: if depth+1 < max depth then push (object, depth+1) into to visit

as a variable and then calls EvalRPQ TV. If EvalRPQ TV yields the term that
was replaced by the variable, it returns true; otherwise it returns false. To avoid
clutter, we assume that P ′ is in UNION normal form and that the BGPs com-
prising P ′ are evaluated one after another by Generic Join (line 26). To deal
with nested RPQs, we use Algorithm 3 (Section 4.2) instead of Generic Join.

4.2 Evaluation of C2RPQs

Algorithm 3 presents our approach for the evaluation of C2RPQs. One of the
main characteristics of our algorithm is that it does not consider in any part of
the evaluation RPQs that have two variables. Such RPQs are considered once
their subject or object position is bounded to a particular value in one of the
recursive steps of the algorithm. The motivation behind this choice is twofold.
First, RPQs having only one variable are evaluated more efficiently; EvalRPQ
does not have to iterate over unnecessary nodes of the provided graph. Second,
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Algorithm 3 Evaluation of C2RPQs with Multi-way Joins

1: function EvalC2RPQ(Q, G, X) ▷ Q: C2RPQ, G: RDF Graph X: Mapping
2: if there are no RPQs in Q then
3: yield all GenericJoin(Q, G, X) and return

4: for all RPQs r ∈ Q, |var(r)| = 0 do ▷ Evaluate RPQs having no variables
5: if EvalRPQ TT(r, Q, X) is false then return
6: else remove r from Q

7: if Q is empty then yield X and return ▷ A solution is found

8: ?x← select an unresolved variable from X ▷ Uses RPQs and triple patterns
9: q ← PrioRPQ(Q, ?x) ▷ Check if an RPQ should guide the set intersection
10: if q is a triple pattern then ▷ Set intersection only between triple patterns
11: K ←

⋂
tp∈Q|?x∈var(tp){µ(?x) | µ ∈ JtpKG} ▷ Set intersection guided by q

12: for all k ∈ K do
13: X(?x)← k ; Q′ ← assign k to all occurrences of ?x in Q
14: yield all EvalC2RPQ(Q′, G, X) and return

15: for all EvalRPQ(q, G, X) do ▷ q is an RPQ, set intersection guided by q
16: if X(?x) /∈ {µ(?x) | µ ∈ JtpKG} for any tp ∈ Q, ?x ∈ var(tp) then continue

17: Q′ ← assign k to all occurrences of ?x in Q and remove q from Q
18: yield all EvalC2RPQ(Q′, G, X)

19: function PrioRPQ(Q, ?x) ▷ See Section 4.3, Set Intersection
20: // Checks if the set intersection should be guided by an RPQ or a triple pattern
21: // Considers all RPQs r, for which ?x ∈ var(r) and |var(r)| = 1

we are able to acquire more accurate size estimates for the remaining variable.
RPQs having two variables are evaluated only if they do not participate in any
join operations with triple patterns or are part of a cross product. We do not
cover such cases, as they cannot be optimized.

The core of our algorithm is the function EvalC2RPQ. If the input query is
not a C2RPQ, EvalC2RPQ simply calls Generic Join (lines 2-3). EvalC2RPQ
prioritizes RPQs that do not have any variables, as they are not subject to
any further changes. (line 4-6). If the evaluation of all RPQs having no vari-
ables returns true, EvalC2RPQ proceeds with the evaluation of the remaining
C2RPQ. As in Generic Join, EvalC2RPQ first selects the variable to be re-
solved (line 8). Here, C2RPQ considers triple patterns and RPQs having only
one variable. The variable selection strategies are detailed in Section 4.3. Once
a variable is selected, EvalC2RPQ uses PrioRPQ to find out whether an RPQ
or a triple pattern should guide the set intersection (line 9). Again, when it
comes to RPQs, PrioRPQ considers only RPQs having one variable. If a triple
pattern is selected, EvalRPQ behaves as Generic Join. If an RPQ is selected,
it is evaluated using EvalRPQ (lines 15-18). For every value X(?x) returned by
EvalRPQ, EvalC2RPQ checks if X(?x) is found in the evaluation of all triple
patterns tp, with ?x ∈ var(tp) (line 16). Values that are not found in any of the
evaluations, are discarded. RPQs having only the selected variable that are not
evaluated in this recursive step will be evaluated in the subsequent step (lines
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4-6). For example, if there are two RPQs that can be evaluated for the selected
variable, at least one of them will be evaluated in the following recursive step.

4.3 Query Planning and Optimizations

Size Estimation of RPQs Estimating the size of RPQs (i.e., the number of
solutions they return) enables their consideration in the planning steps of the
algorithm. Recall that in our algorithm, in planning steps, we consider only
RPQs that have one variable. To estimate the size of such RPQs, we evaluate
them up to a specified depth. This is possible by assigning a particular value to
max depth in EvalRPQ TV (Algorithm 2). Note that the returned estimation
is equal to the number of solutions found until the provided depth. Following
[1], we evaluate RPQs up to depth 5 to estimate their size. Henceforth, we
will refer to this estimation as default estimation. For RPQs having property
path expressions that consist of a single term (e.g., (s, a+, ?o), with s /∈ V),
we introduce the shallow estimation. In such cases, the shallow estimation is
equal to the evaluation’s size of the triple pattern that results after removing
the transitive closure operator (i.e., (s, a, ?o), with s /∈ V). The size of such triple
patterns are provided in constant time by indices used for multi-way joins [5,
8]. As discussed below, if possible, we use the shallow estimation to avoid using
the default estimation, which is more computationally expensive. Last, to avoid
computing the estimation of an RPQ for a particular subject or object multiple
times, we cache the estimated size for each subject and object.

Set Intersection In Generic Join, the triple pattern that has the smallest car-
dinality for the selected variable should guide the search for finding the variable’s
possible values [29]. For C2RPQs, we also need to consider the RPQs that have
the selected variable. In EvalC2RPQ (line 9, Algorithm 3), we first find the min-
imum cardinality of the selected variable among the triple patterns (see Variable
Ordering). Then, for each RPQ, we first calculate its shallow estimation, if possi-
ble. If the shallow estimation is greater than the minimum cardinality, we do not
calculate the default estimation, as the RPQ will not guide the set intersection.
If the shallow estimation is lower than the minimum cardinality, we calculate the
default estimation to get a more accurate estimation and update the minimum
cardinality accordingly. In the end, the RPQ or the triple pattern having the
minimum cardinality for the selected variable guides the set intersection.

Variable Ordering The order in which variables are resolved is imperative for
the efficiency of multi-way joins [19]. The order can be static [5, 19] or dynamic
[8]. In the first case, the variable ordering of a query is determined before the
query’s evaluation. In the second case, the variable to be resolved is selected at
each recursive step. As described above, the proposed algorithm considers only
RPQs with one variable at planning steps. With a static variable ordering, the
algorithm would have to completely disregard RPQs that have two variables
at the beginning of a query’s evaluation. For this reason, our algorithm uses a
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dynamic variable ordering. During the evaluation of C2RPQs, as variables are
recursively resolved, RPQs that start with two variables end up at some point
having only one variable and hence, can be considered for the variable ordering.

For selecting a variable at each recursive step, we experiment with two strate-
gies. The first strategy was proposed in [8] and at each recursive step, it se-
lects the variable that has the largest guaranteed reduction of the search space
spanned by Cartesian products of the triple patterns’ solutions. We refer to this
strategy as reduction factor. The second strategy is based on the one proposed in
[5] and at each step, it selects the variable that has the minimum cardinality (i.e.,
the variable that is estimated to have the smallest set of possible values). For
both strategies, the size of RPQs is estimated as described in the set intersection.

Materialization of RPQs By using multi-way joins, our approach is able to
evaluate C2RPQs without having to materialize the results of RPQs. However,
there are cases where the materialization of RPQs improves the performance
of the proposed algorithm. Consider the SPARQL query SELECT * WHERE { ?x

<p1> ?z . ?z <p2> ?y . ?y <p3>+ <o> }. If ?y is not the first variable to be
evaluated by EvalC2RPQ, the RPQ might end up being evaluated multiple times
in intermediate recursive steps (line 15, Algorithm 3), while always yielding the
same results. To avoid unnecessary computations, we materialize the results of
such RPQs, i.e., of RPQs that have one variable before the start of the query
evaluation and are evaluated in intermediate recursive steps of EvalC2RPQ.
Note that in [13], all RPQs are materialized.

5 Experimental Results

In this section, we present the performance evaluation of the proposed algorithm,
which we have implemented in the tensor-based triple store Tentris [8, 9]. We re-
fer to our implementation as TentrisRPQ. For the evaluation of TentrisRPQ, we
used the the recently introduced benchmark WDBench [2]. WDBench consists
of a real-world dataset based on Wikidata and queries that are extracted from
Wikidata’s query logs. The experiments presented below were carried out on a
Debian 10 server with an AMD EPYC 7282 CPU, 256GB RAM and a 2TB Sam-
sung 970 EVO Plus SSD. Supplementary material—including datasets, binaries,
queries, scripts, and configurations—is available online.1

5.1 Systems and Experimental Setup

We compared the performance of TentrisRPQ against the performance of the
following well-established triple stores: (i) Blazegraph 2.1.6.RC, (ii) Fuseki 4.9.0,
(iii) GraphDB 10.3.3 (free version), and (iv) Virtuoso 7.2.10. In our experiments,
we also included the graph database MilleniumDB2 [28]. In MilleniumDB, BGPs

1 https://github.com/dice-group/c2rpqs-benchmark
2 https://github.com/MillenniumDB/MillenniumDB, commit: 442e650
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are evaluated by a worst-case optimal multi-way join algorithm and RPQs are
evaluated following an automaton-based approach. When it comes to C2RPQs,
in MilleniumDB, “paths are pushed to the end of join plans” [28] and hence
are not considered in multi-way join plans. We also carried out an evaluation of
different execution strategies using multiple versions of TentrisRPQ.

Our experiments were carried over HTTP using the benchmark execution
framework IGUANA 3.3.3 [12]. For the set of queries that we used in this work,
we created a stress test that was executed by every system four consecutive times,
with the first execution serving as a warm-up run. The query timeout was set
to three minutes. The timeout was set in the systems’ respective configurations.
As in previous works [9], we measured the performance of the systems using
the following metrics: (i) QPS, i.e., the number of queries executed per second,
(ii) pAvgQPS, i.e., the penalized average QPS and (iii) QMPH, i.e., the number
of query mixes executed per hour. Queries that failed (e.g., timed out or returned
an error code) are penalized with a runtime of three minutes.

5.2 Datasets and Queries

The dataset of WDBench is an extract of Wikidata containing 1.26B triples
(92.4M distinct subjects, 8.6K distinct predicates, and 305M distinct objects).
In this work, we focus on the set of C2RPQs provided by WDBench3. As in
[1], we did not consider queries with cross products and queries not using any
of the +, *, or ? operators. To ensure the fair comparison of the benchmarked
systems, from the remaining queries, we only kept those queries, for which the
systems that were able to evaluate them before the specified timeout returned
the same number of solutions and bindings. For example, we had to discard the
queries returning more than 220 results, which is Virtuoso’s hard limit [2, 6, 8].
To alleviate this issue, some works in the literature (e.g., [2, 28]) restrict the
number of solutions using SPARQL’s LIMIT. However, the use of LIMIT without
ordering (ORDER BY in SPARQL) does not guarantee that the benchmarked sys-
tems return the same results. In addition, systems supporting multi-way joins—
including ours—have an inherent advantage when LIMIT is used without order-
ing, as they do not have to compute the full result set; they can terminate once
they have output the requested number of solutions. For these reasons, instead
of using LIMIT, we opted for discarding queries as described above. Ultimately,
we used 305 queries in our experiments, which, as in previous works (e.g., [1,
28]), were evaluated under set semantics (i.e., SPARQL’s DISTINCT is used).
Note that no queries were discarded because of TentrisRPQ, as it returns the
same amount of solutions with at least one other triple store in all queries.

5.3 Evaluation of Execution Strategies

To get insights on the impact that our proposed query planning and optimiza-
tions have on the evaluation of C2RPQs, we compared different execution strate-
gies using different versions of TentrisRPQ, which are presented below.

3 https://github.com/MillenniumDB/WDBench/blob/master/Queries/c2rpqs.txt
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Table 1. The comparison of the different execution strategies. The column failed re-
ports the number of queries for which the corresponding system failed (e.g., timed out)
at least once.

Warm Runs Cold Run

QMPH pAvgQPS failed QMPH pAvgQPS failed

TentrisRPQFMC 10.167 571.654 0 6.433 241.101 0
TentrisRPQFRF 1.304 587.925 5 1.195 222.749 5
TentrisRPQRPC 3.127 576.814 3 2.701 212.881 3
TentrisRPQRP 1.323 586.958 7 1.257 217.213 6
TentrisRPQJP 0.311 78.298 36 0.301 32.791 38

TentrisRPQJP (Join Prioritization) This version always prioritizes join opera-
tions, which leads to RPQs being evaluated only after their variables have been
resolved. RPQs are not considered in the variable selection process.

TentrisRPQRP (RPQ Prioritization) This version always prioritizes RPQs with
one variable. At each recursive step, an RPQ (alongside its remaining variable)
is chosen to be evaluated using the shallow estimation. Note that the set inter-
section of a variable is always guided by an RPQ. If the shallow estimation is
not applicable to any of the RPQs, we select the first available RPQ.

TentrisRPQRPC (RPQ Prioritization and Materialization) This version follows
the same evaluation process as the one presented above and, in addition, mate-
rializes RPQs as discussed in Section 4.3.

TentrisRPQFRF (Full Version with Reduction Factor) This version fully imple-
ments the approaches presented in Section 4. For selecting variables, it follows
the strategy based on the reduction factor. In fact, all of the previously pre-
sented versions of TentrisRPQ use the reduction factor strategy (Section 4.3)
for selecting variables, which is the strategy supported by Tentris.

TentrisRPQFMC (Full Version with Minimum Cardinality) This version also
fully implements the proposed approaches, but for selecting variables, it uses the
minimum cardinality strategy (Section 4.3). The minimum cardinality strategy
is not supported by Tentris; it is only part of TentrisRPQ.

The performance of each execution strategy is presented in Table 1 and Figure
1a. TentrisRPQJP achieves the lowest QMPH and pAvgQPS. The remaining
versions of TentrisRPQ achieve similar pAvgQPS values, with TentrisRPQFMC

achieving the best median penalized QPS followed by TentrisRPQFRF . Regard-
ing the QMPH, TentrisRPQFMC achieves the best performance, which is 3.2
higher than the second best reported performance (TentrisRPQRPC).

These results show the importance of considering RPQs in the planning steps
of the proposed algorithm. TentrisRPQFMC—which is the full version of Tentris-
RPQ and uses the minimum cardinality estimation—does not time out in any of
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Fig. 1. Performance of the benchmarked systems, including the different execution
strategies of TentrisRPQ, in terms of penalized QPS (warm runs).

the queries and achieves the highest QMPH value, outperforming all of the three
versions of TentrisRPQ that prioritize a particular execution strategy. This is
not the case for the second full version of TentrisRPQ, namely TentrisRPQFRF ,
that uses the reduction factor estimation for selecting variables. The difference
between the QMPH values reported by TentrisRPQFMC and TentrisRPQFRF

highlights once again the importance of selecting a good variable ordering. The
reduction factor strategy leads TentrisRPQFRF to time out in some queries,
which has a negative impact on its QMPH value. However, after closely exam-
ining the results, we found queries for which TentrisRPQFRF reports a more
than ten times higher QPS. In these queries (e.g., the queries 53 and 186 in our
supplementary material), the minimum cardinality prioritizes variables that do
not participate in join operations and have values with large multiplicities. As a
result, the set of possible values of the join variables that are found in triple pat-
terns with the prioritized variables are not restricted enough. This leads to the
conclusion that, as part of our future work, we need to devise a variable selection
strategy that combines both of the strategies used in this work. Last, the results
of TentrisRPQRP and TentrisRPQRPC show that the proposed materialization
of RPQs improves the performance of our algorithm.

5.4 Comparison with Existing Solutions

To compare TentrisRPQ with existing storage solutions, we use TentrisRPQFMC .
The comparison’s results are shown in Table 2 and Figure 1b. TentrisRPQFMC

achieves the highest QMPH value, which is 4.3 times higher than the second best
value (GraphDB). TentrisRPQFMC also achieves the highest pAvgQPS and me-
dian QPS. Virtuoso and GraphDB achieve the second best values for pAvgQPS
and median QPS, respectively.

TentrisRPQFMC outperforms all of the competing systems in 213 out of
305 queries. More specifically, it achieves at least two and five times higher
penalized QPS than every other system in 81 and 27 queries, respectively. To



Efficient Evaluation of C2RPQs Using Multi-way Joins 15

Table 2. The comparison of different systems. The column failed reports the number
of queries for which the corresponding system failed (e.g., timed out) at least once.

Warm Runs Cold Run

QMPH pAvgQPS failed QMPH pAvgQPS failed

Blazegraph 0.257 8.315 49 0.256 7.733 48
Fuseki 0.129 19.672 145 0.128 12.932 145

GraphDB 2.322 184.851 1 2.110 80.443 1
MilleniumDB 0.754 48.034 9 0.728 39.395 10

TentrisRPQFMC 10.167 571.654 0 6.433 241.101 0
Virtuoso 1.104 450.330 10 1.098 124.812 10

find the shortcomings of our approach, we focused on the queries for which
TentrisRPQFMC achieves at least 2 times lower penalized QPS than any other
system; this is the case for 45 queries. In these queries, TentrisRPQFMC is mostly
outperformed by the competing systems due to a bad variable ordering or due to
the computational overhead introduced by the default size estimation of RPQs.
This is justified by the fact that, in the majority of these queries, another version
of TentrisRPQ achieves the overall best performance. For example, in most of
the queries where MilleniumDB outperforms TentrisRPQFMC , TentrisRPQJP

performs better than or similar to MilleniumDB. Note that TentrisRPQJP and
MilleniumDB follow similar execution strategies.

6 Conclusion and Future Work

We presented an approach for the efficient evaluation of C2RPQs using multi-way
joins. By evaluating RPQs found in C2RPQs using multi-way joins, the proposed
algorithm is able to exploit RPQs in the planning steps of multi-way joins, which,
as demonstrated by our detailed evaluation of different execution strategies, is
crucial for its performance. The experimental results of our evaluation using
WDBench [2] show that our approach outperforms the state of the art.

As part of our future work, we plan to improve the variable selection process
of the proposed algorithm by combining the strategies based on the reduction
factor and minimum cardinality. We also plan to reduce the computational over-
head of our default estimation by terminating the estimation once the active
minimum cardinality has been exceeded. We have already used our approach
for the evaluation of negated property sets and plan to further study their effi-
cient evaluation. However, we have observed a lack of benchmark queries using
negated property sets, which makes their optimization challenging.
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4. Arroyuelo, D., Gómez-Brandón, A., Navarro, G.: Evaluating regular path queries
on compressed adjacency matrices. In: Nardini, F.M., Pisanti, N., Venturini,
R. (eds.) String Processing and Information Retrieval - 30th International
Symposium, SPIRE 2023, Pisa, Italy, September 26-28, 2023, Proceedings.
Lecture Notes in Computer Science, vol. 14240, pp. 35–48. Springer (2023),
https://doi.org/10.1007/978-3-031-43980-3 4

5. Arroyuelo, D., Hogan, A., Navarro, G., Reutter, J.L., Rojas-Ledesma, J., Soto,
A.: Worst-case optimal graph joins in almost no space. In: Li, G., Li, Z., Idreos,
S., Srivastava, D. (eds.) SIGMOD ’21: International Conference on Management
of Data, Virtual Event, China, June 20-25, 2021. pp. 102–114. ACM (2021),
https://doi.org/10.1145/3448016.3457256

6. Arroyuelo, D., Hogan, A., Navarro, G., Rojas-Ledesma, J.: Time- and space-
efficient regular path queries. In: 38th IEEE International Conference on Data
Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022. pp. 3091–
3105. IEEE (2022), https://doi.org/10.1109/ICDE53745.2022.00277

7. Atserias, A., Grohe, M., Marx, D.: Size bounds and query plans for relational joins.
In: 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2008, October 25-28, 2008, Philadelphia, PA, USA. pp. 739–748. IEEE Computer
Society (2008), https://doi.org/10.1109/FOCS.2008.43

8. Bigerl, A., Conrads, F., Behning, C., Sherif, M.A., Saleem, M., Ngomo, A.N.:
Tentris - A tensor-based triple store. In: Pan, J.Z., Tamma, V.A.M., d’Amato, C.,
Janowicz, K., Fu, B., Polleres, A., Seneviratne, O., Kagal, L. (eds.) The Semantic
Web - ISWC 2020 - 19th International Semantic Web Conference, Athens, Greece,
November 2-6, 2020, Proceedings, Part I. Lecture Notes in Computer Science, vol.
12506, pp. 56–73. Springer (2020), https://doi.org/10.1007/978-3-030-62419-4 4

9. Bigerl, A., Conrads, L., Behning, C., Saleem, M., Ngomo, A.N.: Hashing the hy-
pertrie: Space- and time-efficient indexing for SPARQL in tensors. In: Sattler, U.,
Hogan, A., Keet, C.M., Presutti, V., Almeida, J.P.A., Takeda, H., Monnin, P.,
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21. Malyshev, S., Krötzsch, M., González, L., Gonsior, J., Bielefeldt, A.: Getting the
most out of wikidata: Semantic technology usage in wikipedia’s knowledge graph.
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22. Ngo, H.Q., Porat, E., Ré, C., Rudra, A.: Worst-case optimal join algorithms. J.
ACM 65(3), 16:1–16:40 (2018), https://doi.org/10.1145/3180143
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