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Abstract. Generating SPARQL queries is crucial for extracting rele-
vant information from diverse knowledge graphs. However, the structural
and semantic differences among these graphs necessitate training or fine-
tuning a tailored model for each one. In this paper, we propose UniQ-
Gen, a unified query generation approach to generate SPARQL queries
across various knowledge graphs. UniQ-Gen integrates entity recognition,
disambiguation, and linking through a BERT-NER model and employs
cross-encoder ranking to align questions with the Freebase ontology. We
conducted several experiments on different benchmark datasets such as
LC-QuAD 2.0, GrailQA, and QALD-10. The evaluation results demon-
strate that our approach achieves performance equivalent to or better
than models fine-tuned for individual knowledge graphs. This finding
suggests that fine-tuning a unified model on a heterogeneous dataset of
SPARQL queries across different knowledge graphs eliminates the need
for separate models for each graph, thereby reducing resource require-
ments.

Keywords: SPARQL Generation · Question Answering over Knowledge
Graphs · Large Language Models · KGQA

1 Introduction

Large language models (LLMs) have recently shown significant performance in
various NLP tasks, including answering questions on Knowledge Graphs (KGQA) [1].
These models are often fine-tuned on a domain-specific dataset (e.g., QALD-10)
to convert natural text to corresponding logical forms like a SPARQL query [2] or
S-expression [3]. However, training or fine-tuning LLMs is a resource-intensive
process that require a lot of computational resources such as extensive GPU
hours [4]. Current approaches typically train or fine-tune an LLM on a single
domain-specific dataset or knowledge graph [2]. However, these methods require
further tuning when applied to new domains or knowledge graphs. This is due
to knowledge graphs (e.g.g, Freebase [5], Wikidata [6], and DBpedia [7]) have
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Query Generation
(Wikidata)

Query Generation
(Freebase)

SELECT ?country WHERE {
  wd:Q1286 wdt:P17 ?country.

}

Which countries are the Alps mountains located in?

SELECT ?country WHERE {
?alps <http://rdf.freebase.com/ns/type.object.name>

"Alps"@en .
?alp

<http://rdf.freebase.com/ns/location.mountain_range.mountains> ?
mountain.
?mountain

<http://rdf.freebase.com/ns/location.location.containedby> ?
country .}

Fig. 1: An example of two individual models for generating SPARQL queries
across different knowledge graphs.

significant variances in data representation. For instance, Wikidata represents
’The Apls Mountains’ with semantic identifiers like wd:Q1286, while Freebase
uses encoded identifiers such as ?alps <http: // rdf. freebase. com/ ns/ type.
object. name> Alps @en as shown in Figure 1. Moreover, Freebase hierarchically
organizes semantic relations between entities, which differs from the structures in
other knowledge graphs. These differences pose challenges in developing systems
that are compatible with multiple knowledge graphs. Each knowledge graph re-
quires a different entity linking and query generation components. Consequently,
adapting to these differences needs re-training or fine-tuning of LLMs to ensure
effective performance.

In this paper, we propose a unified approach to fine-tune a single large lan-
guage model for generating SPARQL queries across different knowledge graphs.
Our approach involves fine-tuning one LLM on multiple knowledge graphs rather
than training separate models for each graph. To achieve this, we combine train-
ing data from multiple knowledge graphs in one dataset. This joint fine-tuning of
one LLM allows to better generalization across different data representations and
structures. As result, a single model for multiple KGs significantly reduces the
resource requirements in a productive environment, as only one model needs to
be deployed rather multiple models for different knowledge graphs. To evaluate
the performance of our approach, we perform a comparative analysis between
models tailored to each knowledge graphs and our unified model. In our exper-
iments, we use two different knowledge graphs (Wikidata and Freebase), which
have significant different in their SPARQL queries. Furthermore, we extract rel-
evant information (e.g., entities, relations, types) from the knowledge graph and
investigate which information has the most impact of the performance of query
generation. The evaluation results demonstrate that our approach achieves per-
formance comparable to, or the same as, single KG models, reducing the need
for training or fine-tuning the model separately for each knowledge graph. We
summarize the main contributions of this paper as follows:

<http://rdf.freebase.com/ns/type.object.name>
<http://rdf.freebase.com/ns/type.object.name>
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– We propose a unified approach for generating SPARQL queries for multiple
knowledge graphs.

– Our approach achieves equivalent or comparable performances as individ-
ual models (which tailored for each KG), eliminating the need for separate
training or fine-tuning an LLM for each KG.

– Incorporating relevant information (e.g., entities, relations, and types) within
the LLM prompt improves the performance of SPARQL query generation.

– The source code and datasets used in our experiments are publicly available.1

2 Related Work

2.1 Query Generation on a Single Knowledge Base

Wikidata Recent approaches [2, 8] treat the query generation problem as a
translation problem. The task is to translate a natural language question into a
SPARQL query. As inputs these models use the natural language question itself,
plus linked knowledge such as entities and relations from the knowledge base [2].
Applying fine-tuning techniques to language models also become increasingly
popular over recent years. Other approaches use patterns for generating a set of
candidate queries [9, 10]. Afterward, a ranking approach is applied to computing
the final prediction. Commonly all approaches apply entity linking, which usually
consists of a span detection step and a disambiguation step. The output of the
disambiguation is either a ranked list of entities per span or only one entity per
span in the case of an end-to-end entity linking setup.

Freebase On the Freebase knowledge base, semantic parsing is usually solved by
iteratively predicting and ranking queries in the form of S-Expressions [2, 3, 11].
For example, the RnG-KBQA [3] framework uses a combination of ranking and
query generation for predicting queries. Different from the translation approaches
used for Wikidata question answering, candidate queries are generated and intro-
duced in the generation model. Other approaches such as Pangu [12], construct
queries, by iteratively extending and ranking a set of query sub-plans. All models
share the characteristic of computing a large number of sub-plans, which demand
significant resources in terms of GPU memory and time, making an end-to-end
implementation usually unavailable.

2.2 Query Generation on Multiple Knowledge Graphs

Since the Semantic Web’s inception, various methods have been developed for se-
mantic parsing over multiple or interlinked knowledge graphs. One early method,
PowerAqua by Lopez et al. [13], uses semantic similarity between ontology terms
and user queries to generate query triples, which an inference engine uses to
retrieve answers. Its updated version [14] works on large KGs like DBpedia2

1 https://github.com/dice-group/KATRINA
2 https://www.dbpedia.org/

https://github.com/dice-group/KATRINA
https://www.dbpedia.org/
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but struggles with scalability, performance, and effectiveness, especially with
large-scale data, complex queries, and integrating data from different ontologies,
requiring significant effort for updates and maintenance. SINA, introduced by
Shekarpour and Auer [15], is a data-semantics-aware keyword search approach
that converts natural language and keyword queries into SPARQL queries for
accessing interlinked KGs within the Linked Open Data Cloud. It uses a hidden
Markov model for query disambiguation and resource identification, leveraging
Linked Data topology to construct federated SPARQL queries for information
retrieval from multiple KGs. However, this process is computationally complex,
and the keyword-based approach can overlook the question’s syntax.

OQA by Fader et al. [16] enhances answer accuracy and coverage by inte-
grating curated KBs like Freebase with automatically extracted KBs, employing
NLP for query translation and paraphrase-driven learning for query variability.
In a similar manner, MULTIQUE by Bhutani et al. [17] uses semantic pars-
ing through neural networks to handle complex queries by combining curated
and extracted KBs. These approaches rely heavily on textual data, making it
challenging to manage and computationally expensive to extract relevant infor-
mation on-demand. Zhang et al. [18] employed a rule-based method to handle
queries across multiple KGs by identifying resources, forming triple patterns,
aligning variables, and performing joint inference to create accurate SPARQL
queries. However, string matching for entity linking can cause mismatches and
missed entities due to its inability to disambiguate similar names and handle
naming variations accurately. Neelam et al. [19] introduced SYGMA, which
streamlines query generation through KB-agnostic "Question Understanding"
and KB-specific "Question Mapping & Reasoning." It uses abstract meaning
representation to create a KB-agnostic lambda expression, refined with specific
KB details before being converted into a SPARQL query using a rule-based sys-
tem. SYGMA’s modular design aids generalization but is sensitive to individual
module performance, particularly relation linking.

3 Approach

Figure 2 shows an overview of approach (UniQ-Gen) for generating SPARQL
queries for multiple knowledge graphs (e.g., Wikidata and Freebase) using a sin-
gle model. We achieve this by fine-tuning the T5 [20] model on a mixed dataset,
containing training examples of (natural questions, SPARQL-for-Freebase) and
(question, SPARQL-for-Wikidata). In this way, the fine-tuned T5 model learns
how to generate SPARQL queries for both graphs, rather than fine-tuning two
separate models for each graph. Accordingly, we reduce the computational and
maintenance costs associated with fine-tuning and managing separate models
for each knowledge graph. The following sections describes the details of each
module in our approach, including Knowledge Extraction and Query Generation.
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SELECT ?country WHERE {
  wd:Q1286 wdt:P17 ?country.

}

Which countries are the Alps mountains located in?NER
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Fig. 2: Our approach (UniQ-Gen) for generating SPARQL queries using one
model for multiple knowledge graphs.

3.1 Knowledge Extraction

The knowledge extraction process involves three main tasks: named entity recog-
nition (NER), entity disambiguation (ED) and entity linking (EL). Named entity
recognition identifies and classifies entity spans within the text[21], while entity
disambiguation associates these spans with corresponding entities in the target
knowledge graph. First, we extract relevant information (e.g., entities, relations,
and types) from the input question. Noteworthy, This process varies between
Wikidata and Freebase due to their different structures and representations of
information.

Extracting Knowledge from Wikidata Many question-answering approaches
rely on pre-built frameworks, such as DBpedia Spotlight, which generally yield
satisfactory results, due to the significant resources required to develop an effi-
cient linking systems. However, these frameworks often struggle with identifying
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Question: Which countries are the Alps mountains located in? [SEP]

Entities: Country: P17, Alps mountains: Q1286; ,[SEP]

Relations: located in: P138 [SEP]

Target Knowledge Graph: Wikidata.

Fig. 3: An example input for generating SPARQL query with Wikidata

and categorizing relations and types. For instance, in a query like “Which moun-
tains are located in the US?”, a typical NER framework would only recognize
“US” as an entity. For accurate query generation, it is essential to also link
the term “mountains” to the knowledge graph. Additionally, these frameworks
usually fail to predict relationships between entities, a critical factor for enhanc-
ing QA system accuracy. To address these limitations, we employ the following
methods:

– Entity Recognition, Disambiguation, and Linking : We use Flair [22], a state-
of-the-art framework that employs an LSTM network with contextual string
embeddings to accurately recognize and classify entity spans within text. For
entity disambiguation, we use GENRE [23], which applies an autoregressive
transformer architecture based on the pre-trained BART model with con-
strained decoding and beam search to predict Wikipedia titles. We link these
titles with Wikidata using a dictionary, assuming each entity has a unique
label mapping to a single Wikipedia title.

– Extracting Relations and Types: We use a fine-tuned T5 model to predict
types and relations that are not directly mapped to spans in the input se-
quence. For example, in the question “Which is the highest mountain in the
US?”, the relation “is located in” is needed but not directly present in the
text. We extend target labels to include relations, e.g., “Who is the spouse
of Obama[SEP]entities: Barack Obama, relations: spouse.”

We combine the outputs of these methods and use a dictionary to map Wikidata
labels to their URIs, assuming each label is unique within the knowledge graph.
These outputs are then used as input for the Query Generation module, as
shown in Figure 2. The input includes: the question, entities, relations and a
target knowledge graphs. All are concatenated using a separation token, [SEP]
as shown in Figure 3.

Extracting Knowledge from Freebase Many types and relations in Freebase
share identical labels due to its hierarchical ontology, making pre-built methods
(e.g., Flair) for linking entities, relations, and types in Wikidata inadequate.
Therefore, we adapt existing methods for extracting knowledge from Freebase
as follows:
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Table 1: Training Samples
Question Entities Relations Target SPARQL
Is Kevin Costner owner of wd:Q11930 wdt:P1830 wikidata ASK...Fielders Stadium? wd:Q5447154
how many hadrons are in physics.hadron, physics.particle. freebase SELECT (COUNT...the family meson? m.04_rh family
What periodical literature wd:Q188920 wdt:P2813 wikidata SELECT...does Delta Air Lines wd:Q1002697 wdt:P31use as a moutpiece?

– Entity Recognition, Disambiguation, and Linking : Our approach aligns with
the RNG-KGQA framework [3], employing a BERT-NER model to accu-
rately detect entity mentions within the text. For entity disambiguation,
we use a pre-trained BERT-based model that leverages relation information
linked with each entity, thereby improving the ranking of the target entity.
For entity linking, our approach matches these mentions with surface forms
from the Freebase KG, ranks them using popularity scores, and retains the
top 5 candidates. The ranking model employed is a cross-encoder model, as
described in Equation 1.

– Types and Relations Linking : Our approach follows the schema retrieval
method from the TIARA Framework [11], using a cross-encoder ranker to
rank relations and types from the Freebase Ontology. The score for question
(x) and a schema (c) is computed as:

s(x, c) = Linear(BertCls([x; c])) (1)

where BertCLS represents the CLS token from a BERT-encoder [11]. We
use the top-5 relations and types as input for our query generation model.

3.2 Query Generation

We employ the T5 model in this module, which has demonstrated promising
results in query generation task [2, 3]. In particular, we fine-tune the T5 model
on diverse training dataset containing SPARQL queries from multiple knowledge
graphs (Wikidata and Freebase). Table 1 show show some training examples of
the dataset used to fine-tune the T5 model, including examples for question-to-
SPARQL(wikidata) and question-to-SPARQL(freebase). One example includes: an
input question, the (entities relations, and types), a target KG (e.g., Wikidata),
and the ground-truth SPARQL query. During the training phase, these samples
are shuffled into one batch and the T5 model is trained to generate SPARQL
queries based on the input questions and the target knowledge graph. This pro-
cess involves fine-tuning the model to accurately map the linguistic structures
of the questions to the target knowledge graph.

Language models often encounter challenges with special tokens such as {
or }, which are integral to SPARQL queries. To address this issue, we replace
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these tokens in the target strings as follows: { with _cbo_ and } with _cbc_. We
normalize variables by replacing the leading ? -token. For example, a variable like
?uri is replaced with _var_<id>, or _result_<id> if it is a part of the result
set. Here, <id> represents a number, as a query can contain multiple variables.
During the T5 model’s inference, we revert these substitutions to generate a valid
SPARQL query. For variables, we only replace the leading underscore with the
? -token. Note that types are included under the entity tag to shorten the input
string, as entities and types are used similarly in SPARQL queries. For Freebase
the approach is the same, except that the string target:freebase is appended at
the end of the input string instead of the string

4 Experiments

We conducted our experiments to answer the following research questions:

– RQ1: How well does our unified model perform compare to individual lan-
guage models, trained on single knowledge graphs, for SPARQL query gen-
eration?

– RQ2: How does our unified model perform compared to state-of-the-art
baselines?

– RQ3: What is the impact of incorporating knowledge such as entities, rela-
tions, and types on the performance of the query generation models?

– RQ4: How does integrating knowledge from different resource extraction
frameworks into the training datasets affect the performance of query gen-
eration models?

4.1 Datasets

In our experiments, we use different benchmark datasets, namely, LC-QuAD
2.0[24], and QALD-10 [25] on Wikidata knowledge graph and GrailQA [26] on
Freebase knowledge graph. We briefly describe these datasets as follows:

– LC-QuAD 2.0 [24] is a large dataset with 30k questions in English, each
paired with a corresponding Wikidata query. The dataset is divided into a
training subset with around 24k questions and a test set with 6k questions.

– QALD-10 [25] this dataset is manually annotated with 394 question-query
pairs across different languages. It is an updated version of the QALD-9
dataset, referred to as QALD-9-plus. As the dataset is comparably small,
we initially trained our model on the LC-QuAD 2.0 dataset as a pre-trained
model (i.e., foundation model), then fine-tuned it on the QALD-9-plus dataset,
following the same training strategy as [27].

– GrailQA [26] This dataset is a large, crowdsourced collection from Free-
base KG, containing around 64k questions. The dataset provides not only
SPARQL queries but also contains S-expressions as alternative logical rep-
resentations. The dataset is divided into a train split with 44K questions a
development with 6k and a test split with 13k.
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4.2 Experiment Setup

In our experiments, we use Nvidia-H100 GPUs for efficient models training. The
T5-base model is used as a foundation model,since it is widely used in query
generation research and ensures comparability with other methodologies. Each
model is trained for a maximum 50 epochs with an early stopping mechanism to
mitigate overfitting. For our unified model, we combine the LC-QuAD 2.0 [26]
and GrailQA [24] datasets. Despite GrailQA containing approximately 20k more
questions than LC-QuAD 2.0, our experiments show no significant impact on
performance, indicating that data balancing is unnecessary. For the QALD-9-
plus dataset, we fine-tuned our pre-trained LC-QuAD and Freebase model and
supplemented the training data with an equivalent number of randomly selected
entries from the GrailQA dataset to match the volume of the QALD-9-plus
dataset.

4.3 Evaluation

We evaluated the performance of SPARQL query generation using the GERBIL-
QA framework [28]. This framework is well-established with different benchmark
datasets and evaluation metrics, including Micro-F1, Macro-F1, and Macro-F1
QALD, which are used in the QALD challenge.3. We adopted the same evaluation
setting of Usbeck et al. [29], and also included metrics such as Macro Precision,
Macro Recall, Macro F1, and Macro F1-QALD. The Macro F1 score is calculated
per question and uses the geometric mean for the final score. For clarity, we refer
to Macro Precision, Macro Recall, Macro F1, and Macro F1-QALD as Precision,
Recall, F1, and F1-QALD, respectively. We set up the Virtuoso Triple Store for
Freebase following instructions from the GrailQA repository4, and for Wikidata,
we used the official Triple Store.5 Each query is generated regardless of whether
the triple store returns an empty result set. We did not verify the correctness of
the generated queries; therefore, improperly formatted queries result in an empty
set of results. Finally, we compiled all outputs into a QALD-formatted JSON
file and submitted it using the ‘upload result file’ function in the GERBIL-QA
framework to calculate the final results.

4.4 Results and Discussion

Comparison of Unified Model and Single KG models (RQ1) To answer
this question, we implemented two different variants of models: the first model
is a unified model which is fined-tuned on a heterogeneous dataset of SPARQL
queries for Wikidata and Freebase. The other variants are single models tailored
for Freebase and Wikidata, which are trained only on the train subsets for the
respective KG.
3 https://www.nliwod.org/challenge
4 https://github.com/dki-lab/GrailQA
5 https://query.wikidata.org/

https://www.nliwod.org/challenge
https://github.com/dki-lab/GrailQA
https://query.wikidata.org/
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Table 2: Comparison of joint and single KG models RQ1

Dataset Experiment Precision Recall F1 F1 QALD

LC-QuAD

Gold resources joint 0.88 0.87 0.88 0.92
Gold resources only LC-QuAD data 0.88 0.88 0.89 0.92
End-to-end joint 0.47 0.47 0.47 0.62
End-to-end only LC-Quad data 0.42 0.43 0.42 0.59

GrailQA

Gold resources joint 0.51 0.59 0.54 0.67
Gold resources only Grail QA data 0,54 0.62 0,57 0,68
End-to-end joint 0.3 0.34 0.31 0.49
End-to-end only Grail QA data 0,3 0.34 0,31 0,49

QALD-10

Joint gold resources 0.49 0.49 0.49 0.64
Gold resource only QALD 0.47 0.47 0.47 0.62
Joint end-to-end model 0.44 0.45 0.44 0.60
End-to-end only QALD-10 0.45 0.45 0.45 0.61

We conducted two experiments using these models. The first one, referred as
the gold-resource experiment, involved evaluating the models using high-quality
input data derived from the test splits. This evaluation process involves ex-
tracting entities, types, and relations from the test split, then incorporated as
additional information into the model’s input. In contrast, the second experi-
ment, referred to as the end-to-end experiment, used knowledge acquired from
our Knowledge Extraction module approach as direct input for the model. Our
analysis on the GrailQA dataset shows that in the end-to-end configuration, the
unified model performs equivalently to the single KG models. Conversely, in the
gold-resource setup, the performance disparity between the unified and single
KG models is minimal. Similarly, on the LC-QuAD dataset, the end-to-end per-
formance of the unified model surpasses the single KG model. For the GrailQA
dataset, the difference in performance between models trained and evaluated us-
ing gold resources was negligible. On the QALD-10 dataset, the unified model’s
performance with gold-resource input slightly outperforms the single KG model.
In the end-to-end experiment, the single KG model achieves a higher F-Measure
by one percent compared to the unified model, though this difference is marginal,
consistent with results from other datasets. Overall, the results show that the
unified model achieves comparable or equivalent performance as single KG mod-
els across all experiments.

Comparison with state-of-the-art models (RQ2)

Results on Wikipedia Datasets. We conducted two experiments on the LC-
QuAD 2.0 dataset to compare the performance with state-of-the-art baselines in
SPARQL query generation. First, we evaluated the performance of our system
using golden entities and relations as inputs. Remarkably, the performance of
our approach is aligned with the performance of Banerjee et al. [2], which uses
also the T5-small model. This similarity in performance can be attributed to



UniQ-Gen: Unified Query Generation across Multiple Knowledge Graphs 11

Table 3: Baseline comparison on Wikidata datasets RQ2

Approach F1 QALD

Borroto et al. [8] 0.59
Diefenbach et al. [9] 0.58
Shivashanker et al. [30] 0.49
Baramiia et al. [31] 0.43

Joint model end-to-end 0.60
Single KG model end-to-end 0.61

(a) Results on the QALD-10 dataset

Approach F1

GPT 3.5. [1] 0.39
Chat GPT [1] 0.42

Joint model end-to-end 0.46
Single KG model end-to-end 0.42

(b) End-to-end Results on the
LC-QuAD 2.0 datasets

Approach F1 QALD

Banerjee et al. [2] (T5 base) 0.91
Banerjee et al. [2] (T5 small) 0.92
Banerjee et al. [2] (PGN-BERT) 0.86

Joint model gold knowledge 0.92
Single KG model gold knowledge 0.92

(c) Baseline comparison on the LC-QuAD dataset with gold knowledge

Table 4: Baseline comparison on the GrailQA dataset RQ2

Approach Precision Recall F1 F1 QALD

Shu et al. 2022 [11] 0.59 0.71 0.62 0.71
Shu et al. 2024 [32] 0.59 0.71 0.62 0.71
Yu et al. 2023 [12] 0.64 0.79 0.68 0.72
Yu et al. 2024 [33] 0.62 0.79 0.67 0.71

Joint model end-to-end 0.3 0.34 0.31 0.49
Joint model gold 0.51 0.59 0.54 0.67

the similar inputs, despite the fact that our study employs a unified model for
multiple KGs. In an end-to-end setup, our unified model achieves outperforming
results compared to the model by Tan et al. [1] in terms of Macro F1-measure.
For additional comparison, we refer to the results from the KGQA-leaderboard6.
Furthermore, on the QALD-10 dataset, our approach achieves state-of-the-art
results in terms of F1-QALD measure. Across all Wikipedia datasets, our unified
model achieves the same or comparable results as single models.

Results on Freebase (GrailQA) dataset In the next step, we compare our
results with the baseline models on the GrailQA dataset. It is important to note

6 https://github.com/KGQA/leaderboard/

https://github.com/KGQA/leaderboard/
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Table 5: comparison of different input data RQ3

Dataset Experiment Precision Recall F1 F1 QALD

LC-QuAD
Baseline 0.37 0.37 0.37 0.53
Entities & types 0.7 0.71 0.71 0.81
Golden resources 0.88 0.87 0.88 0.92

GrailQA
Baseline 0.2 0.24 0.21 0.39
Golden entities & Golden types 0.33 0.4 0.35 0.54
Golden resources 0.51 0.59 0.54 0.67

that the evaluation script used by GrailQA differs from ours, since it assesses
queries in the form of S-expressions instead of SPARQL queries. To evaluate on
the Gerbil-QA framework, we only included systems that provide their results
in a format compatible with QALD. Our findings indicate that the results are
not as strong as those achieved by the baseline models. This is mainly because
the GrailQA dataset focuses on queries that require detailed knowledge of the
Freebase structure, especially its hierarchical ontology. Existing methods usually
generate and rank sub-queries, making it possible to learn the knowledge graph
structure. However, these methods are resource intensive, as they need to gener-
ate and rank a large set of queries, resulting in a slow processing [11, 33], which
may not be suitable for use in a production environment.

Influence of KG knowledge on the model performance (RQ3) To an-
swer this question, we conducted different experiments on extensive datasets,
LC-QuAD 2.0 and GrailQA, to ensure that the models are trained on sufficient
number of entities and relations. We carried out three experiments for each
knowledge graph: i) The first experiment, referred to as a baseline experiment
that used only the question as input. ii) The second experiment includes ad-
ditional information such as entities and types as well as the question as an
input. iii) The third experiment is referred a golden-resource experiment, where
entities, types and relations are included with the question as an input.

Table 5 shows the evaluation results of all experiments, indicating that the
model’s performance improved with the additional information (entities, rela-
tions, and types). Specifically, adding entities and types led to a significant per-
formance boost. While relations also improved performance with less noticeable
compared to entities. Overall, the LC-QuAD dataset demonstrates better results
(F-measure of 0.88), with the additional information. In contrast, the GrailQA
dataset reaches an F-measure of only 0.54. Therefore, future research should
focus on adding more detailed information, such as the structural aspects of
knowledge graphs.

Experiments with different training data (RQ4) Typically, training data
is enriched with additional information by adding golden-resource entities and
relations from the target SPARQL queries. This method often causes the model
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Table 6: Comparison of different training setups RQ4

Dataset Experiment Precision Recall F1 F1 QALD

LC-QuAD

Gold resources 0.88 0.87 0.88 0.92
Gold resources inc. KE 0.84 0.85 0.84 0.90
End-to-end 0.46 0.46 0.46 0.6
End-to-end inc. KE 0.47 0.47 0.47 0.62

GrailQA

Gold resources 0.33 0.4 0.35 0.54
Gold resources inc. KE 0.51 0.59 0.54 0.67
End-to-end 0.12 0.15 0.12 0.26
End-to-end inc. KE 0.3 0.34 0.31 0.49

QALD-10

Gold resources inc. KE 0.49 0.49 0.49 0.64
Gold resources 0.48 0.49 0.48 0,64
End-to-end inc. KE 0.44 0.45 0.44 0.60
End-to-end model 0.27 0.28 0.28 0.43

to duplicate the input information without distinguishing between relevant and
irrelevant data. We address this issue by extracting relevant information using
our Knowledge Extraction module and include ine the training data. To achieve
this, we carried out several experiments per dataset, by training the model only
with the golden-resource information from the dataset and additional input from
knowledge extraction. Afterward, we performed the same experiments as in sec-
tion 4.4, evaluating the models with both gold input and in an end-to-end setup.

Our findings indicate that including relevant information improves the model
performance across all datasets in the end-to-end setup. However, on the LC-
QuAD dataset, the performance improvement is minimal compared to training
with gold-standard data. On the GrailQA dataset, we achieve a significant im-
provement, as the results improved from 0.26 to 0.49 in terms of the F1 QALD
measure. Similarly, on the QALD dataset, the model’s performance improved
from 0.43 to 0.6. These variations in performance across datasets can be at-
tributed to different Knowledge Extraction methods in linking data. For instance,
entity mentions in LC-QuAD closely align with those in Wikidata knowledge
graph, whereas QALD-10 presents greater ambiguity. For example, the ques-
tion: “Do the princes William and Harry share the same mother?”, where the
entities are referred to only by their first names. In the evaluation setup, with
golden-resource information, we observe a performance improvement only on the
GrailQA dataset. This is not surprising, as incorporating golden information can
introduce noise into the model inputs.

5 Conclusion and future work

This paper presents UniQ-Gen, a unified approach for fine-tuning a single model
to generate SPARQL queries across different knowledge graphs. Our results
demonstrate that training a unified model on a heterogeneous dataset (e.g., in-
cluding samples from Wikidata and Freebase) achieves comparable performance
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to single models for individual knowledge graphs, eliminating the need for sepa-
rate models for each graph. Moreover, incorporating additional information such
as entities, relations, and types, significantly enhances the performance of query
generation models. While there are many effective solutions for entity linking, ac-
curate and efficient relation linking remains a challenge in the field of knowledge
graph question answering. However, our one-shot query generation approach
lacks the incorporating of structural information about the knowledge graph. In
our future work, we plan to address this limitation by including structural in-
formation (e.g., hierarchical relationships between entities) in our unified model.
Furthermore, we will also adapt our approach to handle structural differences
between knowledge graphs by integrating KG-specific structural knowledge.
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