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Abstract. Class expression learning based on refinement operators is
a popular family of explainable machine learning approaches for RDF
knowledge graphs with ontologies in description logics. However, most
implementations of this paradigm fail to scale to the large knowledge
graphs found on the Web. One common bottleneck of these implemen-
tations is the instance retrieval function. We address this drawback by
introducing an algorithm inspired by worst-case optimal multi-way joins
for the evaluation of SPARQL queries that correspond to ALC class ex-
pressions. The main characteristic of our algorithm is the inclusion of
negation, which is prominent in SPARQL queries generated from ALC
class expressions, in multi-way join plans. We evaluate the implementa-
tion of our approach on five benchmark datasets against four state-of-
the-art graph storage solutions for RDF knowledge graphs. The results of
our extensive evaluation show that our approach outperforms its compe-
tition across all datasets and that it is the only one able to scale to large
datasets. With our approach, we enable learning algorithms to retrieve
information from Web-scale knowledge graphs, hence making ante-hoc
explainable machine learning easier to deploy on the Semantic Web.

Keywords: knowledge graphs · class expression learning · multi-way
joins

1 Introduction

RDF knowledge graphs are now first-class citizens of the Web. Over 80 billion
RDF assertions are found in the 2021 crawl of the Web Data Commons.1 RDF
data dumps on the Web cover a similar order of magnitude.2 Learning on RDF
data at this scale is hence crucial for the deployment of machine learning on the
Web—the world’s largest shared information source with over 5 billion users.
The large proportion of the human population impacted by machine learning on

1 http://webdatacommons.org/structureddata/\#results-2021-1
2 http://lod-a-lot.lod.labs.vu.nl/
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the Web entails the need for explainable machine learning because of its known
societal advantages [8].

A popular family of ante-hoc explainable approaches for supervised learning
on RDF knowledge graphs are class expression learning algorithms based on
refinement operators [10, 18, 23]. Given a set of positive and negative examples,
these approaches generate a class expression in a predefined description logic,
which ideally describes the positive and not the negative examples. However, a
large body of literature on learning class expressions [13, 17, 23] suggests that
these approaches do not scale to the size of datasets found on the Web. This is
mostly due to their instance retrieval function–which computes the instances of
given class expressions [10, 18, 23]–being unable to retrieve instances in a time-
efficient manner [18, 23]. The authors of [7] suggest that this weakness can be
addressed by converting class expressions into SPARQL queries.

SPARQL3 is the designated language for querying RDF knowledge graphs.
A recent advancement in querying processing is the introduction of worst-case
optimal multi-way join algorithms [19]. Worst-case optimal multi-way join al-
gorithms have been adopted by the semantic web community [15] and are now
being used by state-of-the-art knowledge graph storage solutions (e.g., triple
stores) for the efficient evaluation of SPARQL queries [2, 5]. However, the use
of multi-way joins for SPARQL is mostly limited to conjunctive queries. How-
ever, as demonstrated in Section 3, class expression learning with SPARQL does
not only deal with conjunctive queries; in particular, it requires the efficient
evaluation of queries containing negation.

The hypothesis behind this work is that we can exploit multi-way joins to
implement a time-efficient retrieval function for class expression learning. To
this end, as in previous works (e.g., [13, 17]), we set our focus on the description
logic ALC and present a multi-way join algorithm for the efficient evaluation
of SPARQL queries generated by ALC class expressions. Such SPARQL queries
include union graph patterns and negation, which is captured by FILTER NOT
EXISTS patterns. To the best of our knowledge, there have not been any works
for SPARQL that consider the evaluation of negation in multi-way join plans.

The main contributions of this work are the following: (i) Inspired by worst-
case-optimal multi-way join algorithms and their efficiency in evaluating con-
junctive queries, we present a multi-way join algorithm for the evaluation of
SPARQL queries generated from ALC class expressions. Our approach relies
on theoretical foundations of SPARQL to enable the use of multi-way joins in
queries involving negation. (ii) We have identified an issue with the mapping of
class expressions to SPARQL queries presented in [7] and present a solution that
addresses this particular issue. (iii) We have implemented the proposed algorithm
in a state-of-the-art triple store and present the results of an extensive compari-
son of our implementation on multiple benchmark datasets of varying sizes with
multiple state-of-the-art triple stores using SPARQL queries that correspond to
ALC class expressions. In our evaluation, we use four datasets, ranging from
96K to 2.1M triples, that are commonly used to evaluate learning algorithms.

3 https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
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To evaluate the scalabilty of our approach, we also use a dataset consisting of
more than 40M triples. The results of our experimental evaluation show that our
approach outperforms its competition across all datasets and that it is the only
one that efficiently handles query workloads in the largest dataset.

The rest of this work is structured as follows: In Section 2, we provide back-
ground knowledge on the topics that are covered in this paper. In Section 3, we
cover the translation of ALC class expressions to SPARQL queries. We present
the proposed multi-way join algorithm for SPARQL queries generated from ALC
class expressions in Section 4. Our experimental results are presented in Section
5. We discuss related works in Section 6 and conclude in Section 7.

2 Preliminaries

We begin first with a brief overview of the description logic ALC. Second, we
describe the problem of class expression learning. Third, we cover definitions and
properties of SPARQL queries that are required in this work. Last, we briefly
summarize worst-case optimal multi-way join algorithms.

2.1 The Description Logic ALC

A description logic is a decidable fragment of first-order predicate logic that
uses only unary and binary predicates [4]. The set of unary predicates, binary
predicates and constants correspond to the set of named concepts NC , roles NR,
and individuals NI of a description logic, respectively. Like in recent works on
class expression learning (e.g., [13, 17]), we focus on the description logic ALC
[25]. Its syntax and semantics are provided in Table 1. In this paper, C denotes
all valid ALC concepts C under the construction rules: C ::= A | ¬C | C ⊓ C |
C ⊔ C | ∃r.C | ∀r.C, where A ∈ NC and r ∈ NR.

Knowledge bases in ALC are often defined as K = (Tbox,Abox). All axioms
in Tbox are of the form A ⊑ B or A ≡ B. Abox contains the relationships
between individuals a, b ∈ NI via roles r ∈ NR and membership relationships
between NI and C. Following previous works on class expression learning [13, 17,
18], we adopt closed world semantics. Under the closed world assumption, the
ABox of a knowledge base is treated as the knowledge base’s model I [18]. In
addition, under closed world semantics, checking whether an instance belongs
to a particular concept or retrieving the individuals of a particular concept is
similar to querying in classical databases [7, 14].

2.2 Class Expression Learning

Class expression learning is a family of supervised machine learning algorithms.
Given a knowledge base K = (Tbox,Abox), a set of positive examples E+, and
a set of negative examples E−, with E+ ∪ E− ⊆ NI and E+ ∩ E− = ∅, class
expression learning algorithms aim to learn a class expression H that ideally
describes all of the individuals of E+ and not any of the individuals of E−
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Table 1. Syntax and semantics of ALC. I denotes an interpretation and ∆I its domain.

Construct Syntax Semantics

Top concept ⊤ ∆I

Bottom concept ⊥ ∅
Atomic concept A AI ⊆ ∆I

Role r rI ⊆ ∆I ×∆I

Conjunction C ⊓D CI ∩DI

Disjunction C ⊔D CI ∪DI

Negation ¬C ∆I \ CI

Existential restriction ∃ r.C {x | ∃ (xI , yI) ∈ rI ∧ yI ∈ CI}
Universal restriction ∀ r.C {x | ∀ (xI , yI) ∈ rI =⇒ yI ∈ CI}

[18]. To find the most appropriate H for a particular pair of E+ and E−, a
class expression learning problem is often transformed into a search problem
within a quasi-ordered space (C,⪯) [11, 18, 31], where ⪯ is often the subsumption
relation ⊑ between concepts [17]. The traversal of the search problem’s space is
usually conducted using a downward refinement operator ρ : C → 2C such that
ρ(C) ⊆ {C ′ ∈ C | C ′ ⊑ C,C ′ ̸= C} for all C ∈ C [17].

The quality of a class expression H (i.e., finding whether H describes the
individuals of E+ and not the individuals of E−) is commonly computed by a
heuristic function, such as CELOE [18]. Internally, such heuristic functions use
a retrieval function R : C → 2NI , which returns all individuals in NI that are
instances of the provided class expression H. As discussed in Section 2.1, we
assume that retrieval operations are carried out under closed world semantics.
As the size of an input knowledge base grows, executing retrieval operations
against reasoners becomes one of the main computational bottlenecks [7, 18, 23]
of learning algorithms. The goal of this work is to accelerate class expression
learning by reducing the runtimes of retrieval operations.

2.3 Semantics and Properties of SPARQL

Here, we provide the semantics and the properties of SPARQL queries that use
those features of the language that are used in queries generated by ALC class
expressions (Section 3). In particular, our focus is on SPARQL queries consisting
of triple patterns, basic graph patterns, union graph patterns, and negation in the
form of FILTER NOT EXISTS patterns. Note that SPARQL queries are defined
under bag semantics. In this work, we adopt set semantics (i.e., queries contain
DISTINCT), which are in line with the semantics of ALC. Let I be an infinite set
of IRIs, B an infinite set of blank nodes, and L an infinite set of literals. The sets
I, B and L are pairwise disjoint and their union, denoted as T = I∪B∪L, is the
set of all terms. Furthermore, let V be an infinite set of variables. An RDF graph
is a set of triples and is defined as G = {(s, p, o) | s ∈ (I ∪ B), p ∈ I, o ∈ T},
where s, p, and o stand for subject, predicate, and object, respectively.
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Triple, Basic and Union Graph Patterns The following is based on [15,
21]. A triple pattern tp is a triple (s, p, o), where s ∈ (I ∪ L ∪V), p ∈ (I ∪V),
and o ∈ (I∪L∪V). The set of variables of a triple pattern is denoted as var(tp).
Since blank nodes behave as variables, we do not consider them in triple patterns
[15, 21]. A basic graph pattern (BGP) is a set of triple patterns. The semantics
of SPARQL queries are defined using mappings, which are partial functions
assigning terms to variables. A mapping is formally defined as µ : V → T and
its domain is denoted as dom(µ). With µ(tp), we denote the RDF triple obtained
by replacing the variables of var(tp) with their corresponding values in µ. Two
mappings µ1 and µ2 are compatible (µ1 ∼ µ2), iff µ1(?v) = µ2(?v) for every
variable ?v ∈ dom(µ1) ∩ dom(µ2). Two mappings µ1 and µ2 are not compatible
(µ1 ≁ µ2), if for any ?v ∈ dom(µ1) ∩ dom(µ2), µ1(?v) ̸= µ2(?v). Given two sets
of mappings Ω1 and Ω2 the join operation is defined as Ω1 ▷◁ Ω2 = {µ1 ∪ µ2 |
µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1 ∼ µ2} and the union operation is defined as Ω1∪Ω2 =
{µ | µ ∈ Ω1 or µ ∈ Ω2}. The evaluation of a triple pattern tp and a BGP P over
an RDF graph G is denoted as JtpKG = {µ | dom(µ) = var(tp) and µ(tp) ∈ G}
and JP KG = Jtp1, . . . , tpnKG = Jtp1KG ▷◁ . . . ▷◁ JtpnKG, respectively. In SPARQL,
graph patterns are constructed recursively. Triple patterns and BGPs are graph
patterns. The set of variables of a graph pattern P is denoted as var(P ). The
conjunction and union between two graph patterns P1 and P2 are also graph
patterns and are evaluated over G as JP1 AND P2KG = JP1KG ▷◁ JP2KG and
JP1 UNION P2KG = JP1KG ∪ JP2KG, respectively.

Negation The following definitions are based on [1]. In SPARQL, there are
multiple ways to express negation [1]. Here, we focus on patterns of negation
that are expressed using FILTER NOT EXISTS patterns, which are used for con-
verting ALC class expressions to SPARQL queries (Section 3). FILTER NOT
EXISTS can be provided with either a subquery or a graph pattern. In this
work, we are interested only in the latter case (Section 3). Given a graph pat-
tern P = (P1 FNE P2), where FNE stands for FILTER NOT EXISTS, the set of
correlated variables corVars(P ) is defined as corVars(P ) = var(P1) ∩ var(P2);
P1 and P2 are correlated if corVars(P ) ̸= ∅. In this work, we focus only on
queries for which P1 and P2 are always correlated (Section 3). If P1 and P2 are
correlated, P1 is evaluated before P2 and P2 is evaluated after each correlated
variable in P2 is replaced with its corresponding value obtained in the evaluation
of P1 [1]. The set of certain variables of a graph pattern P , denoted as cVars(P ),
consists of the variables that are always bound in the solution mapping of P [24].
The set of certain variables of a graph pattern P is defined recursively [1, 24]:
(i) if P is a triple pattern tp, then cVars(P) = var(tp), (ii) if P = (P1 AND P2),
then cVars(P) = cVars(P1) ∪ cVars(P2), (iii) if P = (P1 UNION P2), then
cVars(P) = cVars(P1)∩cVars(P2), (iv) if P = (P1 FILTER R), then cVars(P) =
cVars(P1) with R being a built-in condition (e.g., integer addition), and (v) if
P = (P1 FNE P2), then cVars(P) = cVars(P1). A graph pattern is fne-safe,
if for every subpattern P = (P1 FNE P2) holds that corVars(P) ⊆ cVars(P2).
Given two sets of mappings Ω1 and Ω2 the difference operation is defined as
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Algorithm 1 Generic Join
1: // Execution is resumed after a yield operation
2: function GenericJoin(P , G, X) ▷ P : BGP, G: RDF Graph, X: Mapping
3: if var(P ) = ∅ then yield X and return ▷ All variables are evaluated
4: ?x← a variable from var(P ) ▷ Select a variable to be evaluated
5: K ←

⋂
tp∈P |?x∈var(tp){µ(?x) | µ ∈ JtpKG} ▷ All possible values of ?x

6: for all k ∈ K do ▷ Iterate over the possible values of ?x
7: X(?x)← k ▷ Store k in the solution mapping
8: P ′ ← assign k to all occurrences of ?x in P
9: yield all GenericJoin(P ′, G, X) ▷ proceeds with the next k afterwards

Ω1 \ Ω2 = {µ1 ∈ Ω1 | ∀µ2 ∈ Ω2, µ1 ≁ µ2}. For fne-safe patterns, the negation
is defined as JP1 FNE P2KG = JP1KG \ JP2KG. The notion of fne-safety ensures
that nested FNE patterns can be evaluated using the difference operation [1].

Filter Rewriting Rule and Union Normal Form A graph pattern ((P1

FILTER R) AND P2) can be rewritten to a pattern ((P1 AND P2) FILTER R),
if every variable of R is also a certain variable of P1 or if R and P2 do not share
any variables [24]. A graph pattern P is in UNION normal form if it is in the
form (P1 UNION P2 UNION . . . UNION Pn) and each Pi, for 1 ≤ i ≤ n, is
UNION-free [21]. Every AND-UNION-FILTER graph pattern P is equivalent
to a graph pattern P ′, which is in UNION normal form [21].

2.4 Worst-case Optimal Multi-way Join Algorithms

In recent years, worst-case optimal multi-way join algorithms [19] have been the
subject of many research works in the database literature. This is due to their
runtime complexity being bounded by the worst-case size of the result of the
input query [3] and their ability to achieve state-of-the-art performance in the
evaluation of conjunctive queries (e.g., [2, 5, 15]). Their main characteristic is
that, contrary to conventional binary joins that carry out joins on two operands
at a time, their evaluation follows a variable elimination process. This evaluation
process resembles a backtracking search, does not store any intermediate results
and enables the incremental output of solution mappings. A worst-case optimal
multi-way join algorithm for the evaluation of BGPs (conjunctive queries) based
on Generic Join [20] is shown in Algorithm 1.

3 Mapping ALC Class Expressions to SPARQL Queries

As discussed in Section 2.2, one of the main computational bottlenecks for class
expression learning algorithms is the execution of retrieval operations against
reasoners. To alleviate this issue, Bin et al. [7] propose a mapping for the con-
version of class expressions to SPARQL queries. This mapping is shown in the
first six entries of Table 2—including the struck through text. These conversions
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Table 2. The mapping of ALC expressions to SPARQL queries. The struck through
entry is the erroneous mapping for ∀r.C class expressions proposed in [7]. Our proposed
mapping for ∀r.C class expressions is shown in the table’s last entry.

ALC Class Expression
Ci

SPARQL Graph Pattern
τ(Ci, ?var)

A { ?var rdf:type A . }
¬C { ?var ?p ?o . FILTER NOT EXISTS { τ(C, ?var) } }

C1 ⊓ · · · ⊓ Cn { τ(C1, ?var) . τ(C2, ?var) . . . . . τ(Cn, ?var) }
C1 ⊔ · · · ⊔ Cn { { τ(C1, ?var) } UNION . . . UNION { τ(Cn, ?var) } }
∃r.C { ?var r ?s . τ(C, ?s) }

∀r.C

{ ?var r ?s0 . { SELECT ?var (COUNT(?s1) AS ?c1) WHERE
{ ?var r ?s1 . τ(C, ?vs1) } GROUP BY ?var }
{ SELECT ?var (COUNT(?s2) AS ?c2) WHERE { ?var r ?s2 }
GROUP BY ?var } FILTER(?c1 =?c2) }

∀r.C { ?var ?p ?o . FILTER NOT EXISTS
{ ?var r ?s . FILTER NOT EXISTS { τ(C, ?s) } } }

enable learning algorithms to carry out retrieval operations against a triple store
instead of a reasoner.

During the development of our multi-way join algorithm for class expression
learning (Section 4), we identified an issue with the mapping presented in [7]. In
particular, the SPARQL queries corresponding to class expressions of the type
∀r.C did not return the expected results. As per the semantics of ALC, the set
of instances corresponding to a class expression ∀r.C should also contain those
individuals that do not have any r-successors [22, Remark 18]. For example,
assuming a knowledge base capturing the concepts of family members, the set
of individuals corresponding to the concept ∀hasChild.Male should also contain
those individuals that do not have any children. However, this was not the case
with the SPARQL queries corresponding to such class expressions, as they did
not take individuals not having any r-successors into account [7, Section 3 of the
corresponding technical report]. To alleviate this issue we propose a new mapping
for ∀r.C expressions, which is presented in the last entry of Table 2 and replaces
the struck through rule. The proposed graph pattern for ∀r.C class expressions is
constructed using the concept equivalence rule ∀r.C ≡ ¬∃r.¬C [22, Section 5.1].
For individuals that do not have any r-successors, the first FILTER NOT EXISTS
is always evaluated to true. For individuals that have at least one r-successor, the
first FILTER NOT EXISTS is evaluated to true, if all of their r-successors belong
to C, which is tested by the seconds FILTER NOT EXISTS. Note that applying a
combination of the transformation rules corresponding to ¬C and ∃r.C would
yield a query that is semantically equivalent to the updated query.

The SPARQL queries shown in Table 2 use only those features of SPARQL
that were discussed in Section 2.3. Furthermore, all of the queries that involve
patterns of negation (FILTER NOT EXISTS) are fne-safe and hence, can be evalu-
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ated using the difference operator for sets of mappings. To prove that the newly
proposed mapping for ∀r.C follows the semantics of ALC, the existing proofs
for ¬C and ∃r.C, which are provided in the technical report of [7], can be used.

4 Negation in Multi-way Joins

The efficiency of worst-case optimal multi-way join algorithms in evaluating ba-
sic graph pattern queries has been demonstrated in recent works (e.g., [2, 5,
15]). However, to the best of our knowledge, there have not been any efforts
for SPARQL that include patterns of negation in multi-way join plans. In this
section, we present our algorithm for the efficient evaluation of SPARQL queries
corresponding to ALC class expressions. Our algorithm follows the sketch pro-
vided in [28] for the evaluation of Datalog rules containing negation and incor-
porates the evaluation of FILTER NOT EXISTS patterns in multi-way join plans.
The two main ideas behind the proposed algorithm are the following. First, the
evaluation of union graph patterns should take advantage of multi-way joins and
their efficiency in evaluating basic graph patterns [16]. To this end, we rely on
the definitions provided in Section 2.3 to rewrite each query generated by ALC
class expressions to a semantically equivalent query that is in UNION normal
form. Second, instead of waiting for a graph pattern to be fully evaluated, FILTER
NOT EXISTS patterns should be evaluated as soon as their correlated variables
(Section 2.3) are bound to a particular term.

4.1 Rewriting Rule for Negation and UNION Normal Form

As discussed in Section 2.3, a graph pattern ((P1 FILTER R) AND P2) can be
rewritten to a semantically equivalent graph pattern ((P1 AND P2) FILTER R),
if every variable of R is also a certain variable of P1 or R and P2 do not share
any variables [24]. The above rewriting rule is also applicable to FILTER NOT
EXISTS patterns. Note that the SPARQL standard treats FILTER NOT EXISTS
patterns as filter expressions.

Proposition 1. Let P = ((P1 FNE P3) AND P2) and P ′ = ((P1 AND P2)
FNE P3) be fne-safe graph patterns. P and P ′ are semantically equivalent, if
corVars(P1 FNE P3) = corVars((P1 AND P2) FNE P3).

Proof. For JP KG = JP ′KG, we need ((JP1KG \ JP3KG) ▷◁ JP2KG) = ((JP1KG ▷◁
JP2KG) \ JP3KG). As per the semantics (Section 2.3), for the equality to hold, we
need (dom(JP1KG)∩dom(JP3KG)) = (dom(JP1KG ▷◁ JP2KG)∩dom(JP3KG)), which
holds because corVars(P1 FNE P3) = corVars((P1 AND P2) FNE P3).

Intuitively, for the equivalence to hold, any variable of P2 that does not appear
in P1 should also not appear in P3. To enable the rewriting of P = ((P1 FNE P3)
AND P2) to a semantically equivalent pattern P ′ = ((P1 AND P2) FNE P3), we
propose the replacement of each variable of P3 that is not in corVars(P1 FNE P3)
with a unique variable that is not used in P . This way, we ensure that P2 and
P3 do not share any variables that do not appear in P1.
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Algorithm 2 Multi-Way Join for Class Expression Learning in ALC
1: function MWJ(P , G, X) ▷ P : Graph Pattern, G: RDF Graph, X: Mapping
2: // P is a single graph pattern or a UNION of UNION -free graph patterns
3: for all UNION-free patterns Pi of P do
4: if Pi is a BGP then yield all GenericJoin(Pi, G, X) ▷ Algorithm 1
5: else yield all MWJFNE(Pi, G, X) ▷ Pi contains negation
6: function MWJFNE(P , G, X) ▷ P : Graph Pattern, G: RDF Graph, X: Mapping
7: P ′ ← P ▷ Copy pattern to preserve original
8: for all FNE patterns Pi of P do
9: Let Pi = Pl FNE Pr ▷ Pl is a set of triple patterns

10: if corVars(Pi) = ∅ then ▷ Correlated variables are evaluated (fne-safety)
11: if EvalFNE(Pr, G, X) is false then
12: return ▷ The current mapping X does not yield a solution mapping
13: else remove (FNE Pr) from P ′ ▷ successfully evaluated
14: // All FNE patterns that were evaluated returned true and were removed
15: if there are no more FNE patterns in P ′ then
16: yield all GenericJoin(P ′, G, X) and return
17: ?x← a variable from cVars(P ′) ▷ Select a certain variable to be evaluated
18: // Evaluate the selected variable ?x using the triple patterns of P ′

19: K ←
⋂

tp∈P ′|?x∈var(tp){µ(?x) | µ ∈ JtpKG}
20: for all k ∈ K do ▷ Iterate over the possible values of ?x
21: X(?x)← k ▷ Store k in the solution mapping
22: P ′′ ← assign k to all occurrences of ?x in the triple patterns of P ′

23: yield all MWJFNE(P ′′, G, X) ▷ after yielding proceeds with the next k

24: function EvalFNE(P , G, X)
25: // Uses the values assigned to the correlated variables to evaluate P
26: P ′ ← ∀?v ∈ var(P ) ∩ dom(X), assign X(?v) to ?v in the triple patterns of P
27: X ′ ← new empty mapping ; X ′(?v)← X(?v)
28: if MWJ(P ′, G, X ′) yields a solution then return false
29: else return true

By following the SPARQL standard and treating FILTER NOT EXISTS pat-
terns as FILTER expressions, we can apply the UNION normal form provided for
AND-UNION-FILTER graph patterns (Section 2.3) to SPARQL queries gen-
erated by ALC class expressions. By applying the UNION normal form and
the rewriting rule proposed above to the queries of Table 2, we end up dealing
with queries that are disjunctions of graph patterns, where each graph pattern
is either a BGP or a set of triple patterns alongside patterns of negation. Our
proposed algorithm, which is presented below, is able to evaluate the resulting
queries by carrying out a series of multi-way joins.

4.2 Multi-way Join Algorithm

The proposed algorithm for the evaluation of SPARQL queries generated by
ALC class expressions is shown in Algorithm 2. The algorithm’s entry point
is the function MWJ (lines 1–5), which takes a graph pattern that is already in
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UNION normal form as input. MWJ iterates over all UNION-free graph patterns
Pi of the input graph pattern P and for each Pi calls the appropriate function for
its evaluation. If Pi is a BGP, it is evaluated by Generic Join (line 4), otherwise
it is evaluated by the function MWJFNE (line 5), which is responsible for the
evaluation of graph patterns containing FILTER NOT EXISTS patterns.

The function MWJFNE (lines 6–23) iterates first over the FILTER NOT EX-
ISTS patterns (Pi = Pl FNE Pr) of the provided graph pattern P (lines 8–13).
For each Pi having its correlated variables evaluated (lines 11–13), the function
EvalFNE is called (line 11). EvalFNE (lines 24–29) checks whether the current
solution mapping X is a solution of Pi. This is done by evaluating Pr (line 28)
after all the occurrences of the correlated variables of Pi are replaced with their
corresponding term in the triple patterns of Pr (line 26). If the evaluation of
Pr yields at least one solution, EvalFNE is evaluated to false, which leads to the
active solution mapping in MWJFNE to be discarded (line 13). Recall that the
mappings of Pl and Pr should not be compatible (Section 2.3). If all FILTER
NOT EXISTS patterns are successfully evaluated, MWJFNE proceeds with the eval-
uation of P ′ (lines 15–23). Note that successfully evaluated FILTER NOT EXISTS
patterns are removed from P ′ (line 13) and hence, are not evaluated multiple
times. If P ′ is a BGP, it is evaluated by Generic Join (line 16). Otherwise, the
evaluation proceeds in a similar fashion to Generic Join (lines 17-23). If there
are remaining FILTER NOT EXISTS patterns in P ′, the evaluation focuses on the
certain variables of P ′, i.e., on the variables appearing only in triple patterns
(line 19). For each possible value of the selected certain variable (lines 20–23),
MWJFNE is called recursively.

The proposed algorithm integrates negation in multi-way join plans by calling
MWJ within EvalFNE (line 28). In addition, provided a solution mapping, it does
not completely evaluate the right hand side of FILTER NOT EXISTS patterns.
Instead, it terminates its evaluation once a solution mapping is found, thus
avoiding storing intermediate results. The use of the UNION normal form may
result in a larger number of joins. However, this can be beneficial, as the joins
may limit the intermediate mappings generated by the original union patterns.

4.3 Implementation

We have implemented the proposed algorithm within the tensor-based triple
store Tentris [5]. We chose Tentris because it supports multi-way joins [5] and
achieves state-of-the-art performance in the evaluation of basic graph patterns
[6]. However, Tentris is not able to evaluate SPARQL queries generated by ALC
class expressions, due to its missing support for FILTER NOT EXISTS patterns.
By implementing our proposed algorithm within Tentris, we further improve the
state of the art, as demonstrated by the experimental results (Section 5). The
performance of multi-way joins is affected by the order in which variables are
evaluated [15]. Tentris dynamically selects a variable at each recursive step of
the algorithm using cardinality estimations. We modified its selection process to
take the number of FILTER NOT EXISTS patterns a particular variable appears
into account to break ties (i.e., provided two variables with the same cardinality
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estimation, the one that appears in a FILTER NOT EXISTS pattern is selected).
Last, we apply the UNION normal form to the provided queries while parsing
them. Henceforth, we refer to our implementation as TentrisALC.

5 Experimental Results

We evaluated the performance of our implementation using SPARQL queries
corresponding to ALC class expressions on five datasets of varying sizes. The
experiments that are presented below were carried out on a Debian 10 server with
an AMD EPYC 7282 CPU, 256GB RAM and a 2TB Samsung 970 EVO Plus
SSD. Supplementary material—including datasets, binaries, queries, scripts, and
configurations—is available online.4

5.1 Systems, Setup and Execution

As the learning of class expressions using SPARQL is carried out over HTTP
[7], we compared the performance of TentrisALC against the performance of
the following triple stores that provide a SPARQL compliant HTTP endpoint:
(i) Blazegraph 2.1.6.RC, (ii) Fuseki 4.10.0, (iii) GraphDB 10.3.3, and (iv) Virtu-
oso 7.2.10. In our experiments, we also wanted to include MilleniumDB5, com-
mit: 442e650 [29], which uses multi-way joins for the evaluation of basic graph
patterns. However, we did not include it, as it does not evaluate queries having
union graph patterns within FILTER NOT EXISTS patterns correctly. Each triple
store was configured following its respective documentation. The experiemnts
were executed over HTTP using the benchmark execution framework IGUANA
3.3.3 [9]. For each dataset, each query was executed once during the warmup
phase. After the warmup phase, the sets of queries were executed three consecu-
tive times. The query timeout was set to three minutes. As in [6], we measured
the performance of the triple stores using the following metrics: (i) QPS, i.e.,
the number of queries executed per second, (ii) pAvgQPS, i.e., the penalized av-
erage QPS and (iii) QMPH, i.e., the number of query mixes executed per hour.
A query mix is a set or a multiset of queries. The metric QMPH captures the
number of times a particular query mix is evaluated in an hour. This means that
the lower the runtimes of individual queries are, the higher the QMPH value is.
Queries that failed (e.g., timed out or returned an error code) are penalized with
a runtime of three minutes.

5.2 Datasets and Queries

Our evaluation comprises five datasets (i.e., knowledge graphs). Four of these
datasets, namely Carcinogenesis, Mutagenesis, Premier League and Vicodi, are
frequently used to evaluate class expression learning algorithms (e.g., [13, 17])

4 https://github.com/dice-group/alc2sparql-bench
5 https://github.com/MillenniumDB/MillenniumDB
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Table 3. The statistics of the datasets used in the evaluation

#Triples #Distinct
Subjects

#Distinct
Predicates

#Distinct
Objects

# Queries \w
Negation

Carcinogenesis 157K 22.5K 25 23.2K 169
Mutagenesis 96K 14.2K 16 15K 208

Premier League 2.1M 11.5K 217 12.5K 209
Vicodi 405K 33.4K 14 35.2K 137

YAGO4English 40.2M 7.2M 104 3M 209

and are available in [17, 30]. The largest of these datasets, namely Premier
League, contains 2.1M triples. To evaluate the scalability of our approach, we
used a subset of the English version of YAGO4 [26], which contains more than
40M triples. As in previous works that follow closed-world semantics (e.g., [7,
13]), we first materialized the inferences of the knowledge graphs. Table 3 re-
ports the statistics of the knowledge bases after the materialization process. For
the class expression learning datasets, we generated 300 unique ALC class ex-
pressions using a slightly modified version of the learning problem generator
of [17]. This modified version does not prioritize simple class expressions. For
YAGO4English, due to the generator not scaling to its size, we randomly cre-
ated 300 unique class expressions by recursively applying the construction rules
of ALC. During the generation of class expressions for YAGO4English, we fo-
cused only on the properties of the dataset that come from schemas.org (i.e., we
did not consider properties coming from bioschemas.org or the RDF/S vocabu-
lary). Schema.org has a richer taxonomy than bioschemas.org, which resulted in
∀r.C and ∃r.C class expressions being more diverse. All class expressions were
mapped to SPARQL queries using the mapping of Table 2. For YAGO4English,
we ended up having to remove eight queries, as IGUANA was not able to han-
dle them properly (non-escaped characters in IRIs). The last column of Table 3
shows the number of queries having at least one FILTER NOT EXISTS pattern.

5.3 Results and Discussion

The results of our evaluation on the datasets for class expression learning are
shown in Tables 4 and 5. The results on YAGO4English are shown in Table
6. Many queries of YAGO4English return more than 7M results, due to their
corresponding class expression covering the whole set of individuals. As Virtuoso
has a limit of 220 results [5], we did not evaluate it on YAGO4English.

The results show that TentrisALC achieves the highest pAvgQPS and QMPH
values across all datasets. To ensure the that difference in the performance is
statistically significant, we performed the Wilcoxon signed-rank test using the
penalized QPS values achieved by each system in each query. The null hypothesis
(i.e., the performances of TentrisALC and the baseline systems come from the
same distribution) was rejected for all systems in all datasets (p-value p < 0.001).
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Table 4. The results on class expression learning datasets (cold run). The column
failed reports the number of queries for which the corresponding system failed (e.g.,
timed out) at least once.

Carcinogenesis Mutagenesis

QMPH pAvgQPS failed QMPH pAvgQPS failed

Blazegraph 68.122 49.221 0 40.911 31.637 0
Fuseki 43.426 96.789 0 28.580 58.097 0

GraphDB 28.003 139.800 0 21.156 102.190 0
TentrisALC (ours) 1410.674 792.274 0 1128.076 545.604 0

Virtuoso 148.622 372.766 0 113.312 268.588 0

Premier League Vicodi

QMPH pAvgQPS failed QMPH pAvgQPS failed

Blazegraph 16.832 44.261 0 2.508 48.152 0
Fuseki 3.254 85.898 2 1.399 101.890 9

GraphDB 5.708 139.975 0 1.756 128.904 5
TentrisALC (ours) 2463.874 902.343 0 715.107 773.800 0

Virtuoso 82.245 390.305 0 6.227 411.529 0

The scalabality of our approach can already be observed in the datasets for
class expression learning. Table 5 shows that, in the smaller datasets for class
expression learning, TentrisALC achieves a value of QMPH that is 10 times
higher than the second best system, namely Virtuoso. In Premier League and
Vicodi, TentrisALC performs 37 and 126 times better than Virtuoso in terms of
QMPH, respectively. This is due to TentrisALC being able to efficiently evaluate
queries having FILTER NOT EXISTS patterns. More specifically, in Vicodi, Ten-
trisALC achieves a QMPH value that is 7.6 times higher than the second best
system (Virtuoso) in the set of queries that do not have any FILTER NOT EX-
ISTS patterns. In the set of queries that contain negation, TentrisALC achieves
a QMPH value that is 128 times higher than the second best value (Virtuoso).
This shows that the overall results are mostly affected by the systems’ ability
to efficiently evaluate queries with FILTER NOT EXISTS patterns. This obser-
vation becomes more evident in YAGO4English (Table 6), where all systems
apart from TentrisALC timed out in multiple queries. In particular, Fuseki and
GraphDB timed out in more than half of the queries. More importantly, the
timeouts occurred only in queries that contain FILTER NOT EXISTS patterns.
As mentioned earlier, many queries in YAGO4English return more than 7M re-
sults. In queries with large result sets, the runtime can be heavily impacted by
the results’ enumeration. An example of a class expression that captures the effi-
ciency of our approach is ¬(∀exampleOfWork.Prueba_Villafranca_de_Ordizia).
The corresponding SPARQL query includes three nested FILTER NOT EXISTS
patterns and returns only 161 solutions (i.e., the results’ enumeration did not
impact the query’s execution time). TentrisALC required 8.3 seconds on average
to evaluate this query, whereas all other systems timed out.
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Table 5. The results on class expression learning datasets (warm runs). The column
failed reports the number of queries for which the corresponding system failed (e.g.,
timed out) at least once.

Carcinogenesis Mutagenesis

QMPH pAvgQPS failed QMPH pAvgQPS failed

Blazegraph 72.920 58.134 0 42.615 37.090 0
Fuseki 45.509 133.754 0 28.940 82.716 0

GraphDB 31.263 246.155 0 22.802 162.238 0
TentrisALC (ours) 1605.557 1571.377 0 1224.473 1015.727 0

Virtuoso 149.928 734.093 0 114.822 532.871 0

Premier League Vicodi

QMPH pAvgQPS failed QMPH pAvgQPS failed

Blazegraph 17.303 51.415 0 2.524 58.075 0
Fuseki 3.237 110.457 2 1.381 144.729 14

GraphDB 5.823 257.314 0 1.763 220.353 5
TentrisALC (ours) 3176.005 1984.633 0 761.052 1554.764 0

Virtuoso 84.486 1150.088 0 5.991 762.763 0

Table 6. The results on the largest dataset, namely YAGO4English. The column failed
reports the number of queries for which the corresponding system failed (e.g., timed
out) at least once. Virtuoso is not included due to its hard limit of 220 results.

YAGO4English (cold run) YAGO4English (warm runs)

QMPH pAvgQPS failed QMPH pAvgQPS failed

Blazegraph 0.131 18.275 58 0.131 25.985 66
Fuseki 0.116 36.425 168 0.116 66.201 168

GraphDB 0.123 46.120 161 0.123 100.297 161
TentrisALC (ours) 1.342 207.281 0 1.351 435.361 0

The efficiency of our approach lies in its ability to evaluate FILTER NOT EX-
ISTS patterns without having to materialize intermediate results and its ability
to terminate the evaluation of such patterns once a single mapping is found.
Regarding the size of the datasets, to the best of our knowledge, recent works on
class expression learning have focused only on small scale datasets that contain
up to a few million triples (e.g., Premier League). As demonstrated above, our
approach is able to scale to large datasets and we believe that it will enable
learning algorithms to be deployed on large scale knowledge graphs.

6 Related Work

Class expression learning has been extensively investigated (e.g., [12, 18, 27]). In
recent years, several works have focused on accelerating the process of learning
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class expressions. For instance, Westphal et al. [31] accelerate class expression
learning by introducing a heuristic function that is based on simulated annealing.
With their meta-heuristics, they are able to reduce the number of instance re-
trieval operations that are required to reach a goal concept. Kouagou et al. [17]
accelerate class expression learning by accurately predicting lengths of possi-
ble goal concepts. By this, they avoid instance retrieval operations on lengthy
concepts. In [11], the authors employ deep reinforcement learning to learn non-
myopic heuristic functions, i.e., heuristic functions that take future rewards into
account. These non-myopic heuristic functions accelerate class expression learn-
ing, as they are able to efficiently steer the search process towards goal states.
Our work builds upon [7] that showed that class expression learning can be
accelerated by converting class expressions to SPARQL queries. Our work fo-
cuses on improving the runtimes of retrieval operations and hence can be used
in combination with the approaches described above.

Hogan et al. [15] were the first to formalize worst-case optimal join algo-
rithms for the evaluation of basic graph pattern SPARQL queries. Several works
have employed such algorithms for the evaluation of conjunctive queries [2, 5, 15]
and demonstrated their efficiency. Recently, a multi-way join algorithm for the
evaluation of conjunctive regular path queries based on the evaluation process
of worst-case optimal join algorithms was proposed in [16]. This algorithm also
makes use of the UNION normal form for AND-UNION patterns (i.e., it does not
consider filters). One of the first worst-case optimal multi-way join algorithms
was presented in [28]. As mentioned in Section 4, a sketch for the evaluation of
Datalog rules containing negation is provided in [28]. However, to the best of
our knowledge, there have not been any works for SPARQL that integrate the
evaluation of negation in multi-way join plans.

7 Conclusion And Future Work

We presented a multi-way join algorithm for the evaluation of SPARQL queries
corresponding to ALC class expressions. The main characteristic of our algo-
rithm is the inclusion of FILTER NOT EXISTS patterns (i.e., negation) in multi-
way join plans. Its purpose is to accelerate class expression learning in ALC
by reducing the runtimes of instance retrieval operations. The experimental re-
sults on five datasets show that our implementation outperforms its competition
across all datasets and that it is the only one scaling to the largest dataset, which
contains more than 40M triples. In the future, we will extend our approach to
support more expressive description logics (e.g., SROIQ).
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