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Abstract. In recent years, knowledge graph embedding models have
been successfully applied in the transductive setting to tackle various
challenging tasks, including link prediction, and query answering.
Yet, the transductive setting does not allow for reasoning over un-
seen entities, relations, let alone numerical or non-numerical literals.
Although increasing efforts are put into exploring inductive scenar-
ios, inference over unseen entities, relations, and literals has yet to
come. This limitation prohibits the existing methods from handling
real-world dynamic knowledge graphs involving heterogeneous infor-
mation about the world. Here, we propose a remedy to this limitation.
We propose the attentive byte-pair encoding layer (BYTE) to construct
a triple embedding from a sequence of byte-pair encoded subword
units of entities and relations. Given a triple, BYTE acts as an encoder
and constructs an embedding vector by combining embeddings of
subword units of head entities, relations, and tail entities. Thereafter,
BYTE applies a knowledge graph embedding model as a decoder to
compute the likelihood of an input triple being true. Compared to the
conventional setting, BYTE leads to massive feature reuse via weight
tying, since it forces a knowledge graph embedding model to learn
embeddings for subword units instead of entities and relations directly.
Consequently, the sizes of embedding matrices are no longer bound
to the unique number of entities and relations of a knowledge graph.
Experimental results show that BYTE improves the link prediction
performance of 4 knowledge graph embedding models on datasets
where the syntactic representations of triples are semantically mean-
ingful. However, benefits of training a knowledge graph embedding
model with BYTE dissipate on knowledge graphs where entities and
relations are represented with plain numbers or URIs. We provide an
open source implementation of BYTE to foster reproducible research.

1 Introduction
The field of natural language processing (NLP) has reached an
unprecedented level with the advent of large language models
(LLMs) [24, 9]. Such models have demonstrated significant capa-
bilities in understanding and generating natural language text. Behind
the success of LLMs, tokenizers play a fundamental role [27]. To-
kenizers allow the transformation of plain text into smaller pieces
(tokens) which serve as the building blocks for text understanding and
generation [18, 4]. Through tokenization, LLMs can not only handle
language variability and ambiguity (e.g., syntactic errors) but also
process long sequences more efficiently. Current knowledge graph
embedding (KGE) models are developed to work in a transductive
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setting2, with a few partially supporting the inductive setting 3. These
KGE models initialize a fixed-size vocabulary from an input Knowl-
edge Graph (KG) and map each entity and relation to an element (e.g.,
TransE [3]) or a sequence of elements (e.g., NodePiece [11]) of the
vocabulary before projecting them into a d-dimensional vector space.
Specifically, NodePiece represents each entity as a hash of its immedi-
ate outgoing relations and its closest anchor nodes together with their
respective discrete distances. While this approach can handle unseen
entities with a known neighborhood, it cannot handle unseen relations
nor entities for which no neighborhood information is given.

Knowledge graph embedding research has mainly focused on de-
signing embedding models tailored towards the transductive link pre-
diction [22, 38, 8, 2, 41, 26]. This task is often formulated as the prob-
lem of learning a parameterized scoring function φΘ : E×R×E → R
such that φΘ(h,r,t) ideally signals the likelihood of (h, r, t) being
true [8]. In contrast, inductive link prediction on a knowledge graph
refers to the task of predicting missing links between new entities that
are not observed during training [14, 31]. To handle unseen entities, a
few inductive methods focus on learning entity-independent relational
patterns using logical rule mining [20], while others exploit graph neu-
ral networks (GNNs) [11, 14]. Yet, most existing methods assume that
only entities can be new, and all relations should be observed during
training. Thus, they perform inductive inference for entities but trans-
ductive inference for relations. An exception is ULTRA [12] which
introduces a graph of relations to learn fundamental interactions be-
tween relations. The learned patterns can effectively be transferred to
new, unseen graphs. However, to answer queries of the form (h, r, ?),
ULTRA requires a subgraph containing the query relation r. This
limits its applicability to many downstrean tasks, including standard
link prediction where no subgraph information is available.

In this work, we propose an attentive byte-pair encoding layer
(BYTE) to make existing KGE methods support the three inference
regimes: transductive, inductive, and out-of-vocabulary (i.e., unseen)
entities and relations. BYTE represents each entity and relation as a
sequence of byte-pair encoded subword units (tokens).

During training, given a triple (h, r, t), a KGE model predicts its
likelihood by combining embeddings of subword units representing
(h, r, t). Hence, a KGE model does not plainly retrieve embedding
vectors of entities and relations but construct them on the fly. To the
best of our knowledge, BYTE is the first attempt to make most KGE
models support inference over unseen entities, relations, and literals.

Our extensive experiments with 4 state-of-the-art KGE models

2 Entities and relation involved in this setting are also seen during training
3 In the inductive setting, KGE approaches are tasked to perform inference
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over 8 benchmark knowledge graphs suggest that BYTE improves the
link prediction performance of KGE models on knowledge graphs
where semantic information on syntactic representations of triples are
visible. Yet, benefits of training a KGE model with BYTE dissipates
(even reverses) on knowledge graphs where syntactic representations
of entities are not semantically meaningful to a domain expert, e.g.,
a triple (06cv1, person/profession, 02jknp) from FB15k-
237. We provide an open-source implementation of BYTE within
the library dice-embeddings 4, where it can be applied to any
transductive KGE model by adding --byte_pair_encoding to
the command for training.

2 Background and Related Works
2.1 Knowledge Graphs

A knowledge graph (KG) is often formally defined as a set of triples
G ⊂ E × R × E , where each triple (h,r,t) ∈ G contains two en-
tities/nodes h,t ∈ E and a relation/edge r ∈ R. Therein, E and R
denote a finite set of entities/nodes and relations/edges. These collec-
tions of facts have been used in a wide range of applications, including
web search, question answering, and recommender systems [23, 15].
Despite their wide application domains, most KGs on the web are
incomplete [23].

2.2 Link Prediction and Knowledge Graph
Embeddings

The link prediction task on KGs refers to predicting whether a triple
is likely to be true. This task is often formulated as the problem of
learning a parameterized scoring function φΘ : E ×R×E → R such
that φΘ(h,r,t) ideally signals the likelihood of (h, r, t) is true [8].
For instance, given the triples (western_europe, locatedin,
europe) and (germany, locatedin, western_europe) ∈
G, a good scoring function is expected to return high scores for
(germany, locatedin, europe), while returning a considerably
lower score for (europe, locatedin, germany).

Most KGE models are designed to learn continuous vector repre-
sentations of entities and relations tailored towards predicting missing
triples. In our notation, the embedding vector of the entity e ∈ E is de-
noted by e ∈ Rde and the embedding vector for the relation r ∈ R is
denoted by r ∈ Rdr . E ∈ R|R|×de and R ∈ R|E|×dr are often called
as an entity and a relation embedding matrices, respectively. Three
training strategies are commonly used for KGE models. Bordes et al.
[3] designed a negative sampling technique via perturbing an entity in
a randomly sampled triple. A triple (h,r,t) ∈ G is considered as a
positive example, whilst {(h,r,x) | ∀x ∈ E}∪{(x,r,t) | ∀x ∈ E}
is considered as a set of possible candidate negative examples. For
each positive triple (h,r,t) ∈ G, a negative triple is sampled from
the set of corresponding candidate negative triples. Given (h,r,t),
a triple score (e.g. or a distance) is computed by retrieving row vec-
tors h, t ∈ E and r ∈ R and applying the scoring function (e.g.
element-wise multiplication followed by an inner product h ◦ r · t).

Lacroix et al. [19] proposed 1vsAll/1vsN the training strategy that
omits the idea of randomly sampling negative triples. For each positive
triple (h,r,t) ∈ G, all possible tail perturbed set of triples are consid-
ered as negative triples regardless of whether a perturbed triple exists
in the input knowledge graph KG ({(h,r,x)|∀x ∈ E : x 6= t})..
Given that this setting does not involve negative triples via head
perturbed entities, a data augmentation technique is applied to add
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inverse triples (also known as reciprocal triples [2]) (t, r−1, h)
for each (h, r, t). In the 1vsAll training strategy, a training data
point consists of (h, r) and a binary vector containing a single
"1" for the t and "0"s for other entities. Therefore, a KGE model
is trained in a fashion akin to multi-class classification problem.
Dettmers et al. [8] extended 1vsAll into KvsAll5 via constructing
multi-label binary vectors for each (h, r). A training data point
consists of a pair (h, r) and a binary vector containing "1" for
{x|x ∈ E∧(h,r,x) ∈ G} and "0"s for other entities. During training,
for a given pair (h, r), predicted scores (logits) for all entities are
computed, i.e., ∀x ∈ E : φ((h,r,x))) =: z ∈ R|E|. Through the
logistic sigmoid function σ(z) = 1

1+exp(−z)
, scores are normalized to

obtain predicted probabilities of entities denoted by ŷ. A loss incurred
on a training data point is then computed as

l(ŷ,y) = − 1

|E|

|E|∑
i=1

y(i)log(ŷ(i)) +
(
1− y(i))log

(
1− ŷ(i)), (1)

where y ∈ [0, 1]|E| is the binary sparse label vector. If (h,r,ei) ∈ G,
then y(i) = 1, otherwise y(i) = 0. Recent works show that learning
Θ by means of minimizing Equation 1 often leads to state-of-the-art
link prediction performance [2, 6]. Expectedly, 1vsAll and KvsAll
are computationally more expensive than the negative sampling. As
|E| increases, 1vsAll and KvsAll training strategies become less ap-
plicable. Yet, recent KGE models are commonly trained with 1vsAll
or KvsAll [25].

2.3 Transductive Learning Approaches

A plethora of KGE models have been developed over the last decade
[35, 5, 36]. Most KGE models map entities e ∈ E and relations
r ∈ R found in a KG G ⊂ E × R × E to V, where V is a d-
dimensional vector space and d ∈ N\{0} [15]. This family of models
is currently one of the most popular means to make KGs amenable
to vectorial machine learning [35] and has been used in applications
including drug discovery, community detection, recommendation
systems, and question answering [33, 13, 1]. While early models
(e.g., RESCAL [21], TransE [3], DistMult [39]) compute embeddings
in Rd and perform particularly well when trained appropriately [25],
recent results suggest that embedding using the more complex division
algebras C and H can achieve a superior link prediction performance
(measured in terms of hits at n) [41, 40]. The superior performance
of the latter is partially due to the characteristics of (hyper)complex
algebras (e.g., C, H) being used to account for logical properties
such as symmetry, asymmetry, and compositionality [33] of relations.
Although recent works continue improving the predictive performance
of these models by adding more complex neural architectures, the
resulting models inherit the fundamental limitations of base models:
The size of the embedding layer increases linearly w.r.t. the number of
entities in the input knowledge graph, and unseen entities and relations
cannot be handled at inference time. An overview of the transductive
KGE models are given in Table 1. Here, we focused on multiplicative
KGE models as recent results show that the aforementioned models
reach state-of-the-art performance in the link prediction task while
retaining computational efficiency over complex models [26, 6].

2.4 Inductive Learning Approaches

This family of approaches handle unseen entities at inference time
by using rule mining techniques (e.g., DRUM [29], AnyBURL [20])

5 We use the terminology introduced by Ruffinelli et al. [25].
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Table 1: Overview of KGE models. e denotes an embedding vector,
d is the embedding vector size, e ∈ C corresponds to the complex
conjugate of e.. ×n denotes the tensor product along the n-th mode.
⊗, ◦, · stand for the Hamilton, Hadamard, and inner product, respec-
tively.

Model Scoring Function Vector Space Additional

RESCAL [21] eh · Wr · et eh, et ∈ Rd Wr ∈ Rd2

DistMult [39] eh ◦ er · et eh, er, et ∈ Rd -
ComplEx [34] Re(〈eh, er, et〉) eh, er, et ∈ Cd -
TuckER [2] W ×1 eh ×2 er ×3 et eh, er, et ∈ Rd W ∈ Rd3

QMult [7] eh ⊗ er · et eh, er, et ∈ Hd -
Keci-[6] eh ◦ er · et eh, er, et ∈ Clp,q(Rd) -

or graph neural networks (e.g., NodePiece [11], GraphSAGE [14],
GraIL [28]). Specifically, DRUM is a differential rule mining ap-
proach that learns rule structures and confidence values simultane-
ously. DRUM employs shared bidirectional RNNs to model relation
interactions in rules, e.g., the relation wife_of cannot follow the re-
lation father_of due to type constraints. AnyBURL is an anytime
bottom-up rule mining approach specifically designed for large KGs.
It mines rules in a sequence of time spans through random walks in
the input graph, and stores rules which satisfy a given quality criterion.
Both approaches (DRUM and AnyBURL) handle unseen entities by
reasoning over the learned rules. NodePiece computes an embedding
for an unseen entity by leveraging its relational context, i.e., by repre-
senting that entity as a hash of its known incident relation types and
its closest anchor nodes. GraphSAGE uses node features (e.g., textual
descriptions) of a local neighborhood to bootstrap an embedding for
unseen entities. GraIL is a relation prediction approach that leverages
sub-graph structures around target entities and message-passing to
compute the likelihood of a triple. While these approaches achieve
a remarkable performance on benchmark inductive link prediction
tasks, they can only handle unseen entities for which the relational
context (i.e., links) is known; in particular, they cannot be applied
to tasks involving unseen relations. Our approach overcomes these
limitations by operating at the subword/token level, and ensuring that
every entity and relation can be encoded regardless of whether it was
encountered during training or not. Most importantly, our approach is
generic and can be applied to any KGE model.

2.5 Byte-pair Encoding Tokenization

Subword unit tokenization techniques are an effective way to ad-
dress the open vocabulary problem in various domains [30, 17]. Most
techniques convert raw sentences into unique subword sequences. Al-
though subword segmentation is potentially ambiguous and multiple
segmentations are possible even with the same vocabulary, subword
unit tokenization techniques played an important role in the recent
success of LLMs [24]. Byte Pair Encoding (BPE) [10] is a data com-
pression technique that iteratively replaces the most frequent pairs of
bytes in a sequence with a single, unused byte. Sennrich et al. [30]
extend the initial BPE algorithm for word segmentation by merging
characters or character sequences instead of merging frequent pairs
of bytes. This modification turned out to be effective for neural ma-
chine translation with up to 1.3 absolute improvement in BLEU over
baselines. The BPE technique in GPT-2 [24] is one of the most used
techniques to convert natural language text into subword units which
are then mapped to positive integers (ids) for embedding lookup.
Although BPE is predominantly used in NLP, we employ it in this
work to make KGEs support unseen entities and relations at inference
time.

3 Methodology
In this section, we describe our overall approach to developing an
embedding model that can be used in the three inference settings
mentioned earlier, i.e., effectively handling unseen entities and re-
lations. Our approach (BYTE) essentially consists of three main
phases, (i) Tokenization 1 which decomposes each of the compo-
nents of (h,r,t) into sequences of subword units, (ii) Embedding
Lookup 2 which fetches an embedding for each of the subword units
from the embedding matrix, and (iii) Linear Mapping 3 which
maps from the packed tokens’ space dimension to the initial embed-
ding dimension d (more details below). We define the steps (i)–(iii) by
using the functions Tok(·),Emb(·), and Lin(·), respectively. Since
BYTE sequentially applies these three functions to a given input triple
(h,r,t) ∈ G, it can be defined as the composition of the latter:

BYTE = Lin ◦Emb ◦Tok. (2)

The overall workflow is depicted in Figure 1 and described in the
following subsections.

3.1 Tokenization

Step 1 (i.e., the function Tok(·)) works as the initial step which
basically takes an input triple (h,r,t) and generates a single token
or multiple ones for each of the components (h,r,t) depending
on their string representation. Moreover, the type of the tokenizer
(e.g., pre-trained on a specific corpus) chosen, and the size of the
vocabulary also affect the output of the tokenization step. Since in our
case the tokenizer is fixed (e.g., GPT2’s pre-trained tokenizer with a
fixed vocabulary), the output of the tokenization step solely depends
on the string representation of entities and relations. Formally, the
tokenization step can be described by the following

Tok : G → Nm × Nm × Nm. (3)

Herein m denotes the maximum number of subword units that can
be found in an entity or a relation. Once m is fixed, longer entities/re-
lations are truncated, and shorter ones are padded to the maximum
length m. We include the padding/truncation operation within the
tokenization step to generate equal-sized integer-valued arrays repre-
senting the indices of subword units. To explain it further, we consider
an example triple with which we describe the tokenization step for
m = 2.

Let us assume that we have the following triple (“Obama”, “bornIn”,
“NewYork”). Using the GPT2’s pre-trained tokenizer with a vocabu-
lary of size 50257, we get the following token ids for this triple.

Subject: “Obama” → [15948]
Predicate: “bornIn” → [6286, 818]
Object: “NewYork” → [3791, 49278]

Figure 2: Tokenization of a triple

In this case, due to their string representation, the tokenizer identifies
different numbers of tokens. For instance, the subject “Obama” is
identified with a single token while the predicate “bornIn” and the
object “NewYork” comprise two subwords each and are identified
with two tokens. This aligns well with the way humans would read and
interpret each of these terms. Oppositely, traditional KGE methods
fail to detect subword units and consider each entity and relation as a
single word which is then mapped to a single id in the embedding
layer.
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Figure 1: Workflow of a KGE model using our byte-pair encoding approach.

To make batch processing possible, we need to ensure that the head
entity “Obama” is also represented with two indices (ids). This can
be done by simply using the token “\t” as padding since it is often
assigned an embedding as opposed to the traditional padding token
“|<pad>|”. With this, “Obama” is now represented by [15948, 197].

3.2 Embedding Lookup

Step 2 (i.e., the function Emb(·)) gets the token ids generated in
the previous step and assigns an embedding vector of size d (that is to
be fixed beforehand) to each of the corresponding tokens. Thus, this
step can be formally defined by the following function

Emb : Nm × Nm × Nm → Rm×d × Rm×d × Rm×d. (4)

Here, each of the tokens generated for each component of the triple
is mapped to a real-valued vector Rd. Hence, for a specific triple
(h,r,t), we get 3 matrices of size m× d each. During training, the
embeddings that are generated for each of the tokens for a specific
(h,r,t) are trainable parameters; they are tuned to optimize the
training loss. Assuming d = 4, we illustrate this further in Figure 3
by using our running example.

[15948, 197] → [[2.30, -1.87, 7.82, -5.91],
[8.10, -5.39, -1.08, 4.46]]

[6286, 818] → [[-1.81, -3.95, 4.84, -8.91],
[0.81, 0.95, -2.84, 3.48]]

[3791, 49278] → [[3.05, 0.08, -9.66, 4.01],
[-2.95, 9.34, 1.66, 13.01]]

Figure 3: Generating embeddings of size 4 for each token

As can be seen in Figure 3, each token is mapped to an embedding
vector of size 4. With this, entities and relations are represented by
matrices in R2×4. In the next subsection, we describe how these
matrices are mapped back to the embedding space Rd.

3.3 Linear Mapping

Step 3 (i.e., the function (Lin(·)) maps each of the embedding matri-
ces (of size m× d) generated for the components of the input triple
to a real-valued vector of size d. This step works as a sort of bridge
that connects BYTE to the traditional KGE framework. Formally, this
step is defined as follows

Lin : Rm×d × Rm×d × Rm×d → Rd × Rd × Rd. (5)

Thus, at the end of this step for a specific triple (h,r,t), we get 3
vectors of size d. To achieve this, a flattening operation is first applied
to the embedding matrix of each input triple’s component, resulting
in a vector v with md entries, i.e., an element of Rmd×1. Next, a
trainable weight matrix W ∈ Rd×md and optionally a trainable bias
vector b ∈ Rd×1 are applied to project v onto Rd as Wv + b. The

matrix W and the bias vector b are shared across all components and
across all triples in a given knowledge graph. Note that, before the
flattening operation is applied, an attention layer can also be applied
to capture the relationship between different subword units within the
components of a triple. In any case, the embedding model expects
inputs to be vectors in Rd, and this is what the linear mapping takes
care of. We exemplify this step further with our running example as
follows:

[[2.30,−1.87, 7.82,−5.91],
[8.10,−5.39,−1.08, 4.46]] → [7.06, -3.81, 6.19, 9.73]
[[−1.81,−3.95, 4.84,−8.91],
[0.81, 0.95,−2.84, 3.48]] → [3.63, -5.37, -9.14, -2.55]
[[3.05, 0.08,−9.66, 4.01],
[−2.95, 9.34, 1.66, 13.01]] → [1.86, 2.88, 6.51, -3.56].

Figure 4: Example input and output of the linear mapping

Finally, the output of the linear mapping is forwarded to the KGE
model which generates ŷ ∈ [0, 1], representing the likelihood of the
given triple (h,r,t) being true. Herein, the KGE model can be of any
type (for e.g., DistMult, ComplEx, and others), and more importantly,
our approach BYTE does not depend on it. That gives us the flexibility
to use the KGE model of our choice to obtain the best possible results.
To the best of our knowledge, our work is the first in this line to
propose such an approach using tokenizers from LLMs to make KGE
models handle unseen entities, relations, and literals.

4 Experimental Setup

4.1 Datasets

We used the benchmark datasets UMLS, KINSHIP, NELL-995
h25, NELL-995 h75, NELL-995 h100, WN18RR, FB15K-237, and
YAGO3-10 for the link prediction problem. UMLS describes medical
entities, e.g., cell, immunologic_factor, and the relationships
Table 2: An overview of datasets in terms of number of entities, rela-
tions, and train split along with the number of triples in each split of
the dataset.

Dataset |E| |R| |GTrain| |GValidation| |GTest|
Countries-S1 271 2 1111 24 24
Countries-S2 271 2 1063 24 24
Countries-S3 271 2 985 24 24
UMLS 135 46 5,216 652 661
KINSHIP 104 25 8,544 1,068 1,074
NELL-995 h100 22,411 43 50,314 3,763 3,746
NELL-995 h75 28,085 57 59,135 4,441 4,389
NELL-995 h25 70,145 344 245,236 18,388 18,374
FB15K-237 14,541 237 272,115 17,535 20,466
YAGO3-10 123,182 37 1,079,040 5,000 5,000



Table 3: Link prediction results on Countries benchmark datasets.

S1 S2 S3
MRR @1 @3 @10 MRR @1 @3 @10 MRR @1 @3 @10

DistMult-train 0.515 0.396 0.571 0.749 0.458 0.340 0.516 0.693 0.481 0.370 0.525 0.704
DistMult-test 0.273 0.167 0.292 0.479 0.166 0.083 0.167 0.333 0.115 0.062 0.104 0.208
DistMult-BYTE-train 0.763 0.599 0.918 0.960 0.757 0.608 0.896 0.956 0.679 0.505 0.837 0.942
DistMult-BYTE-test 0.612 0.500 0.729 0.812 0.611 0.542 0.646 0.750 0.330 0.208 0.354 0.562

ComplEx-train 0.260 0.158 0.280 0.469 0.274 0.168 0.298 0.480 0.250 0.145 0.272 0.462
ComplEx-test 0.183 0.062 0.229 0.438 0.162 0.083 0.167 0.333 0.065 0.021 0.042 0.146
ComplEx-BYTE-train 0.910 0.855 0.961 0.982 0.943 0.913 0.967 0.988 0.832 0.756 0.891 0.951
ComplEx-BYTE-test 0.441 0.271 0.542 0.708 0.422 0.250 0.521 0.688 0.178 0.083 0.229 0.312

QMult-train 0.133 0.060 0.126 0.270 0.187 0.098 0.196 0.366 0.164 0.087 0.170 0.313
QMult-test 0.112 0.021 0.125 0.333 0.131 0.062 0.146 0.292 0.124 0.062 0.125 0.229
QMult-BYTE-train 0.925 0.883 0.964 0.986 0.889 0.830 0.943 0.981 0.621 0.528 0.660 0.814
QMult-BYTE-test 0.293 0.167 0.333 0.521 0.483 0.375 0.542 0.667 0.110 0.062 0.083 0.188

Keci-train 0.947 0.914 0.977 0.993 0.943 0.908 0.976 0.995 0.949 0.918 0.975 0.988
Keci-test 0.208 0.104 0.229 0.479 0.278 0.104 0.396 0.604 0.072 0.301 0.083 0.146
Keci-BYTE-train 0.997 0.994 1.000 1.000 0.958 0.917 1.000 1.000 0.986 0.973 1.000 1.000
Keci-BYTE-test 0.566 0.354 0.688 0.917 0.557 0.417 0.625 0.833 0.218 0.146 0.208 0.375

between them, e.g., disrupts. KINSHIP describes the 25 different
kinship relations of the Alyawarra tribe.

FB15K-237 is a subset of Freebase which is a collaborative knowl-
edge graph of general knowledge. Terms found in this knowledge
graph include Stephen_Hawking, Copley_Medal, and more.
YAGO3-10 is a subset of YAGO [8], which mostly contains infor-
mation about people, with relation names such as actedIn and
hasWonPrize. The Never-Ending Language Learning datasets
NELL-995 h25, NELL-995 h50, and NELL-995 h100 are designed
to evaluate multi-hop reasoning capabilities of various approaches
for learning on KGs [37]. An overview of the datasets is provided
in Table 2.

4.2 Training and Optimization

Throughout our experiments, we followed a standard training setup:
we used the cross-entropy loss function, KvsAll scoring technique,
Adam optimizer and we performed a grid search over learning rate
{0.1, 0.01, 0.011}, embedding dimension d ∈ {32, 64}, number of
epochs 500 on each dataset [6]. Unless stated otherwise, we did not
use any regularization technique (e.g., dropout technique or L2 reg-
ularization). In our parameter analysis experiments, we explored a
large range of embedding dimensions {2, 4, 8, 16, 32, 64, 128, 256}.
We report the training and test results to show a fine-grained perfor-
mance overview across datasets and models. Each entity and relation
is represented with a d-dimensional real-valued vector across datasets
and models. Hence, DistMult, ComplEx, QMult, and OMult learn
embeddings in Rd,Cd/2, and Hd/4, respectively. We evaluated the
link prediction performance of models with benchmark metrics such
as filtered MRR, and Hits@k. In evaluation results, Hits@k is abbre-
viated as k. At test time, learned embeddings of subword units are
used to compute triple scores.

5 Results
Tables 3, 5 and 6 report the link prediction results on the Coun-
tries, UMLS, KINSHIP, and NELL-955 benchmark datasets. Over-
all, results suggest that BYTE often improves the link prediction
results on knowledge graphs where syntactic representations of
triples are semantically meaningful. For instance, on the countries

datasets (i.e., Countries-S1, Countries-S2, and Countries-S3) BYTE
improves the link prediction performances of DistMult, ComplEx,
QMult, and Keci on the training and the test splits. Therein, se-
mantic information on syntactic representations of triples is visible,
e.g., (western_europe, locatedin, europe), (germany,
locatedin, western_europe). With BYTE, KGE models in
this case learn embeddings for subword units, e.g., western, _, and
europe. At test time, learned embeddings of subword units are com-
bined (see linear mapping in Section 3.3) to compute triple scores,
while transductive KGE models learn to represent each entity and rela-
tion with respective embedding vectors independently. Hence, BYTE
does not only improve the generalization performance of models but
also leads to a better fit to the training datasets. These three datasets
contain triples whose syntactic representations are semantically
meaningful, e.g., (western_europe, locatedin, europe),
(germany, locatedin, western_europe), and (germany,
locatedin, europe). Incorporating such knowledge into the
learning process improves the link prediction results across mod-
els and across the three datasets. Table 5 reports the link prediction
results on the UMLS and KINSHIP datasets. Overall, the results
continue to indicate that BYTE often improves the link prediction
results on the training and the test splits if the given knowledge graph
contains triples whose representations are semantically meaningful,
e.g., (lipid, affects, physiologic_function). Yet, on the
KINSHIP dataset, BYTE does not seem to improve the link prediction
results. This could be explained by using the fact that KINSHIP does
not contain triples whose syntactic representations are as semantically
meaningful as those triples on the countries and UMLS benchmark
datasets, e.g., (person20, term11, person46) and (person83,
term8, person25).

Table 6 reports the link prediction results on the NELL-995-h100,-
h75, and -h25 datasets. Herein, the results on h100 and h75 suggest
that using BYTE improves the link prediction performance on the
test dataset in 28 out of 32 cases. However, results on h25 indicate
that training a KGE model with BYTE leads to poor link prediction
results with especially DistMult, ComplEx, and Keci (e.g. ≤ 0.07
MRR). These results were quite surprising, and to investigate further
we delved into the details and observed that QMult applies either
standard unit or batch normalization over embeddings of entities and
relations, whereas DistMult, ComplEx, and Keci do not.



Table 4: Predicted unnormalized log-likelihood of triples on Countries dataset. “Seen Terms” denotes a triple containing an unseen entity/relation.

Triples Seen Terms Keci BYTE BYTE + L2 reg. BYTE + L2 + Dropout

(germany, locatedin, europe) 3 2.4 1151.9 453.1 487.1
(germany, locatedin, western_europe) 3 1.6 1596.7 625.5 623.6
(western_europe, locatedin, europe) 3 2.9 1335.7 345.5 217.6

(germany, located, europe) 7 - 1237.1 661.7 74.9
(western_europ, located, europe) 7 - 1427.2 611.5 2.11
(germany, located_in, europe) 7 - 612.3 276.8 222.2

We observed that the sizes of the byte-pair encoded triples are
larger on h25 as compared to the other 7 benchmark datasets. Thus,
we presume that these two factors might have contributed to the poor
performance of some of the KGE models.

We have furthermore conducted experiments considering the
WN18RR, FB15k-237, and YAGO3-10 datasets, where BYTE
has mostly led to poor link prediction results—MRR ≤ 0.1.
This again could be attributed to the fact that the syntac-
tic representations of triples on these datasets are neither se-
mantically meaningful nor ambiguous. For instance, consider
(/m/06cv1, person/profession, /m/02jknp) from FB15k-
237, (01455754, _hypernym, 01974062) from WN18RR, and
(Taribo_West, playsFor, Inter_Milan) from YAGO3-10.
Entities such as 01455754 are represented with numbers and do
not convey much information after tokenization. While the entity
Taribo_West is the name of a football player, the token _West
is not necessarily understood as a name. Thus, to deal with datasets
where such triples are more prevalent, sophisticated neural network
architectures such as LLMs are needed to improve the performance.

Inference over Unseen Entities, Relations, and Literals. Table 4
reports the predicted likelihoods of existing triples and hand-crafted
out-of-vocabulary triples. The results show that the KGE model Keci
with or without BYTE correctly assigns positive scores for existing
triples, while Keci alone cannot do inference over triples containing
unseen entities or relations. BYTE effectively allows Keci to assign
positive scores for out-of-vocabulary triples that are only perturbed
by removing or adding few characters in their string representation
(e.g. adding _ or removing in). These results also suggest that BYTE
leads to over-confidence in predictions. After observing overconfident
scores, we conducted two additional experiments by applying L2
regularization and/or dropout on embeddings to quantify possible
reduction in the magnitude of predicted normalized likelihood. Re-
sults indicate that L2 regularization and dropout can be used to
reduce the overconfidence in the predictions over unseen entities and
relations, thereby improving the effectiveness of BYTE.

Impact of the Number of Byte-pair Encoded Subword Units.
In Table 8, we report the maximum performance of the BYTE-
augmented KGE models on different datasets and the corresponding
byte-pair encoded sequence lengths. The results suggest that as the
number of byte-pair encoded subword units grows, the performance
decreases. This may be due to the fact that computing triple score via
element-wise operations (e.g. element-wise multiplication followed
by an inner product in DistMult) over unnormalized embedding vec-
tors leads to unstable training, even with a small learning rate (e.g.
Adam with 0.005 learning rate).

Impact of Subword Unit Dimensions on Link Prediction. Ta-
ble 7 reports our parameter analysis for link prediction performance
with different subword unit dimensions. The performance (on the test
set) of both the base model Keci and the augmented model Keci-BYTE
first increases (for d < 32) then decreases (for d > 64).

Both models achieve similar average test results although Keci-
BYTE is slightly better. However, as the number of embedding di-
mensions increases (d > 64), Keci starts to overfit on the training set
while Keci-BYTE fails to train properly. This suggests that KGE mod-
els employing BYTE should use a moderate number of embedding
dimensions for optimal performance.

6 Discussion

Overall, we see that BYTE could be used to perform inference over
unseen entities and relations thereby alleviating the typical transduc-
tive settings of KGE models. However, based on the evaluation results,
we can conclude that the effectiveness of BYTE can further be im-
proved by the following two techniques. (1) Applying multi-head self-
attention mechanism on byte-pair encoded subword unit embeddings
of entities and relations may improve the link prediction performance.
Currently, interactions between subword units composing an entity
or relation is not captured. Therefore, modelling such interactions by
computing attention weights between subword units can improve the
link prediction performance. (2) A pre-trained publicly available large
language model (e.g., Mistral [16], Llama 2 2 [32]) can be used to
initialize the embedding vectors of subword units in BYTE. With this,
not only the training runtimes of BYTE can be reduced but also, at
testing time, its performance can become more stable. A KGE model
using BYTE only updates embeddings of subword units if such sub-
word units are encountered during training. Therefore, during testing,
although a KGE model can do inference over unseen entities and rela-
tions, its predictions may involve randomly initialized embeddings.
During our experiments, we also observe that the performance of
BYTE degrades as the size of the byte-pair-encoded subword units
increases, see Table 8. Similarly, on some benchmark datasets, we ob-
serve that increasing the number of embedding dimensions decreases
the training as well as the testing performance. This can be attributed
to the fact that KGE models often apply linear operations (e.g. dot
product) without any scaling or normalization.

Note that, in our evaluation, we do not include other link prediction
methods in the inductive setting (such as NodePiece [11]). This is
because, we solely focus on extending the existing transductive KGE
models to work in the inductive setting. Therefore, we compare the
link prediction performances to the inductive link performances of
the current state-of-the-art transductive KGE models such as Dist-
Mult, ComplEX, and others. In other words, our evaluation solely
focuses on showing the alleviation of the capabilities of the current
transductive models in performing inductive tasks. Moreover, models
like NodePiece require additional information, for instance, the local
structure of each node at testing time. Hence, to use inductive KGE
models at testing, large KGs must be stored in memory. On the con-
trary, since our approach uses the existing transductive KGE models,
they require only the embeddings of entities and relations.



Table 5: Link prediction results on UMLS and KINSHIP.

UMLS KINSHIP

MRR @1 @3 @10 MRR @1 @3 @10

DistMult-train 0.497 0.364 0.563 0.756 0.493 0.327 0.570 0.863
DistMult-test 0.414 0.275 0.468 0.696 0.405 0.235 0.463 0.819
DistMult-BYTE-train 0.792 0.699 0.862 0.954 0.500 0.350 0.565 0.838
DistMult-BYTE-test 0.715 0.609 0.779 0.911 0.435 0.284 0.491 0.786

ComplEx-train 0.435 0.304 0.491 0.698 0.529 0.370 0.615 0.869
ComplEx-test 0.368 0.241 0.414 0.620 0.453 0.288 0.530 0.822
ComplEx-BYTE-train 0.895 0.835 0.947 0.987 0.519 0.371 0.584 0.854
ComplEx-BYTE-test 0.826 0.744 0.889 0.974 0.458 0.299 0.522 0.818

QMult-train 0.515 0.392 0.572 0.766 0.497 0.341 0.576 0.822
QMult-test 0.439 0.308 0.501 0.702 0.423 0.264 0.494 0.754
QMult-BYTE-train 0.899 0.825 0.968 0.988 0.657 0.518 0.745 0.931
QMult-BYTE-test 0.832 0.727 0.928 0.976 0.604 0.453 0.694 0.911

Keci-train 0.733 0.614 0.821 0.935 0.575 0.418 0.663 0.912
Keci-test 0.623 0.480 0.720 0.873 0.463 0.290 0.541 0.860
Keci-BYTE-train 0.845 0.754 0.920 0.976 0.516 0.361 0.588 0.863
Keci-BYTE-test 0.757 0.644 0.841 0.941 0.445 0.284 0.500 0.824

Table 6: Link prediction results on NELL-995 h100, h75, and h50.

h100 h75 h25

MRR @1 @3 @10 MRR @1 @3 @10 MRR @1 @3 @10

DistMult-train 0.586 0.494 0.636 0.761 0.750 0.675 0.796 0.888 0.927 0.891 0.957 0.984
DistMult-test 0.225 0.159 0.254 0.357 0.225 0.162 0.252 0.346 0.223 0.167 0.248 0.328
DistMult-BYTE-train 0.307 0.224 0.341 0.468 0.262 0.190 0.290 0.402 0.002 0.000 0.000 0.007
DistMult-BYTE-test 0.266 0.193 0.292 0.413 0.247 0.180 0.270 0.381 0.007 0.002 0.000 0.007

ComplEx-train 0.548 0.460 0.595 0.715 0.692 0.614 0.737 0.837 0.964 0.949 0.976 0.988
ComplEx-test 0.226 0.160 0.254 0.349 0.235 0.172 0.259 0.361 0.206 0.152 0.228 0.313
ComplEx-BYTE-train 0.333 0.245 0.371 0.504 0.313 0.232 0.348 0.470 0.000 0.000 0.000 0.000
ComplEx-BYTE-test 0.277 0.201 0.307 0.431 0.273 0.201 0.302 0.415 0.000 0.000 0.000 0.000

QMult-train 0.398 0.303 0.440 0.582 0.570 0.476 0.618 0.756 0.856 0.802 0.896 0.954
QMult-test 0.202 0.133 0.230 0.337 0.223 0.157 0.249 0.355 0.249 0.188 0.274 0.369
QMult-BYTE-train 0.337 0.245 0.379 0.516 0.323 0.239 0.358 0.486 0.269 0.202 0.293 0.396
QMult-BYTE-test 0.281 0.202 0.316 0.433 0.272 0.198 0.301 0.415 0.242 0.182 0.266 0.356

Keci-train 0.804 0.738 0.849 0.922 0.863 0.814 0.897 0.949 0.924 0.890 0.951 0.977
Keci-test 0.231 0.164 0.255 0.366 0.214 0.149 0.237 0.342 0.216 0.159 0.240 0.326
Keci-BYTE-train 0.053 0.026 0.060 0.104 0.266 0.192 0.295 0.408 0.003 0.002 0.003 0.004
Keci-BYTE-test 0.050 0.024 0.057 0.098 0.252 0.180 0.280 0.391 0.003 0.002 0.003 0.004

Table 7: Impact of subword unit embedding dimensions in the link
prediction of BYTE on the UMLS dataset.

Dim. Keci Keci BYTE

Train MRR Test MRR Train MRR Test MRR
2 0.377 0.382 0.337 0.350
4 0.645 0.631 0.518 0.509
8 0.850 0.812 0.755 0.705
16 0.948 0.830 0.879 0.784
32 0.990 0.709 0.934 0.794
64 1.000 0.579 0.947 0.734
128 1.000 0.544 0.878 0.714
256 1.000 0.536 0.820 0.613
512 1.000 0.565 0.643 0.497

Avg. 0.868 0.621 0.746 0.633

7 Conclusion

In this paper, we proposed a technique (BYTE) to endow knowledge
graph embedding models with inductive capabilities. BYTE effec-
tively leverages a byte-pair encoding technique to obtain subword
units representing entities and relations of a knowledge graph. In
this way, knowledge embedding models are able to perform well on
unseen entities, relations as well as literals by learning embeddings

over a sequence of subword units. Our extensive experiments on
benchmark datasets indicate that BYTE often improves link predic-
tion results provided that the syntactic representation of triples are
semantically meaningful. In the future, we plan to use an attention
mechanism to capture pair-wise interactions between subword units to
improve the predictive performance of KGEs employing BYTE. We
will also investigate the use of pretrained LLMs as few-shot learners
on knowledge graphs.

Table 8: Impact of Byte-pair encoded triple size on training MRR.

Datasets Triple size with BYTE Max. MRR
Countries 13× 3 0.997

UMLS 16× 3 0.899
KINSHIP 5× 3 0.657

h100 29× 3 0.337
h75 29× 3 0.323
h25 56× 3 0.268
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