
Embedding Knowledge Graphs in Function Spaces
Louis Mozart Kamdem Teyou

louis888@mail.uni-paderborn.de

Paderborn University

Electronic, Informatic and Mathematic

Paderborn, North Rhine-Westphalia, Germany

Caglar Demir

caglar.demir@uni-paderborn.de

Paderborn University

Electronic, Informatic and Mathematic

Paderborn, North Rhine-Westphalia, Germany

Axel-Cyrille Ngonga Ngomo

axel.ngonga@upb.de

Paderborn University

Electronic, Informatic and Mathematic

Paderborn, North Rhine-Westphalia, Germany

ABSTRACT

We introduce a novel embedding method diverging from conven-

tional approaches by operating within function spaces of finite

dimension rather than finite vector space, thus departing signif-

icantly from standard knowledge graph embedding techniques.

Initially employing polynomial functions to compute embeddings,

we progress to more intricate representations using neural net-

works with varying layer complexities. We argue that employing

functions for embedding computation enhances expressiveness and

allows for more degrees of freedom, enabling operations such as

composition, derivatives and primitive of entities representation.

Additionally, we meticulously outline the step-by-step construc-

tion of our approach and provide code for reproducibility, thereby

facilitating further exploration and application in the field.

CCS CONCEPTS

• Computing methodologies→ Learning latent representa-

tions.

KEYWORDS

Function space, Knowledge graph, Knowledge graph embedding,

Polynomial function, Neural Networks

ACM Reference Format:

Louis Mozart Kamdem Teyou, Caglar Demir, and Axel-Cyrille Ngonga

Ngomo. 2024. Embedding Knowledge Graphs in Function Spaces. In Proceed-

ings of the 33rd ACM International Conference on Information and Knowledge

Management (CIKM ’24), October 21–25, 2024, Boise, ID, USA. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3627673.3679819

1 INTRODUCTION

A knowledge graph (KG) serves as a structured representation

of data, aiming to encapsulate and convey real-world knowledge

[19]. Comprising triples that articulate facts about the world, KG

data are pivotal, in organizing information. For example, the triple

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike International 4.0 License.

CIKM ’24, October 21–25, 2024, Boise, ID, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0436-9/24/10

https://doi.org/10.1145/3627673.3679819

⟨𝑂𝑏𝑎𝑚𝑎, 𝑝𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡_𝑜 𝑓 , 𝐴𝑚𝑒𝑟𝑖𝑐𝑎⟩ represents the fact that Barack

Obama was the president of the United States. Consequently, KGs

find applications in various domains such as web search [35], rec-

ommender systems [28, 40], and natural language processing [31].

Given that KGs are essentially composed of strings or characters,

knowledge graph embedding (KGE) involves mapping entities and

relations from a KG into a vector space [39]. This transformation

facilitates computational operations, enabling the application of

machine learning and deep learning techniques to extract insights

from the KG. Hence, an effective KGE model should strive to main-

tain the properties and semantics inherent in the original KG.

Knowledge graphs are typically represented as 𝐾 ⊆ E × R × E,
where E and R represent sets of entities and relations respec-

tively. They are commonly embedded in 𝑑-dimensional vector

spaces V such as R𝑑 (real numbers), C𝑑 (complex numbers), or

even H𝑑
(quaternions) [3, 7, 38]. While such embeddings offer a

low-dimensional representation, they treat entities and relations as

static vectors, which may limit their ability to capture some dynam-

ics in the knowledge graph. For instance, in real-world applications,

relationships between entities can change over time exemplify-

ing temporal dynamics (e.g. transition from ”𝑖𝑠_𝑓 𝑟𝑖𝑒𝑛𝑑𝑠_𝑤𝑖𝑡ℎ” to

”𝑤𝑎𝑠_𝑓 𝑟𝑖𝑒𝑛𝑑𝑠_𝑤𝑖𝑡ℎ.”) [20, 27]. They can also depend on context,

such as in movie recommendations, where the relevance of a movie

may be context-dependent (e.g., ”𝑖𝑠_𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑_𝑖𝑛_𝑤𝑎𝑡𝑐ℎ𝑖𝑛𝑔” may

vary based on user preferences [5]. Static embeddings may fail to

represent such dynamic behaviours accurately, leading to subopti-

mal performance in tasks like link prediction or knowledge graph

completion [25].

To mitigate the aforementioned drawback of the existing embed-

ding approaches, in this work, we propose the use of functions to

represent entities and relations of a KG, i.e., embedding them in

function space. Functional representations of entities and relations

provide a compelling alternative to static embeddings. For instance,

functions can be time-dependent, they can support composition-

ality, enabling the combination of simpler functions to represent

more complex relationships and entities. Moreover, functions offer

a richer and more expressive representation compared to vectors,

allowing the modelling of complex interactions and dependencies

within KGs. Also, functions offer greater interpretability, as they can

be analyzed and understood based on their mathematical proper-

ties and behaviour. By examining the functional forms, it would be

https://orcid.org/0000-0001-7975-8794
https://orcid.org/0000-0001-8970-3850
https://orcid.org/0000-0001-7112-3516
https://doi.org/10.1145/3627673.3679819
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3627673.3679819

CIKM ’24, October 21–25, 2024, Boise, ID, USA Louis Mozart Kamdem Teyou, Caglar Demir, and Axel-Cyrille Ngonga Ngomo

possible to gain insights into the underlying structure of the knowl-

edge representation, thereby facilitating better understanding and

interpretation.

Building upon these advantages, we hypothesize that embed-

ding KGs in a function space offers increased degrees of freedom

in the embeddings. Therefore, in this paper, we leverage the ad-

vantages of functionmultiplication and composition to compute

the embeddings in function space. Our methods, dubbed FMult𝑛 ,

FMult
𝑖
𝑛 , and FMult, compute embeddings by representing enti-

ties and relations as functions. FMult𝑛 employs polynomials to

model the interactions between entities and relations, capturing

non-linear relationships that static vectors might miss. FMult
𝑖
𝑛

utilizes trigonometric functions to incorporate periodic patterns

and cyclic behaviours inherent in the KG. Finally, FMult leverages

neural networks to learn complex, high-dimensional embeddings

that can adapt dynamically to various contexts.

This paradigm shift allows for a more flexible and expressive

representation of entities and relations. Notably, to the best of our

knowledge, our model is the first link prediction model to use

functions for representing entities and relations in KGs. Our re-

sults have shown better performance compared to traditional static

embedding methods, highlighting the effectiveness of functional

embeddings in capturing the complex dynamics of KGs.

In summary, we make the following contributions in this work:

• We propose three different functional embedding approaches

FMult𝑛 , FMult
𝑖
𝑛 , and FMult to embed the entities and re-

lations of KGs using polynomials, trigonometric functions,

and neural networks, respectively.

• We perform a comprehensive evaluation of our proposed

methods on multiple benchmark datasets, demonstrating

their superior performance in link prediction tasks compared

to state-of-the-art models.

• Wemake our implementations and experimental results pub-

licly available to facilitate further research and reproducibil-

ity in the field.
1

The remainder of the paper is organized as follows: In the next

section, we present related work in the KGE field. In Sections 3 and

4, we provide preliminaries on function space and show how we

can use functions to compute the embeddings. In Sections 5 and 6,

we present the results of our approaches and compare them with

baseline models.

2 RELATEDWORK

As a reminder, several categories of KGE models can be found in

the literature. This includes:

Translational models. The foundational work in translational

models was established by TransE [3]. In TransE, given a triple

⟨h, r, t⟩ ∈ 𝐾 , the optimization objective involves minimizing the

score ∥h + r − t∥, where h, r, t ∈ R𝑑 . A higher score is assigned

if ⟨h, r, t⟩ holds in 𝐾 , and a lower score otherwise. To resolve

TransE shortcomings e.g. TransE cannot model reflexive relation-

ship [8, 21, 41]. Some variants have been proposed with similar

ideas but different projection strategies. TransH [41] embeds knowl-

edge graphs by projecting entities and relations onto hyperplanes

1
https://github.com/dice-group/dice-embeddings

specific to each relation. TransR [30] introduces separate spaces

for entities and relations, connected by a shared projection matrix.

Meanwhile, TransD [21] employs independent projection vectors

for each entity and relation, reducing computational complexity

compared to TransR. RotatE [36] embeds entities and relations into

complex space and replaces the addition operation in TransE with

complex multiplication. TransG [42] enhances this idea by incorpo-

rating probabilistic principles, integrating Bayesian nonparametric

Gaussian mixture models and Gaussian distribution covariance.

Meanwhile, TranSparse [22] introduces adaptive sparsity to trans-

fer matrices, aiming to address heterogeneity issues within KGs.

Rotational models. In contrast to translational models, rota-

tional models [5], use the power of bilinear transformation for

capturing complex interactions and correlations between entities

and relations in knowledge graphs. This category of model was

inaugurated by RESCAL [31] which models entities and relations

using matrices, representing relationships as bilinear interactions

between entity vectors. DistMult [43] simplifies RESCAL by Repre-

senting entities and relations as low-dimensional vectors instead of

matrices, employing the dot product to compute scores for triples.

Although DistMult is very accurate in handling symmetric rela-

tions, it performs poorly for anti-symmetric relations. ComplEx

[38] tackles this drawback and uses complex embeddings to model

asymmetric relations, capturing both the interactions and correla-

tions between entities and relations. Similarly to ComplEx, RotatE

[36] embeds entities and relations into complex space, representing

relationships as rotations from head to tail entities. A variation of

RotatE is RotE [7] which focuses on learning rotation operations to

capture relational patterns. QuatE [45], extends RotatE, DistMult

and ComplEx by using quaternion embeddings, enabling more ex-

pressive representations of relationships in hypercomplex space.

OctE Further extends QuatE by employing octonion embeddings,

offering even richer and more complex representations of relation-

ships. However, the scaling effect in the octonion and quaternion

space can be a bottleneck for QuatE and OctE hence, QMult and

OMult [10] solve this issue thanks to the batch normalization tech-

nique. Dual quaternionmethods like DualE [5] use dual quaternions

[24] to embed entities and relations, offering a representation that

combines the advantages of translation and rotation.

Hyperbolic models. The literature also features hyperbolic em-

bedding methods which leverage the properties of hyperbolic ge-

ometry to capture hierarchical structures in KGs. Among them,

RotH [7] extends RotatE by representing entities and relations in

hyperbolic space. MuRP [1], which maps entities and relations from

a knowledge graph onto a hyperbolic space. MuRE [1], which is a

variant of MuRP, operates in Euclidean space, offering a simpler

alternative for certain types of knowledge graphs.

Deep learning models. This group of models uses the power of

convolutional neural networks to encode both entity and relation

information simultaneously. Among them we have ConvE [12]

which applies 2D convolutional filters to capture local patterns in

the entity-relation space, followed by max-pooling to extract global

features. Similar to ConvE, ConvO and ConvQ [10] also employ

convolutional neural networks, but they are built upon OMult and

QMult respectively.

Embedding Knowledge Graphs in Function Spaces CIKM ’24, October 21–25, 2024, Boise, ID, USA

Each of these models offers a unique approach to learning rep-

resentations of entities and relations in knowledge graphs. For a

more detailed review of KGE models, we recommend recent sur-

veys [23, 39]. However, existing methods typically represent entities

and relations as static vectors, focusing mainly on operations such

as multiplication, addition, scaling, and batch normalization with

these vectors.

Notations: In the following parts of the paper, unless stated else-

where,

• We denote entities and relations with minuscule letters, e.g.:

ℎ. Embeddings are denoted using a bold font, e.g.: the em-

bedding of ℎ is denoted h.
• F (𝑋,𝑌) the set of all function defined from 𝑋 to 𝑌 .

• Ω is a bounded and closed domain of R and ∥Ω∥ represent
it length. e.g.: ∥ [𝑎, 𝑏] ∥ = 𝑏 − 𝑎.

• F (𝑋) is the set of all function defined from 𝑋 to 𝑋 .

• 𝑒𝑖𝑥 = cos𝑥 + 𝑖 sin𝑥 with 𝑖2 = −1.
• R𝑒 is the real part of a complex number i.e. R𝑒 (𝑎 + 𝑖𝑏) = 𝑎.
• For any vector 𝑢 and 𝑣 ∈ R𝑛

, the product 𝑢𝑣 represent the

element wise multiplicatioon between 𝑢 and 𝑣 .

3 FUNCTION SPACE

A function [16, 18, 26] can be defined as a mathematical relationship

or correspondence between two sets of elements. In other words, a

function maps each input value to a unique output value. Formally,

a function 𝑓 from a set 𝑋 (the domain) to a set 𝑌 (the range) is

denoted as 𝑓 : 𝑋 → 𝑌 . It associates each element 𝑥 in the domain

𝑋 with one element 𝑦 in the range 𝑌 , written as 𝑦 = 𝑓 (𝑥).
A function space [26] denoted F is a space that consists of

functions as its elements. In other words, it is a set of functions with

certain properties defined on a given domain. That is, F (𝑋,𝑌) =
{𝑓 , 𝑓 : 𝑋 → 𝑌 }. They can vary widely depending on the specific

properties and structures imposed on the functions within them. In

this work we focus on function space that consists of 𝑝-integrable

functions denoted L𝑝
[6].

3.1 Integrable Functions

A function 𝑓 is said to be 𝑝-integrable (𝑝 ∈ N) over a domain Ω and

we note 𝑓 ∈ L𝑝 (Ω) iff the function 𝑓 to the power 𝑝 is Lebesgue

integrable [26] that is,

𝑓 ∈ L𝑝 (Ω) ⇐⇒
∫
Ω
∥ 𝑓 (𝑥)∥𝑝𝑑𝑥 < +∞. (1)

For any 1 ≤ 𝑝 < ∞, L𝑝
spaces are also Banach space. That is,

they are all vector space with an equipped norm ∥ · ∥𝑝 defined as:

∀𝑓 ∈ L𝑝 (Ω), ∥ 𝑓 ∥𝑝 =

(∫
Ω
∥ 𝑓 (𝑥)∥𝑝𝑑𝑥

) 1

𝑝

. (2)

However, it’s noteworthy that they do not universally qualify as

Hilbert spaces, except in the special case where 𝑝 = 2, as highlighted

by Young [44]. In such case they are equipped with a scalar product

⟨·, ·⟩L2 (Ω) defined as:

∀𝑓 , 𝑔 ∈ L2 (Ω), ⟨𝑓 , 𝑔⟩L2 (Ω) =
∫
Ω
𝑓 (𝑥)𝑔(𝑥)𝑑𝑥. (3)

A straight example of integrable functions is polynomial functions.

Table 1: Points and weights for adaptive Gaussian quadrature

𝑘 1 2 3 4 5

Points (𝑥𝑘) −1

3

√︄
5 − 2

√︂
10

7

−1

3

√︄
5 + 2

√︂
10

7

0

1

3

√︄
5 − 2

√︂
10

7

1

3

√︄
5 + 2

√︂
10

7

Weights (𝑤𝑘)
322 + 13

√
70

900

322 − 13

√
70

900

128

225

322 + 13

√
70

900

322 − 13

√
70

900

3.2 Polynomial Functions

Apolynomial function represents a distinctive class ofmathematical

functions expressed as the sum of individual terms. We denote the

space R𝑑𝑒𝑔 [𝑥] the space of all polynomial functions of degree at

most 𝑑𝑒𝑔 ∈ N with coefficients in R. That is,

∀𝑃 ∈ F (R), 𝑃 ∈ R𝑑𝑒𝑔 [𝑥] ⇐⇒ ∃(𝑎𝑖)𝑑𝑒𝑔𝑖=0
∈ R, 𝑃 (𝑥) =

𝑑𝑒𝑔∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 .

Clearly, for any bounded domain Ω ⊆ R , R𝑑𝑒𝑔 [𝑥] ⊆ L2 (Ω),
∀ 𝑑𝑒𝑔 ∈ N. Therefore, given 𝑃1, 𝑃2 ∈ R𝑑𝑒𝑔 [𝑥] such that 𝑃1 (𝑥) =∑𝑑𝑒𝑔

𝑖=0
𝑎𝑖𝑥

𝑖
, and 𝑃2 (𝑥) =

∑𝑑𝑒𝑔

𝑖=0
𝑏𝑖𝑥

𝑖
their scalar product can be com-

puted as:

⟨𝑃1 (𝑥), 𝑃2 (𝑥)⟩L2 (Ω) =
∫
Ω
𝑃1 (𝑥)𝑃2 (𝑥)𝑑𝑥 (4)

=

𝑑𝑒𝑔∑︁
𝑖, 𝑗=0

𝑎𝑖𝑏 𝑗 (𝑀𝑖+𝑗 −𝑚𝑖+𝑗)
1 + 𝑖 + 𝑗 . (5)

Here,𝑀 and𝑚 are respectively the upper and lower bounds of Ω.
See the appendix in Section 7 to see how this is derived. We can

then derive the norm of all polynomial functions as:

∥𝑃1 (𝑥)∥2L2 [0,1] = ⟨𝑃1 (𝑥), 𝑃1 (𝑥)⟩L2 [0,1] (6)

=

𝑑𝑒𝑔∑︁
𝑖=0

𝑎2
𝑖

1 + 2𝑖
+

𝑑𝑒𝑔∑︁
𝑖, 𝑗=0
𝑖≠𝑗

𝑎𝑖𝑎 𝑗

1 + 𝑖 + 𝑗 . (7)

These properties of polynomial functions are interesting, as their

scalar product and norm can be computed without approximations,

which is not always possible in L2
. Therefore, for other types of

functions, we suggest using integral approximations.

3.3 Integral Approximation

Integral approximation is a numerical technique used to approxi-

mate the value of a definite integral by partitioning the interval of

integration into subintervals and approximating the area under the

curve using rectangles (for rectangle methods) and trapezoid (for

trapezoid methods) [4]

However, these approaches have the main disadvantage of not

guaranteeing a maximal error. To address this limitation, we follow

the methodology of works on numerical integration, by employing

adaptive Gaussian quadrature [17] with 5 nodes for the approxima-

tion of integrals. In adaptive Gaussian quadrature, an integral over

the domain [−1, 1] can be approximated as follows:

1∫
−1

𝑓 (𝑥)𝑑𝑥 ≈
5∑︁

𝑘=1

𝑤𝑘 𝑓 (𝑥𝑘), (8)

CIKM ’24, October 21–25, 2024, Boise, ID, USA Louis Mozart Kamdem Teyou, Caglar Demir, and Axel-Cyrille Ngonga Ngomo

Table 2: Embedding spaces and scoring function of some

state-of-the-art KGE models

Models Embedding Space Scoring Function

FMult𝑛 R𝑛 [𝑥] ⟨h(𝑥) ⊗ r(𝑥), t(𝑥)⟩L2 (Ω)
FMult

𝑖
𝑛 C𝑛 [𝑥] ⟨h(𝑥) ⊗ r(𝑥), t(𝑥)⟩L2 (Ω)

FMult L2 (Ω) ⟨
(
h ◦ r

)
(𝑥), t(𝑥)⟩L2 (Ω)

TransE R𝑑 ∥h + r − t∥
DistMult R𝑑 ⟨h, r, t⟩
RotatE R𝑑 ∥h ◦ r − t∥
CompEx C𝑑/2 R𝑒 ⟨h, r, t⟩
QMult H𝑑/4 h ⊗ r⊲ · t
OMult O𝑑/8 h ⊗ r · t
DualE H𝑑/4 ⟨h⊗r, t⟩
HolE R𝑑 ⟨r, h★ t⟩

where 𝑤𝑘 ∈ R are weights and 𝑥𝑘 ∈ [−1, 1] are the nodes. The

nodes and weights for the interval [−1, 1] are provided in Table 1.

Using a change of variable, we can derive the Gaussian quadrature

formula for an integral over any finite bounds, 𝑎 to 𝑏, as:

∫ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 ≈ 𝑏 − 𝑎
2

5∑︁
𝑘=1

𝑤𝑘 𝑓

(
𝑏 − 𝑎
2

𝑥𝑘 + 𝑏 + 𝑎
2

)
. (9)

4 METHODOLOGY

Let us consider the problem of embedding a KG into a 𝑑- dimen-

sional vector space, ensuring compatibility with existing methods.

In Table 2, we show the embedding space where each of the state-of-

the-art models operates. We initiate the exploration of functional

embeddings by employing polynomial functions. This choice is

grounded in the fundamental theorem of real analysis, known as

the Weierstrass approximation theorem, which asserts that any

function, no matter how complex, can be accurately approximated

by polynomial functions [32, 33]. Given their simplicity and univer-

sal approximating power, polynomial functions serve as an ideal

starting point for our investigation into functional embeddings.

We then extend this idea into complex spaces, leveraging the ex-

pressive power of trigonometric functions. This serves as a natural

progression before delving into more complex function represen-

tations, notably employing Neural Networks which is a kind of

generalization of polynomial embeddings.

4.1 Embedding with Polynomial Functions

Wefirst showhow to embedKGs using polynomial functions. Specif-

ically, when embedding in polynomial space R𝑛 [𝑥], our approach,
FMult, seamlessly transforms into FMult𝑛 , where 𝑛 denotes the

degree of the polynomial utilized for representing the embeddings.

• Let ⟨h, r, t⟩ ∈ K
• We compute the embedding of h, r and t in R𝑚

𝑑𝑒𝑔
[𝑥] where

𝑚 = 𝑑
𝑑𝑒𝑔+1 and 𝑑𝑒𝑔 ∈ N is a hyper-parameter s.t. 0 ≤ 𝑑𝑒𝑔 ≤

𝑑 − 1 as follows:

h (𝑥) =
𝑑𝑒𝑔∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 , r (𝑥) =

𝑑𝑒𝑔∑︁
𝑖=0

𝑏𝑖𝑥
𝑖 , t (𝑥) =

𝑑𝑒𝑔∑︁
𝑖=0

𝑐𝑖𝑥
𝑖

where 𝑎 (·) , 𝑏 (·) and 𝑐 (·) ∈ R𝑚 . Hence,

FMult𝑑𝑒𝑔 (⟨h, r, t⟩) = ⟨h(𝑥) ⊗ r(𝑥), t(𝑥)⟩L2 (Ω) (10)

=

∫
Ω
h(𝑥)r(𝑥)t(𝑥)𝑑𝑥 (11)

=

∫ 𝑀

𝑚

𝑑𝑒𝑔∑︁
𝑖, 𝑗,𝑘=0

𝑎𝑖𝑏 𝑗𝑐𝑘𝑥
𝑖+𝑗+𝑘𝑑𝑥 (12)

=

𝑑𝑒𝑔∑︁
𝑖, 𝑗,𝑘=0

𝑎𝑖𝑏 𝑗𝑐𝑘 (𝑀1+𝑖+𝑗+𝑘 −𝑚1+𝑖+𝑗+𝑘)
1 + 𝑖 + 𝑗 + 𝑘 . (13)

𝑀 and𝑚 represent the upper and lower bounds of Ω.

4.2 Embedding with Trigonometric Functions

As shown with the ComplEx model [38], the complex space is a

prominent space to compute the embeddings as the imaginary part

can be used to model anti-symmetric relations. We extend this idea

by using a trigonometric function to represent the embedding. Let

be C[𝑥] =
{
𝑓𝑟 + 𝑖 𝑓𝑐 ,where 𝑖2 = −1 and 𝑓𝑟 , 𝑓𝑐 ∈ L2 (Ω)

}
. For any

𝑓 ∈ C[𝑥], We have

| |𝑓 | |2 =
1∫

0

𝑓 (𝑥) 𝑓 ∗ (𝑥)𝑑𝑥 = | |𝑓𝑟 | |2L2 (Ω) + ||𝑓𝑐 | |2L2 (Ω) , (14)

where 𝑓 ∗ = 𝑓𝑟 − 𝑖 𝑓𝑐 .
For𝑚 ∈ 2N, we define the space

C𝑚𝑛 [𝑥] =
{

𝑛∑︁
𝑘=0

𝛼𝑘𝑒
𝑖𝑘𝑥 , where 𝛼𝑘 ∈ C𝑚/2

}
⊆ C[𝑥]

When computing the embedding in complex space, FMult re-

duces to FMult
𝑖
𝑛 . For simplicity, here we choose Ω = [0, 1] .

• Let ⟨h, r, t⟩ ∈ 𝐾
• We compute the embedding of h, r and t in C𝑚

𝑑𝑒𝑔
[𝑥] where

𝑚 = 𝑑
𝑑𝑒𝑔+1 and 𝑑𝑒𝑔 ∈ N is a hyper-parameter s.t. 0 ≤ 𝑑𝑒𝑔 ≤

𝑑 − 1.

h(𝑥) =
𝑑𝑒𝑔∑︁
𝑘=0

𝑎𝑘𝑒
𝑘𝑖𝑥 , r(𝑥) =

𝑑𝑒𝑔∑︁
𝑘=0

𝑏𝑘𝑒
𝑘𝑖𝑥 , t(𝑥) =

𝑑𝑒𝑔∑︁
𝑘=0

𝑐𝑘𝑒
𝑘𝑖𝑥

where, 𝑎 (·) , 𝑏 (·) and 𝑐 (·) ∈ C𝑚/2
. Hence,

FMult
𝑖
𝑛 (ℎ, 𝑟, 𝑡) = R𝑒

(
⟨h(𝑥) ⊗ r(𝑥), t(𝑥)⟩L2 (Ω)

)
= R𝑒

(
𝑎0𝑏0𝑐0 +

𝑑𝑒𝑔∑︁
𝑢,𝑣,𝑤=1

𝑎𝑢𝑏𝑣𝑐𝑤

𝑢 + 𝑣 +𝑤
(
1 − 𝑒𝑖 (𝑢+𝑣+𝑤)))

Step-by-step derivation of FMult
𝑖
𝑛 is provided in the Appendix.

Some direct consequences of these scoring formulations are the

following theorems:

Embedding Knowledge Graphs in Function Spaces CIKM ’24, October 21–25, 2024, Boise, ID, USA

Theorem 4.1. ∀⟨h, r, t⟩ ∈ K ,

If ∥Ω∥ = 1, FMult0 (⟨h, r, t⟩) = DistMult(⟨h, r, t⟩)
If ∥Ω∥ = 1, FMult

𝑖
0
(⟨h, r, t⟩) = ComplEx(⟨h, r, t⟩)

Theorem 4.2. ∀⟨h, r, t⟩ ∈ K 𝑠 .𝑡 . ⟨t, r, h⟩ ∈ K,

FMult𝑛 (⟨h, r, t⟩) = FMult𝑛 (⟨t, r, h⟩)
FMult

𝑖
𝑛 (⟨h, r, t⟩) = FMult𝑛 (⟨t, r, h⟩)

Apart from being able to generalize DistMult and ComplEx (see

Theorem 4.1), FMult𝑛 and FMult
𝑖
𝑛 also have the advantage to

model symmetric relations as highlighted in Theorem 4.2. How-

ever, this last advantage is also their main disadvantage as it will

be assigned the same score to any permutation of ⟨h, r, t⟩ even
if this does not belong to K for instance, FMult𝑛 (⟨h, r, t⟩) =

FMult𝑛 (⟨r, t, h⟩) ∀𝑛 ∈ N. To solve this problem, we consider using

two approaches:

• Leveraging function composition in lieu of conventional

function multiplication.

• Incorporating an activation function to amplify non-linearity

within the embeddings.

4.3 Embedding with Neural Networks

Building upon the foundation laid by polynomial functions, we now

delve into a more sophisticated approach by harnessing the power

of Neural Networks for embedding. While polynomial functions

offer simplicity and certain approximation capabilities, Neural Net-

works present a paradigm shift with their ability to capture highly

complex and nonlinear relationships inherent in the data as men-

tioned by Dongare et. al. in [13]. Here, we explore how entities and

relations in KGs can be represented as Neural Networks. Figure 1

shows a summarization of FMult with a single layer.

4.3.1 Entities representation. Considering the problem of em-

bedding into a 𝑑-dimensional vector space, for u = h, r or t, we
initialize the weights and bias of the neural network as follows:

𝑊u =

©«
𝑊u1
𝑊u2
.
.
.

𝑊ud/2

ª®®®®¬
and 𝑏u =

©«
𝑏u1
𝑏u2
.
.
.

𝑏ud/2

ª®®®®¬
(15)

i.e.𝑊u, 𝑏u ∈ R𝑑/2.

We represent u as a Neural Network with 𝑛 layers as:

u(𝑥) =

©«

𝜎 (𝑊un𝑥 + 𝑏un)◦ · · · ◦︸︷︷︸
(𝑛−1)

𝜎 (𝑊u1𝑥 + 𝑏u1)

𝜎 (𝑊u2n𝑥 + 𝑏u2n)◦ · · · ◦︸︷︷︸
(𝑛−1)

𝜎 (𝑊un+1𝑥 + 𝑏un+1)

.

.

. 𝑘 components

𝜎 (𝑊ukn𝑥 + 𝑏ukn)◦ · · · ◦︸︷︷︸
(𝑛−1)

𝜎 (𝑊u(k−1)n+1𝑥 + 𝑏u(k−1)n+1)

ª®®®®®®®®®®®®®¬
(16)

where 𝑘 ∈ N and such that 𝑘 × 𝑛 = 𝑑
2
. That is, if 𝑛 = 𝑑/2 (Maximal

number of layers)

u(𝑥) = 𝜎 (𝑊un𝑥 + 𝑏un) ◦ · · · ◦ 𝜎 (𝑊u1𝑥 + 𝑏u1) (17)

4.3.2 Scoring Function Derivation. Given a triple ⟨h, r, t⟩ ∈ 𝐾 ,
we define the scoring function of FMult as follow:

FMult(⟨h, r, t⟩) = ⟨h ◦ r(𝑥), t(𝑥)⟩L2 (Ω) (18)

=

(𝑘−1)𝑛+1∑︁
𝑖=1

⟨h(𝑖) ◦ r(𝑖) (𝑥), t(𝑖) (𝑥)⟩L2 (Ω) (19)

here, h(𝑖) (·), r(𝑖) (·) and t(𝑖) (·) represent the 𝑖-th components of

h(·), r (·) and t (·) respectively i.e.

h(𝑖) (𝑥) = 𝜎 (𝑊hin
𝑥 + 𝑏hin)◦ · · · ◦︸︷︷︸

(𝑛−1)

𝜎 (𝑊h(i−1)n+1
𝑥 + 𝑏h(i−1)n+1

) (20)

r(𝑖) (𝑥) = 𝜎 (𝑊rin𝑥 + 𝑏rin)◦ · · · ◦︸︷︷︸
(𝑛−1)

𝜎 (𝑊r(i−1)n+1𝑥 + 𝑏r(i−1)n+1) (21)

t(𝑖) (𝑥) = 𝜎 (𝑊tin𝑥 + 𝑏tin)◦ · · · ◦︸︷︷︸
(𝑛−1)

𝜎 (𝑊t(i−1)n+1𝑥 + 𝑏t(i−1)n+1) (22)

thus,

FMult(⟨h, r, t⟩) =
(𝑘−1)𝑛+1∑︁

𝑖=1

∫
Ω
h(𝑖)

(
r(𝑖) (𝑥)

)
× t(𝑖) (𝑥)𝑑𝑥

≈
5∑︁
𝑗=1

(𝑘−1)𝑛+1∑︁
𝑖=1

𝑤 𝑗h(𝑖)
(
r(𝑖) (𝑥 𝑗)

)
× t(𝑖) (𝑥 𝑗)𝑑𝑥,

where𝑤 𝑗 and 𝑥 𝑗 are the weights and points in Table 1.

5 EXPERIMENTS

5.1 Datasets

In our experiments, we consider our approaches for link prediction

tasks, thereby providing a compelling comparison with state-of-

the-art models. Prior to performing this task, we first performed

an exhaustive grid search to fine-tune FMult ’s and FMult𝑛 ’s

parameters, seeking the optimal configuration. This phase was the

most challenging aspect of our research, and the results presented

on large datasets do not reflect the optimal parameters due to the

substantial time investment required for this process.

We perform the evaluations considering benchmark datasets

KINSHIP, COUNTRIES, UMLS, NELL-995-h100, NELL-995-h50 and

NELL-995-h75. The KINSHIP dataset is a KG data that focuses on

familial relationships [14]. It typically contains information about

familial connections between individuals, such as parent-child rela-

tionships, sibling relationships, grandparent-grandchild relation-

ships, and so on. The UMLS dataset is a KG data which focuses

on bio-medicine [37]. Each entity is a medical concept, and the

edges represent semantic relationships between these concepts,

such as "is-a," "part-of," "treats," etc. The COUNTRIES dataset typi-

cally refers to a collection of data related to countries around the

CIKM ’24, October 21–25, 2024, Boise, ID, USA Louis Mozart Kamdem Teyou, Caglar Demir, and Axel-Cyrille Ngonga Ngomo

Weigt
hs

Bias

Linearization

Linea
rizati

on

Non-
linearization

Figure 1: FMult architecture with a single layer

world [15]. Finally, the NELL-995-h100, NELL-995-h50 and NELL-

995-h75 datasets are subsets of the Never-Ending Language Learn-

ing (NELL) dataset designed for multi-hop reasoning [29]. The

statistics related to each dataset can be found in Table 3.

Table 3: Overview of benchmark datasets

Dataset | E | | R | | GTrain | | GValidation | | GTest |

WN18-RR 40,943 22 86,835 3,034 3,134

FB15k-237 14,541 237 272,115 17,535 20,466

NELL-995-h50 34,667 86 72,767 5,440 5,393

NELL-995-h75 28,085 114 59,135 4,441 4,389

NELL-995-h100 22,411 86 50,314 3,763 3,746

UMLS 135 46 5,216 652 661

KINSHIP 104 25 8,544 1,068 1,074

5.2 Training Strategy and Experimental Setup

Throughout the experiments, all models are trained on each KG

data to minimize the binary cross-entropy loss function. The link

prediction performance of each KGE model is evaluated using the

filtered MRR (Mean Reciprocal rank), and Hits at n (H@n) with n =

1, 3 10. To ensure a fair comparison, each model is trained using

a negative sampling scoring technique, maintaining a consistent

ratio of 50%. For benchmarking purposes, we adopt embedding

dimensions𝑑 chosen from the set {16, 32, 64, 100, 128}, as commonly

used in related literature. Optimization is performed using theAdam

optimizer with a learning rate of 0.02, and each model is trained

for 500 epochs with a batch size of 1024.

For our approaches, the uniformity in model complexity is main-

tained by employing the 𝐿2 regularization technique [9]. The degree

𝑛 of FMult𝑛 is chosen between {0, 1, 3, 7} and for FMult, we found

that using two layers helps the model to generalize better on some

datasets (KINSHIP, NELL-995-h75) however, due to limited time

complexity, we considered using only a single layer with a tanh

activation function to represent all entities and relations see Figure

1.

6 RESULTS AND DISCUSSION

6.1 Embedding Dynamics

In Figure 2, we show the embeddings of the COUNTRIES dataset

in two dimensions, showcasing the representation of each entity

across different variants of the FMult method and the DistMult

model. As expected, DistMult displays the embeddings as 2-dimensional

vectors. When applying a sigmoid activation function to FMult,

2 0 2
X

1.4

1.6

1.8

2.0

2.2

Y

slovakia

belize

morocco
Cameroon

brunei

iran

new_zealand

liechtenstein
venezuela

greece

mayotte

qatar

british_virgin_islands

(a) DistMult

8 6 4 2
X

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Y

western_africa
slovakia
niger
belize
morocco

(b) FMult

2 1 0 1
X

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Y

western_africa
slovakia
niger
belize
morocco

(c) FMult
𝑖
1

10 0 10
X

250

200

150

100

50

0

Y

western_africa
slovakia
niger
belize
morocco

(d) FMult2

Figure 2: Entities representation for the COUNTRIES dataset

in 2-dimension

01 3 7 15 31
degree of the polynome

0.50

0.52

0.54

0.56

0.58

0.60

M
RR

KINSHIP

Test
Validation
Train

01 3 7 15 31
degree of the polynome

0.2

0.4

0.6

0.8

M
RR

COUNTRIES
Test
Validation
Train

Figure 3: Impact of degrees on polynomial embeddings

it effectively uses this function to represent the computed embed-

dings. Conversely, FMult
𝑖
1
uses trigonometric functions, resulting

in circular embeddings with varying centres and diameters de-

termined by the trained embeddings. Further, FMult2 employs

squared functions to represent the embeddings, resulting in shapes

Embedding Knowledge Graphs in Function Spaces CIKM ’24, October 21–25, 2024, Boise, ID, USA

Table 4: Link prediction results on UMLS, KINSHIP and NELL-995-h100. Results are taken from the corresponding paper. Bold

and underlined results indicate the best and second-best results respectively. The dash (-) denotes values missing in the paper

Models UMLS KINSHIP NELL-995-h100

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE .72 .55 .87 .96 .14 .05 .13 .30 .51 .37 .59 .77

TransR .89 .79 .98 .99 .67 .53 .77 .96 .42 .31 .48 .62

DistMult .81 .74 .86 .95 .67 .54 .75 .93 .77 .66 .86 .96

ComplEx .96 .92 .99 1.0 .89 .82 .96 .99 .83 .74 .91 .98

QMult [10] .96 .93 .98 1.0 .88 .81 .94 .99 .83 .73 .91 .98

OMult [10] .95 .91 .98 1.0 .87 .80 .94 .99 .75 .64 .82 .93

MuRE .97 .95 .99 1.0 .82 .72 .89 .98 .83 .74 .90 .98

MuRP .89 .80 .97 .99 .75 .62 .84 . 96 .85 .75 .90 .98

HolE .95 .91 .99 1.0 .89 .82 .96 .99 .71 .59 .79 .92

RotatE .87 .77 .95 .98 .76 .65 .84 .96 .46 .38 .49 .63

TuckER .87 .78 .96 .98 .58 .42 .68 .92 .33 .23 .37 .54

DualE .94 .89 .99 1.0 .82 .71 .91 .99 .77 .67 .85 .96

ConvO [10] .90 .82 .98 1.0 .86 .77 .93 .98 - - - -

ConvQ [10] .92 .86 .98 1.0 .86 .77 .93 .98 - - - -

FMult𝑛 .75 .65 .82 .93 .59 .44 .68 .91 .83 .76 .88 .96

FMult .97 .95 .99 1.0 .90 .83 .98 .99 .85 .76 .93 .97

characterized by a parabola. Notably, all embeddings share a com-

mon focus and vertex, highlighting a consistent feature across the

diverse visualization techniques.

We also investigate in Figure 3 how the degree of FMult𝑛 im-

pacts the embedding on the KINSHIP and COUNTRIES datasets.

More precisely, we plot the MRR achieved by FMult𝑛 on those

datasets for 𝑛 = {1, 3, 7, 15, 31} at the training, test and validation

phase. On the KINSHIP data, it is clear that a 3-degree polynomial

function generalizes better than other degrees. An explanation for

this is due to the nature of the KINSHIP data itself whichmainly con-

sists of symmetric relationships. Meanwhile, on the COUNTRIES

dataset, a 15-degree polynomial offers a better generalization com-

pared to others.

6.2 Link Prediction Results: Comparison with

the state-of-the-arts

Table 4 presents the results on the UMLS, KINSHIP, and NELL-

995-h100 datasets. On the UMLS dataset, FMult excels, achieving

the highest scores across all metrics, tying with MuRE and outper-

forming other state-of-the-art models. FMult𝑛 does not have high

performance, however, remains competitive. Since the UMLS data

contains hierarchical relationships that are often complex, we can

conclude that representing entities as neural networks is highly

effective in capturing complex and non-linear relationships, which

is likely why FMult achieved outstanding results across all metrics.

However, polynomial functions may not be as flexible as neural

networks in capturing the nuances of hierarchical and medical data.

This might explain why FMult𝑛 performed lower than FMult and

other state-of-the-art models. On the KINSHIP data FMult leads

in MRR, H@1, and H@3, outperforming all other models, while

FMult𝑛 lags behind most state-of-the-art models. Note that the

KINSHIP dataset is known for its numerous symmetric relation-

ships, such as parent-child and sibling relationships. The result

suggests that neural networks can seamlessly handle symmetry,

Table 5: Link prediction results for WN18-RR and FB15k-

237 datasets. Results are taken from corresponding papers.

Bold and underlined results indicate the best and second-best

results respectively.

Models WN18-RR FB15k-237

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE [34] .23 .05 .37 .52 .31 .22 .35 .50

DistMult [12] .43 .39 .44 .49 .24 .16 .26 .42

ComplEx [12] .44 .41 .46 .51 .25 .16 .28 .43

QMult [10] .44 .39 .45 .54 .35 .25 .38 .54

OMult [10] .45 .41 .48 .54 .38 .25 .38 .53

MuRE[7] .46 .42 .47 .53 .31 .23 .34 .49

MuRP [5] .48 .55 .49 .44 .34 .52 .37 .25

RotatE [5] .48 .43 .49 .57 .34 .24 .38 .53

TuckER [2] .47 .44 .48 .53 .36 .27 .39 .54

DualE [5] .49 .58 .51 .44 .37 .56 .40 .27

ConvO [10] .46 .43 .47 .52 .37 .27 .40 .54

ConvQ [10] .46 .42 .47 .53 .34 .25 .38 .53

FMult𝑛 .43 .39 .44 .50 . 47 .31 .56 .59

FMult .43 .27 .52 .60 .03 .01 .02 .08

which might explain why FMult leads in most metrics. However,

polynomial functions may not be particularly adept at capturing

symmetric relationships, which could explain the middling perfor-

mance of FMult𝑛 on this dataset leading to lower scores compared

to neural networks. A similar observation can be found on the

NELL-995-h100 where FMult demonstrates outstanding perfor-

mance, leading in MRR, H@1, and H@3, and achieving near-perfect

scores in H@10. FMult𝑛 also performs well on this dataset, closely

following the top models.

In Table 5, we describe the results of the WN18RR and FB15k-237

datasets. On theWN18RR dataset, FMult𝑛 is trained with𝑛 = 0 and

performed as expected similarly to DistMult but does not outper-

form the state-of-the-art models. However, FMult shows a stronger

CIKM ’24, October 21–25, 2024, Boise, ID, USA Louis Mozart Kamdem Teyou, Caglar Demir, and Axel-Cyrille Ngonga Ngomo

Table 6: Link prediction results on NELL-995-h75, NELL-995-h50 and Countries. Results are taken from the corresponding

paper Bold and underlined results indicate the best and second-best results respectively.

Models NELL-995-h75 NELL-995-h50 COUNTRIES

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE .55 .41 .63 .78 .56 .43 .63 .80 .70 .41 .99 1.0

TransR .44 .32 .50 .63 .44 .34 .49 .62 .68 .42 .93 .99

DistMult .77 .67 .84 .95 .75 .65 .82 .95 .98 . 97 .99 .99

ComplEx .83 .75 .89 .97 .79 .70 .87 .97 .98 .97 .99 1.0

QMult [11] .94 .91 .97 .98 .67 .58 .73 .82 .98 .96 .99 .99

OMult[11] .66 .57 .74 .83 .67 .58 .73 .82 .98 .97 .99 1.0

MuRE .79 .69 .86 .96 .78 .68 .85 .95 .99 .98 1.0 1.0

HolE .71 .60 .78 .91 .81 .72 .89 .97 .98 .96 .99 1.0

RotatE .46 .39 .49 .63 .46 .37 .49 .63 .77 .61 .93 .99

TuckER .34 .23 .37 .54 .33 .22 .36 .53 .09 .03 .09 .21

DualE .77 .68 .85 .94 .75 .63 .83 .95 .95 .91 .98 .99

FMult𝑛 .77 .68 .83 .95 .82 .74 .88 .96 .98 .98 .99 .99

FMult .85 .77 .93 .98 .77 .64 .87 .97 .93 .86 .99 1.0

performance in H@3 and H@10, indicating it is particularly effec-

tive in retrieving the correct tail entity within the top 3 and top 10

predictions of the dataset. This implies that while it may struggle to

predict the exact head entity (lower H@1), it captures useful infor-

mation that positions the correct entity closer to the top in ranked

lists. DualE and RotatE outperform both FMult and FMult𝑛 in

terms of MRR and H@1, which highlights the efficiency of models

that capture rotational and dual embeddings for this dataset. On

the FB15k-237, FMult𝑛 is trained using one-degree polynomials

(𝑛 = 1) and this significantly outperforms other models. Meanwhile,

we observe a very poor performance of FMult. We believe that

this extreme suboptimal performance is due to inappropriate hy-

perparameter settings for this dataset. Given the large size of the

data, experimenting with various settings is very time-consuming.

Table 6 presents the link prediction results on the NELL-995-

h75, NELL-995-h50, and Countries datasets. On the NELL-995-

h75, FMult excels with second-best performance across all met-

rics, closely following QMult. FMult𝑛 also performs competitively,

especially in H@10. On the NELL-995-h50 dataset, FMult and

FMult𝑛 both show strong performance, but in slightly different

ways: FMult is most effective at predicting H@10 showing best

performance with HolE and ComplEx due to the flexibility of neural

networks. While FMult𝑛 excels in accurately identifying the most

relevant connections like H@1 and H@3 and maintaining a high

overall performance (MRR), indicating the efficacy of polynomial

functions in capturing a mix of relationship complexities contained

in the NELL-995-h50 dataset. This analysis highlights the comple-

mentary strengths of the two approaches, with neural networks

providing broader predictive power and polynomial functions offer-

ing precision in ranking relevance on this particular dataset. On the

Countries data, apart from TuckER, all other approaches perform

incredibly well which is because the data itself contains only two

relations. However, both FMult and FMult𝑛 demonstrate strong

performance, with FMult𝑛 achieving near-perfect scores across

all metrics. Overall, both FMult and FMult𝑛 demonstrate com-

petitive performance against state-of-the-art models, with FMult

often achieving second-best results and FMult𝑛 excelling in several

metrics, particularly in the NELL-995-h50 and Countries datasets.

FMult excels in datasets with complex, hierarchical (e.g. UMLS),

or symmetric relationships (KINSHIP, WN18-RR), outperforming

state-of-the-art models, while FMult𝑛 remains competitive but less

effective due to its reliance on polynomial functions. Conversely,

FMult𝑛 significantly outperforms in datasets suited to polyno-

mial representations (e.g. NELL-995-h50) but may underperform

if hyperparameters are not well-tuned. Both approaches demon-

strate robust performance in datasets with fewer relationships (e.g.

COUNTRIES), with FMult𝑛 particularly excelling in precision.

7 CONCLUSION

In this work, we have developed three novel embedding methods

that operate in function space: FMult𝑛 , FMult
𝑖
𝑛 , and FMult. This

marks the first time that functional representations have been em-

ployed for embedding entities and relations in knowledge graphs.

Our experimental results on eight benchmark datasets demon-

strate that either polynomial-based embeddings (FMult𝑛) or neu-

ral network-based embeddings (FMult) can significantly improve

state-of-the-art results in knowledge graph completion.

The promising outcomes suggest that functional representations

provide a more flexible and expressive framework for capturing the

complex dynamics within knowledge graphs. While this study has

focused on FMult𝑛 and FMult, the potential of the trigonometric

function-based approach (FMult
𝑖
𝑛) remains unexplored and will

be the subject of future work.

ACKNOWLEDGMENTS

This project received funding from the European Union’s Horizon

Europe research and innovation programme through two grants

(Marie Skłodowska-Curie grant No. 101073307 and grant No. 101070305).

It was also supported by the "WHALE" project (LFN 1-04), funded

by the Lamarr Fellow Network programme and the Ministry of

Culture and Science of North Rhine-Westphalia (MKW NRW).

Embedding Knowledge Graphs in Function Spaces CIKM ’24, October 21–25, 2024, Boise, ID, USA

REFERENCES

[1] Ivana Balazevic, Carl Allen, and Timothy Hospedales. Multi-relational poincaré

graph embeddings. Advances in Neural Information Processing Systems, 32, 2019.

[2] Ivana Balažević, Carl Allen, and Timothy M Hospedales. Tucker: Tensor fac-

torization for knowledge graph completion. arXiv preprint arXiv:1901.09590,

2019.

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. Translating embeddings for modeling multi-relational data.

Advances in neural information processing systems, 26, 2013.

[4] Richard L Burden and J Douglas Faires. Numerical analysis. Brooks Cole, 1997.

[5] Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Xiaochun Cao, and Qingming

Huang. Dual quaternion knowledge graph embeddings. In Proceedings of the

AAAI conference on artificial intelligence, volume 35, pages 6894–6902, 2021.

[6] Claudio Carmeli, Ernesto De Vito, and Alessandro Toigo. Vector valued reproduc-

ing kernel hilbert spaces of integrable functions and mercer theorem. Analysis

and Applications, 4(04):377–408, 2006.

[7] Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christo-

pher Ré. Low-dimensional hyperbolic knowledge graph embeddings. arXiv

preprint arXiv:2005.00545, 2020.

[8] Zhe Chen, Yuehan Wang, Bin Zhao, Jing Cheng, Xin Zhao, and Zongtao Duan.

Knowledge graph completion: A review. Ieee Access, 8:192435–192456, 2020.

[9] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. L2 regularization for

learning kernels. arXiv preprint arXiv:1205.2653, 2012.

[10] Caglar Demir, Diego Moussallem, Stefan Heindorf, and Axel-Cyrille Ngonga

Ngomo. Convolutional hypercomplex embeddings for link prediction. In Asian

Conference on Machine Learning, pages 656–671. PMLR, 2021.

[11] Caglar Demir and Axel-Cyrille Ngonga Ngomo. Clifford embeddings–a general-

ized approach for embedding in normed algebras. In Joint European Conference on

Machine Learning and Knowledge Discovery in Databases, pages 567–582. Springer,

2023.

[12] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Con-

volutional 2d knowledge graph embeddings. In Proceedings of the AAAI conference

on artificial intelligence, volume 32, 2018.

[13] AD Dongare, RR Kharde, Amit D Kachare, et al. Introduction to artificial neural

network. International Journal of Engineering and Innovative Technology (IJEIT),

2(1):189–194, 2012.

[14] Ruogu Fang, Andrew C Gallagher, Tsuhan Chen, and Alexander Loui. Kinship

classification by modeling facial feature heredity. In 2013 IEEE international

conference on image processing, pages 2983–2987. IEEE, 2013.

[15] Andrés Fernández, Michael W Klein, Alessandro Rebucci, Martin Schindler, and

Martin Uribe. Capital control measures: A new dataset. Technical report, National

Bureau of Economic Research, 2015.

[16] Izrail Moiseevich Gelfand, Elena Georgievna Glagoleva, and Emmanuil Elevich

Shnol. Functions and graphs, volume 1. Springer Science & Business Media, 1990.

[17] Gene H Golub and John H Welsch. Calculation of gauss quadrature rules. Math-

ematics of computation, 23(106):221–230, 1969.

[18] JW Hesselgreaves. Functions and graphs. by im gelfand, eg glagoleva, and ee

shnol. pp. v, 105. 56s. 1969.(massachusetts institute of technology; great russell

street, london, wci). The Mathematical Gazette, 54(390):418–418, 1970.

[19] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,

Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli,

Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, SabbirM. Rashid,

Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine

Zimmermann. Knowledge graphs. ACM Comput. Surv., 54(4):71:1–71:37, 2022.

[20] Nitisha Jain. Representation and curation of knowledge graphs with embeddings.

PhD thesis, Universität Potsdam, 2022.

[21] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. Knowledge graph

embedding via dynamic mapping matrix. In Proceedings of the 53rd annual

meeting of the association for computational linguistics and the 7th international

joint conference on natural language processing (volume 1: Long papers), pages

687–696, 2015.

[22] Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao. Knowledge graph completion

with adaptive sparse transfer matrix. In Proceedings of the AAAI conference on

artificial intelligence, volume 30, 2016.

[23] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A

survey on knowledge graphs: Representation, acquisition, and applications. IEEE

Trans. Neural Networks Learn. Syst., 33(2):494–514, 2022.

[24] Yan-Bin Jia. Dual quaternions. Iowa State University: Ames, IA, USA, 2013.

[25] Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in

knowledge graphs. Advances in neural information processing systems, 31, 2018.

[26] Alois Kufner, Oldrich John, and Svatopluk Fucik. Function spaces, volume 3.

Springer Science & Business Media, 1977.

[27] Julien Leblay, Melisachew Wudage Chekol, and Xin Liu. Towards temporal

knowledge graph embeddings with arbitrary time precision. In proceedings of

the 29th acm international conference on information & knowledge management,

pages 685–694, 2020.

[28] Dongze Li, Hanbing Qu, and Jiaqiang Wang. A survey on knowledge graph-

based recommender systems. In 2023 China Automation Congress (CAC), pages

2925–2930. IEEE, 2023.

[29] Xi Victoria Lin, Richard Socher, and Caiming Xiong. Multi-hop knowledge graph

reasoning with reward shaping. arXiv preprint arXiv:1808.10568, 2018.

[30] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity

and relation embeddings for knowledge graph completion. In Proceedings of the

AAAI conference on artificial intelligence, volume 29, 2015.

[31] Maximilian Nickel, Volker Tresp, Hans-Peter Kriegel, et al. A three-way model for

collective learning on multi-relational data. In Icml, volume 11, pages 3104482–

3104584, 2011.

[32] Kenneth A Ross. Elementary analysis. Springer, 2013.

[33] Walter Rudin et al. Principles of mathematical analysis, volume 3. McGraw-hill

New York, 1964.

[34] Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You can teach an old

dog new tricks! on training knowledge graph embeddings. 2020.

[35] A. Singhal. Introducing the knowledge graph: Things, not strings. Google Blog,

2012. Retrieved from https://www.blog.google/products/search/introducing-

knowledge-graph-things-not/.

[36] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowl-

edge graph embedding by relational rotation in complex space. arXiv preprint

arXiv:1902.10197, 2019.

[37] Théo Trouillon, Christopher R Dance, Éric Gaussier, Johannes Welbl, Sebastian

Riedel, and Guillaume Bouchard. Knowledge graph completion via complex

tensor factorization. Journal of Machine Learning Research, 18(130):1–38, 2017.

[38] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume

Bouchard. Complex embeddings for simple link prediction. In International

conference on machine learning, pages 2071–2080. PMLR, 2016.

[39] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embed-

ding: A survey of approaches and applications. IEEE Trans. Knowl. Data Eng.,

29(12):2724–2743, 2017.

[40] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. Kgat:

Knowledge graph attention network for recommendation. In Proceedings of the

25th ACM SIGKDD international conference on knowledge discovery & data mining,

pages 950–958, 2019.

[41] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph

embedding by translating on hyperplanes. In Proceedings of the AAAI conference

on artificial intelligence, volume 28, 2014.

[42] Han Xiao, Minlie Huang, and Xiaoyan Zhu. Knowledge semantic representation:

a generative model for interpretable knowledge graph embedding. arXiv preprint

arXiv:1608.07685, 2016.

[43] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding

entities and relations for learning and inference in knowledge bases. arXiv

preprint arXiv:1412.6575, 2014.

[44] Nicholas Young. An introduction to Hilbert space. Cambridge university press,

1988.

[45] Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embed-

dings. Advances in neural information processing systems, 32, 2019.

https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/

CIKM ’24, October 21–25, 2024, Boise, ID, USA Louis Mozart Kamdem Teyou, Caglar Demir, and Axel-Cyrille Ngonga Ngomo

A SCORES DERIVATION

A.1 Scalar Product and Norm Derivation of

Polynomial Functions

Given 𝑃1, 𝑃2 ∈ R𝑑𝑒𝑔 [𝑥] such that 𝑃1 (𝑥) =
∑𝑑𝑒𝑔

𝑖=0
𝑎𝑖𝑥

𝑖
, and 𝑃2 (𝑥) =∑𝑑𝑒𝑔

𝑖=0
𝑏𝑖𝑥

𝑖
we have:

⟨𝑃1 (𝑥), 𝑃2 (𝑥)⟩L2 (Ω) =
∫
Ω
𝑃1 (𝑥)𝑃2 (𝑥)𝑑𝑥 (23)

=

∫
Ω

𝑑𝑒𝑔∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 ×

𝑑𝑒𝑔∑︁
𝑗=0

𝑏 𝑗𝑥
𝑗𝑑𝑥 (24)

=

∫
Ω

𝑑𝑒𝑔∑︁
𝑖, 𝑗=0

𝑎𝑖𝑏 𝑗𝑥
𝑖+𝑗𝑑𝑥 (25)

=

𝑑𝑒𝑔∑︁
𝑖, 𝑗=0

𝑎𝑖𝑏 𝑗

∫
Ω
𝑥𝑖+𝑗𝑑𝑥 (26)

=

𝑑𝑒𝑔∑︁
𝑖, 𝑗=0

𝑎𝑖𝑏 𝑗
(
supΩ𝑖+𝑗 − inf Ω𝑖+𝑗)

1 + 𝑖 + 𝑗 . (27)

Here, supΩ and inf Ω are respectively the upper and lower bounds

of Ω.

A.2 Full Scoring Function Derivation of

FMult
𝑖
𝑛 (ℎ, 𝑟, 𝑡)

• Let ⟨h, r, t⟩ ∈ 𝐾
• We compute the embedding of h, r and t in C𝑚

𝑑𝑒𝑔
[𝑥] where

𝑚 = 𝑑
𝑑𝑒𝑔+1 and 𝑑𝑒𝑔 ∈ N is a hyper-parameter s.t. 0 ≤ 𝑑𝑒𝑔 ≤

𝑑 − 1.

h(𝑥) =
𝑑𝑒𝑔∑︁
𝑘=0

𝑎𝑘𝑒
𝑘𝑖𝑥 , r(𝑥) =

𝑑𝑒𝑔∑︁
𝑘=0

𝑏𝑘𝑒
𝑘𝑖𝑥 , t(𝑥) =

𝑑𝑒𝑔∑︁
𝑘=0

𝑐𝑘𝑒
𝑘𝑖𝑥

where, 𝑎 (·) , 𝑏 (·) and 𝑐 (·) ∈ C𝑚/2
. Hence,

FMult
𝑖
𝑛 (ℎ, 𝑟, 𝑡) = 𝐴

𝐴 = R𝑒
(
⟨h(𝑥) ⊗ r(𝑥), t(𝑥)⟩L2 (Ω)

)
= R𝑒

(∫
Ω

𝑑𝑒𝑔∑︁
𝑘=0

𝑎𝑘𝑒
𝑘𝑖𝑥 ×

𝑑𝑒𝑔∑︁
𝑘=0

𝑏𝑘𝑒
𝑘𝑖𝑥 ×

𝑑𝑒𝑔∑︁
𝑘=0

𝑏𝑘𝑒
𝑘𝑖𝑥𝑑𝑥

)
= R𝑒

(∫
Ω

𝑑𝑒𝑔∑︁
𝑢,𝑣,𝑤=0

𝑎𝑢𝑏𝑣𝑐𝑤𝑒
𝑖 (𝑢+𝑣+𝑤)𝑥𝑑𝑥

)
= R𝑒

(∫
Ω
𝑎0𝑏0𝑐0𝑑𝑥 +

𝑑𝑒𝑔∑︁
𝑢,𝑣,𝑤=1

∫
Ω
𝑎𝑢𝑏𝑣𝑐𝑤𝑒

𝑖 (𝑢+𝑣+𝑤)𝑥𝑑𝑥
)

= R𝑒
(
𝑎0𝑏0𝑐0∥Ω∥

)
+ R𝑒

(
𝑑𝑒𝑔∑︁

𝑢,𝑣,𝑤=1

𝑎𝑢𝑏𝑣𝑐𝑤

𝑢 + 𝑣 +𝑤
(
𝑒𝑖 (𝑢+𝑣+𝑤)×inf Ω − 𝑒𝑖 (𝑢+𝑣+𝑤)×supΩ))

B PROOF OF THEOREMS

• If ∥Ω∥ = 1, FMult0 (⟨h, r, t⟩) = DistMult(⟨h, r, t⟩)

Proof. We assume ∥Ω∥ = 1. If 𝑑𝑒𝑔 = 0, the polynomials

reduce to 𝑑-dimentional constant vectors (as𝑚 = 𝑑
0+1 = 𝑑)

i.e.,

h(𝑥) = 𝑎0, r(𝑥) = 𝑏0, t(𝑥) = 𝑐0 .
Therefore,

FMult0 (⟨h, r, t⟩) =
∫
Ω
𝑎0𝑏0𝑐0𝑑𝑥 (28)

= 𝑎0𝑏0𝑐0 ∥Ω∥ (29)

= 𝑎0𝑏0𝑐0 (30)

= DistMult(⟨h, r, t⟩) (31)

□

• If ∥Ω∥ = 1, FMult
𝑖
0
(⟨h, r, t⟩) ≡ ComplEx(⟨h, r, t⟩)

Proof.

From Subsection A.2, we can directly derive that if 𝑑𝑒𝑔 = 0,

the second term of the summation vanish. We therefore

remain with FMult
𝑖
0
(ℎ, 𝑟, 𝑡) = R𝑒

(
𝑎0𝑏0𝑐0∥Ω∥

)
and since by

hypothesis, ∥Ω∥ = 1 we get FMult
𝑖
0
(ℎ, 𝑟, 𝑡) = R𝑒

(
𝑎0𝑏0𝑐0

)
with 𝑎0, 𝑏0 and 𝑐0 ∈ C𝑑/2 which is the definition of ComplEx.

□

• FMult𝑛 (⟨h, r, t⟩) = FMult𝑛 (⟨t, r, h⟩)

Proof. Using the definition of FMult𝑛 :

FMult𝑛 (⟨h, r, t⟩) =
∫
Ω
h(𝑥)r(𝑥)t(𝑥) 𝑑𝑥 (32)

By swapping h and t:

FMult𝑛 (⟨t, r, h⟩) =
∫
Ω
t(𝑥)r(𝑥)h(𝑥) 𝑑𝑥 (33)

=

∫
Ω
h(𝑥)r(𝑥)t(𝑥) 𝑑𝑥 (34)

= FMult𝑛 (⟨h, r, t⟩) (35)

□

• FMult
𝑖
𝑛 (⟨h, r, t⟩) = FMult𝑛 (⟨t, r, h⟩)

Proof. Using the definition of FMult
𝑖
𝑛 :

FMult
𝑖
𝑛 (⟨h, r, t⟩) = R𝑒

(∫
Ω
h(𝑥)r(𝑥)t(𝑥) 𝑑𝑥

)
By swapping h and t:

FMult
𝑖
𝑛 (⟨t, r, h⟩) = R𝑒

(∫
Ω
t(𝑥)r(𝑥)h(𝑥) 𝑑𝑥

)
(36)

= R𝑒
(∫

Ω
h(𝑥)r(𝑥)t(𝑥) 𝑑𝑥

)
(37)

= FMult
𝑖
𝑛 (⟨h, r, t⟩). (38)

□

	Abstract
	1 Introduction
	2 Related Work
	3 Function Space
	3.1 Integrable Functions
	3.2 Polynomial Functions
	3.3 Integral Approximation

	4 Methodology
	4.1 Embedding with Polynomial Functions
	4.2 Embedding with Trigonometric Functions
	4.3 Embedding with Neural Networks

	5 Experiments
	5.1 Datasets
	5.2 Training Strategy and Experimental Setup

	6 Results and Discussion
	6.1 Embedding Dynamics
	6.2 Link Prediction Results: Comparison with the state-of-the-arts

	7 Conclusion
	Acknowledgments
	References
	A Scores Derivation
	A.1 Scalar Product and Norm Derivation of Polynomial Functions
	A.2 Full Scoring Function Derivation of FMultin(h,r,t)

	B Proof of Theorems

