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Abstract

Detecting the veracity of a statement automatically is a challenge
the world is grappling with due to the vast amount of data spread
across the web. Verifying a given claim typically entails validating it
within the framework of supporting evidence like a retrieved piece
of text. Classifying the stance of the text with respect to the claim
is called stance classification. Despite advancements in automated
fact-checking, most systems still rely on a substantial quantity of
labeled training data, which can be costly. In this work, we avoid the
costly training or fine-tuning of models by reusing pre-trained large
language models together with few-shot in-context learning. Since
we do not train any model, our approach ExXPRomPT is lightweight,
demands fewer resources than other stance classification methods
and can serve as a modern baseline for future developments. At
the same time, our evaluation shows that our approach is able to
outperform former state-of-the-art stance classification approaches
regarding accuracy by at least 2 percent. Our scripts and data used in
this paper are available at https://github.com/dice-group/ExPrompt.
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1 Introduction

With the rapid proliferation of misinformation on the internet—
such as fake news, socio-political deception, and online rumors—
journalists, broadcasters, political figures, and the general populace
face challenges in keeping abreast of the latest factual informa-
tion [1]. This difficulty is amplified during public emergencies such
as the COVID-19 pandemic, where new discoveries are swiftly
disseminated and decisions made on outdated or incomplete data
can pose significant risks [29]. Consequently, there is a growing
demand for automated tools to help users assess the accuracy of
claims. Many existing approaches are based on deriving pieces of
evidence for a given claim that either support or refute the claim.
The task to classify such a piece as either supporting or refuting is
known as stance classification [24].

Recent advancements in stance classification reveal significant
challenges with supervised learning models, prone to dataset-specific
biases [32]. Schuster et al. [24] demonstrate the effectiveness of
a claim-only model, potentially exploiting dataset idiosyncrasies.
Thorne et al. [27] highlighted FEVER systems’ vulnerability to adver-
sarial conditions, causing performance drops. In natural language
inference (NLI), neural models rely on surface-level cues over gen-
uine comprehension. Zero-shot fact-checking methods [18, 32] have
emerged but struggle with out-of-domain claims. To address these
challenges, we propose a novel baseline approach using pre-trained
large language models (LLMs) for stance classification, conserv-
ing resources and overcoming limitations posed by out-of-domain
claims.

While previous efforts to extract knowledge from LLMs have
primarily focused on open-domain question answering, to the best
of our knowledge, this is the first study to explore the use of LLMs
with in-context learning in this domain. The main contributions of
this paper are as follows:

e We propose a modern baseline approach for stance classifica-
tion on given claims and their respective pieces of evidence.
e We find that with the correct input prompts and in-context
examples, our approach outperforms all previous works and
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achieves state-of-the-art performance on FEVER [26], ScI-
Fact [29], Climate-FEVER [7], FEVER-Symmetric [24], and
FEVER-Symmetric-Generated [24] datasets.

2 Related work

Recent advancements in stance classification have highlighted
significant hurdles linked to supervised learning models, particu-
larly regarding their vulnerability to biases specific to the training
data [32]. For example, Schuster et al. [24] showcase the efficacy of
a claim-only model, which assesses individual claims in solitude,
independent of supporting evidence. The model’s superiority to
baseline systems suggests the potential exploitation of dataset pe-
culiarities rather than a true grasp of linguistic nuances. Similarly,
Thorne et al. [27] underscored the susceptibility of various FEVER
systems to adversarial conditions, where even minor perturbations
resulted in significant performance drops. In the realm of natu-
ral language inference (NLI), prior research [11, 20] has unveiled
neural models’ vulnerability to superficial correlations present in
the data, indicating a reliance on surface-level cues over genuine
linguistic comprehension. These observations collectively hint at
the presence of annotation artifacts within datasets, which could
introduce biases and impact model effectiveness.

In response to these challenges, there is a growing need for
approaches that are independent of specific datasets and do not
require extensive training [21, 22]. To tackle these issues, zero-
shot fact-checking approaches have emerged [18, 32]. However,
these methods also have inherent limitations. For example, zero-
shot approaches often struggle with out-of-domain claims if the
training set differs extensively from the validation set, due to a
lack of specific training on such instances. This limitation can lead
to inaccurate or unreliable predictions, particularly with novel or
unfamiliar topics.

In this paper, we aim to address the aforementioned challenges
by proposing a novel baseline approach. Our method utilizes pre-
trained LLMs for stance classification, offering the dual benefit
of conserving resources and reducing bias. It also overcomes the
limitations posed by out-of-domain or previously unseen claims due
to the generic nature of LLMs, which have already been exposed to
vast corpora of textual data.

3 Methodology
3.1 Problem statement

Stance classification is the task to decide whether a given claim is
either supported by a given evidence, refuted by the evidence, or
whether there is not enough information to make such a decision [8].
More formally, let C be the set of all claims, & the set of all evidence,
and S = {SupPORTS, REFUTES, NOTENOUGHINFO} the set of stances.
The goal of stance classification is to assign a stance y; € S to a
given pair comprising a claim ¢; € C and a piece of evidence
e; € & [8, 27, 32]. We define stance classification as a single-label
multi-class classification function f as follows:

f:Cx&—S. 1

A Dataset D = ((c, €;), y;) for stance classification comprises claim-
evidence pairs and their stance. It is typically divided into training
(D7), validation (Dy) and test data (Dg).
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3.2 ExPrompt

You are an expert in stance detection. You only
- have three options (REFUTES, SUPPORTS, and NOT
-2 | ENOUGH INFO) to detect stance from a textual evi-
é dence: refuting, supporting, or not finding enough in-
‘é formation for the given claim. Only output must be one
"~ | of these three options: (1) REFUTES, (2) SUPPORTS, or
(3) NOT ENOUGH INFO.
Examples of each cases are the following:
, | Example 1: (cq,e1)
&, | Answer: REFUTES.
£ | Example 2: (c2, e2)
& | Answer: SUPPORTS.
Example 3: (c3, e3)
Answer: NOT ENOUGH INFO.
g | You should not output more than the option, i.e., (1)
§ | REFUTES, (2) SUPPORTS, or (3) NOT ENOUGH INFO.
£ The output should not contain explanations, notes, or
£ | numbers, and it should not begin with a number.
= | The given claim is: ¢;
£ | Given textual document is: e;

Figure 1: The template for an LLM prompt.
Our approach ExPRoMPT uses few-shot in-context learning [3,

16], i.e., it relies on the idea that a pre-trained LLM can be used
to tackle the stance classification task when it is queried with a
fine-tuned prompt containing class examples. We use the template
shown in Figure 1 to generate candidates for this prompt. The
template starts with instructions, gives three examples—one per
class—before it briefly repeats the instructions and gives the actual
task, i.e., the current claim-evidence pair (c;, e;) that should be
classified.

Choosing the examples for the classes that are used in the prompt
can be done in various ways, e.g., a domain expert can choose the
examples manually. However, since EXPROMPT has the goal to be a
baseline, we choose an automatic and basic approach by randomly
sampling N example sets. Figure 2 gives an overview of this pro-
cess. Let Dj = (c1, e1), (c2, e2), (3, e3) be the j-th set of examples
comprising three pairs that have the classification labels SUPPORTS,
REFUTES, and NOTENOUGHINFO, respectively. These pairs are ran-
domly sampled from the training data D7. We insert the chosen
pairs into our prompt template to generate the prompt p;. We eval-
uate this prompt by measuring the performance of the LLM when it
is queried with p; and the claim-evidence pairs from the validation
data Dy . We repeat this until we have generated N sets. Finally, we
use the examples from the set with which the LLM achieved the
best performance on the validation set.

An advantage of our approach in comparison to previous works
that made use of LLMs is that we do not train the LLM itself and
it can be used with a small number of iterations to find a set of
examples. Hence, our approach needs less computational power
and, thus, consumes less resources.

4 Evaluation

In this section, we describe the datasets and LLMs used in our
experiments as well as competing approaches.
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Table 1: Post-processing statistics comprising the number of claims in the datasets. The abbreviations are: S/SUPPORTS,

R/REFUTES, NEI/NoTENOUGHINFO, and #/Number of.

Dataset Name Year Source Text type  Train Validation Labels
FEVER [26] 2018 Wikipedia Wiki pages 145,449 9,999 S/R/NEI
FEVER-Symmetric [24] 2019 Wikipedia Wiki pages 956 956 S/R
FEVER-Symmetric-Gen. [24] 2019 Wikipedia Wiki pages 285 285 S/R
SciFacT [29] 2020  Scientific articles  Abstracts 1109 300 S/R/NEI
Climate-FEVER [7] 2021 Wikipedia Wiki pages 7,675 1,535 S/R/NEI
disputed. The SciFAcT [29] dataset comprises scientific claims ver-
ified against a corpus of 5,183 abstracts. Each claim is annotated
with rationales from abstracts that either support or refute it.
Sample D We exclude the FEVER 2.0 [27] dataset from our analysis because
T it is tailored for methods that leverage structured data, such as tables
Create p; sourced from W1}<1ped1a. Addltmna}ly, we exclude. the AVeriTeC [231
dataset because it comprises question-answer pairs rather than evi-
! dence sentences, as it is primarily designed for question-answering
Evaluate p; tasks.

|

max. tries
reached?

LLM

%

Return best p;

Figure 2: Overview of the proposed workflow to choose ex-
amples for the prompt. The snowflake means that the LLM
is not changed by this process.

4.1 Datasets

In our evaluation, we utilize five benchmark datasets listed in Ta-
ble 1. The FEVER dataset comprises 155,448 claims generated by
modifying sentences from Wikipedia, which are subsequently veri-
fied against Wikipedia without access to their original sentences.
The FEVER-Symmetric dataset [24] addresses biases identified in
the original FEVER dataset by employing a regularization proce-
dure to mitigate potential biases from giveaway phrases. The com-
plete FEVER-Symmetric test set comprises 956 claim-evidence pairs.
These pairs were created by manually generating a synthetic pair for
each claim-evidence pair, maintaining the same relation (SUPPORTS
or REFUTES) as the original FEVER dataset while expressing a con-
tradictory fact. Following their creation, Schuster et al. selected
two individuals to annotate a randomly chosen subset of 285 claim-
evidence pairs (representing 30% of the total pairs in the FEVER-
Symmetric test set) with labels indicating SUPPORTS, or REFUTES,
dubbed FEVER-Symmetric-Generated. Their agreement with the
dataset labels was observed in 94% of cases, resulting in a Cohen’s
0f 0.88 [5]. We extracted all SupporTs and REFUTES claims, and their
corresponding gold evidence sentences, from these two datasets
for our evaluation. The Climate-FEVER dataset [7] is specifically de-
signed to verify real-world climate change claims, excluding those

4.2 LLMs

In our evaluation, we use Mixtral-8x7B and Llama-3-70B as pre-
trained LLMs. We describe both models in the following.!

4.2.1 Mixtral-8x7B. Mixtral [12] is a large language model that
uses a sparse mixture of expert models. For each token, it uses 2 out
of 8 experts, that are implemented as feed-forward networks. As a
result, for each token, only a limited set of all model parameters is
used, which allows faster inference time. It outperforms the Llama2
model [28] with 70B parameters, on tasks such as mathematics and
code writing by using fewer parameters [12].

4.2.2  Llama-3-70B. Llama 3 is a publicly available large decoder-
only language model, developed by Meta.? There are different ver-
sions available ranging from 7 billion up to 70 billion parameters.
Compared to Llama 2, the Llama 3 model uses a tokenizer with
128K tokens and grouped query attention.>

4.3 Competitors

We compare our system with several approaches including the
state of the art approaches for stance detection by reusing results
available in various publication for the same datasets that we use.
To the best of our knowledge, we include all available results re-
ported for recent stance classification approaches on the selected
datasets. Schuster et al.[24] present the accuracy results of three dif-
ferent classifiers: NSMN[17], ESIM [4], and BERT [31] on the FEVER-
Symmetric and FEVER-Symmetric-Generated datasets. NSMN is
derived from the ESIM model and further enhanced with additional
features like contextual word embeddings [19]. Additionally, Schus-
ter et al. train their own ESIM model using GloVe embeddings,
leveraging code provided by [9]. The third classifier is based on a
fine-tuned BERT model that has been trained for three epochs to

These 2 LLMS are open-source and available in the Ollama framework. We use the
latter for an efficient setup and fast inference. https://ollama.com/
Zhttps://llama.meta.com/

3https://ai.meta.com/blog/meta-1llama-3/
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Table 2: Accuracy scores on test sets. Y is the abbreviation for Yuan et. al. [32].

Supervised Zero-Shot Encoders Ours
Datasets
- 2 5
N
= T ez = 2 E
—_ = =
4 P oS o e £
- 7] = ) o = <
() @ 3] @ 20 % = =i
— g &« 3 — < § = R s 2
2 5 2 35 0% g4 7 zor oo £ = & K
s £ T - T~ S > B - S Bl = S
=4 = 5 5 ) o 7] L ~ 4 = 154 z i 5 5
2 = 203 I T~ 5 R 55 = s B &g =
2 # 2 3¢ g2 2228 23 % 3% %
m A A 0 &% & O X ¥ K o g & A Z m oA & o
FEVER 80.2 77.7 769 71.6 72.8 33.3 38.6 60.4 61.3 36.1 58.1 - - - - - 80.9 829
FEVER-Symmetric 759 - - - - 50.0 77.1 56.6 79.8 79.8 51.7 78.9 - 818 80.8 86.2 93.6 93.5
FEVER-Sym-Gen. - - - - - - - - - - - - - 58.7 55.9 583 81.0 81.0
SciFact 732 - - - - - - - - - 629 757 692 717 - - - 87.3 81.1
Climate-FEVER - 388 - - - 333 - - 46.7 467 - 444 - - - - - 639 70.2

classify the relation by concatenating the claim and evidence using
a delimiter token.*

We further report the zero-shot results from Yuan et al. [32],
who also provide the results of a random guessing baseline and
QACG [18]. Yuan et al. [32] also utilize the Wikidata5m dataset [30]
for training a universal schema (dubbed "large + USchema") model.
We also report the results of supervised approaches such as BEV-
ERS [6] and Diggelmann et al. [7] as reported by Yuan et al. [32].
BEVERS uses a transformer model [25] for the stance detection task.
However, Diggelmann et al. use an ALBERT (large-v2) model [13]
with a three-way classifier applied to the [CLS] token of the con-
catenated claim and evidence sentences. We also report the results
of top-3 approaches reported by Zhong et al. [33]: DREAM [33],
KGAT [15], and GEAR [34]. DREAM and KGAT regard pieces of ev-
idence as nodes in a graph and utilize a Kernel Graph Attention Net-
work to aggregate information. GEAR uses BERT for claim-specific
evidence representation and applies a graph network, treating each
evidence sentence as a node. Additionally, we report the results for
sentence encoder-based approaches, namely SCIBERT [2], BioMe-
dRoBERTa [10], RoBERTa-base [14], and RoBERTa-large [14], on
the SciFact dataset reported by Wadden et al. [29].

5 Results and Analysis

Table 2 shows the accuracy scores of the different approaches. Ex-
PromPT significantly outperforms all other stance classification
approaches with both LLMs.> The zero-shot-based approaches are
out-performed on the FEVER dataset by at 19.6%. BEVERS [6] is
currently the state of the art on the FEVER dataset and achieves a
high accuracy on the FEVER-Symmetric dataset without fine-tuning,
which highlights the robustness of this model. Our approach out-
performs this and the other supervised approaches by at least 0.7%
in terms of accuracy, as seen in the Mixtral-based experiments
on the FEVER dataset. Yuan et al.[32], report that their approach
using the large model and BERT [31] are the state of the art on
the Climate-FEVER and the FEVER-Symmetric dataset, respectively.

“https://github.com/huggingface/pytorch-pretrained-BERT
SWe performed a Wilcoxon signed-rank test with & = 0.05.

However, our proposed approach outperforms these approaches by
at least 17.2% and 7.3% accuracy, respectively.

We use the reported results of sentence encoders on the SciFAcT
dataset from Wadden et al. [29]. We observe that our approach out-
performs all encoder-based approaches by at least 5.4% in accuracy.
Our Mixtral-based approach achieves an accuracy of 87.3%, while
the best encoder-based approach, RoBERTa-large, achieves an accu-
racy of 75.7% on the SciFAcT dataset. On the Climate-FEVER dataset,
we only have results for RoBERTa-large, which achieves 19.5% less
than our Llama3-based approach and 25.8% less than our Mixtral-
based approach. Additionally, we obtain results for RoBERTa-base,
RoBERTa-large, NSMN, ESIM, and BERT on FEVER-Symmetric, and
for NSMN, ESIM, and BERT on FEVER-Symmetric-Generated. How-
ever, we observe that our approaches outperform all these methods
by at least 7.4% and 22.3% on both datasets, respectively.

6 Conclusion

In this paper, we introduce ExXPRoMPT—a modern baseline approach
for stance classification. Our results indicate that using LLMs with
fine-tuned prompts and in-context learning outperforms all former
state-of-the-art stance classification methods across all datasets
used in our evaluation. Hence, EXPROMPT can serve as a new con-
temporary baseline for future stance detection algorithms.

In future work, we plan to evaluate our approach on data that
was not available on the web to ensure that the pre-trained LLMs
haven’t seen the evaluation dataset within the data that they have
been trained on. We also plan to optimize the number of examples
including an automatic guidance for their selection.
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