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Abstract. We study the expressivity and the complexity of various log-13

ics in probabilistic team semantics with the Boolean negation. In par-14

ticular, we study the extension of probabilistic independence logic with15

the Boolean negation, and a recently introduced logic FOPT. We give a16

comprehensive picture of the relative expressivity of these logics together17

with the most studied logics in probabilistic team semantics setting, as18

well as relating their expressivity to a numerical variant of second-order19

logic. In addition, we introduce novel entropy atoms and show that the20

extension of first-order logic by entropy atoms subsumes probabilistic21

independence logic. Finally, we obtain some results on the complexity of22

model checking, validity, and satisfiability of our logics.23
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bility · Validity · Computational Complexity · Expressivity of Logics25

1 Introduction26

Probabilistic team semantics is a novel framework for the logical analysis of prob-27

abilistic and quantitative dependencies. Team semantics, as a semantic frame-28

work for logics involving qualitative dependencies and independencies, was in-29

troduced by Hodges [17] and popularised by Väänänen [25] via his dependence30

logic. Team semantics defines truth in reference to collections of assignments,31

called teams, and is particularly suitable for the formal analysis of properties,32

such as the functional dependence between variables, that arise only in the pres-33

ence of multiple assignments. The idea of generalising team semantics to the34

probabilistic setting can be traced back to the works of Galliani [6] and Hytti-35

nen et al. [18], however the beginning of a more systematic study of the topic36

dates back to works of Durand et al. [4].37

In probabilistic team semantics the basic semantic units are probability distri-38

butions (i.e., probabilistic teams). This shift from set-based to distribution-based39
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Logic MC for sentences SAT VAL

FOPT(≤δ
c) PSPACE (Cor. 20) RE [11, Thm. 5.2] coRE [11, Thm. 5.2]

FO(⊥⊥c) ∈ EXPSPACE and NEXPTIME-hard (Thm. 24) RE (Thm. 26) coRE (Thm. 26)
FO(∼) AEXPTIME[poly] [22, Prop. 5.16, Lem. 5.21] RE [22, Thm. 5.6] coRE [22, Thm. 5.6]
FO(≈) ∈ EXPTIME, PSPACE-hard (Thm. 22) RE (Thm. 26) coRE (Thm. 26)

FO(∼,⊥⊥c) ∈ 3-EXPSPACE, AEXPTIME[poly]-hard (Thm. 25) RE (Thm. 26) coRE (Thm. 26)

Table 1. Overview of our results. Unless otherwise noted, the results are completeness
results. Satisfiability and Validity are considered for finite structures.

semantics allows probabilistic notions of dependency, such as conditional proba-40

bilistic independence, to be embedded in the framework5. The expressivity and41

complexity of non-probabilistic team-based logics can be related to fragments42

of (existential) second-order logic and have been studied extensively (see, e.g.,43

[7,5,9]). Team-based logics, by definition, are usually not closed under Boolean44

negation, so adding it can greatly increase the complexity and expressivity of45

these logics [19,15]. Some expressivity and complexity results have also been46

obtained for logics in probabilistic team semantics (see below). However, richer47

semantic and computational frameworks are sometimes needed to characterise48

these logics.49

Metafinite Model Theory, introduced by Grädel and Gurevich [8], generalises50

the approach of Finite Model Theory by shifting to two-sorted structures, which51

extend finite structures by another (often infinite) numerical domain and weight52

functions bridging the two sorts. A particularly important subclass of metafinite53

structures are the so-called R-structures, which extend finite structures with the54

real arithmetic on the second sort. Blum-Shub-Smale machines (BSS machines55

for short) [1] are essentially register machines with registers that can store ar-56

bitrary real numbers and compute rational functions over reals in a single time57

step. Interestingly, Boolean languages which are decidable by a non-deterministic58

polynomial-time BSS machine coincide with those languages which are PTIME-59

reducible to the true existential sentences of real arithmetic (i.e., the complexity60

class ∃R) [2,24].61

Recent works have established fascinating connections between second-order62

logics over R-structures, complexity classes using the BSS-model of computation,63

and logics using probabilistic team semantics. In [13], Hannula et al. establish64

that the expressivity and complexity of probabilistic independence logic coincide65

with a particular fragment of existential second-order logic over R-structures and66

NP on BSS-machines. In [16], Hannula and Virtema focus on probabilistic inclu-67

sion logic, which is shown to be tractable (when restricted to Boolean inputs),68

and relate it to linear programming.69

5 In [21] Li recently introduced first-order theory of random variables with probabilistic
independence (FOTPI) whose variables are interpreted by discrete distributions over
the unit interval. The paper shows that true arithmetic is interpretable in FOTPI
whereas probabilistic independence logic is by our results far less complex.
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formulas:

SOR(+,×, log)

FO(⊥⊥c,∼) = SOR(+,×)FO(H)

FO(⊥⊥c)

FO(≈) FOPT(≤δ
c)

FO

sentences:

SOR(+,×, log)

FO(⊥⊥c,∼) = SOR(+,×) [Thm. 8]FO(H)

FO(⊥⊥c)

FO(≈)

FO = FOPT(≤δ
c) [Thm. 19]

T
hm

.
21

[10, Thm. 10]

Cor. 15 Pr
op

. 4
Thm

. 16

AC0

P

∃R

Fig. 1. Landscape of relevant logics as well as relation to some complexity classes. Note
that for the complexity classes, finite ordered structures are required. Double arrows
indicate strict inclusions.

In this paper, we focus on the expressivity and model checking complexity70

of probabilistic team-based logics that have access to Boolean negation. We71

also study the connections between probabilistic independence logic and a logic72

called FOPT(≤δ
c), which is defined via a computationally simpler probabilistic73

semantics [11]. The logic FOPT(≤δ
c) is the probabilistic variant of a certain74

team-based logic that can define exactly those dependencies that are first-order75

definable [20]. We also introduce novel entropy atoms and relate the extension76

of first-order logic with these atoms to probabilistic independence logic.77

See Figure 1 for our expressivity results and Table 1 for our complexity78

results.79

2 Preliminaries80

We assume the reader is familiar with the basics in complexity theory [23]. In81

this work, we will encounter complexity classes PSPACE, EXPTIME, NEXPTIME,82

EXPSPACE and the class AEXPTIME[poly] together with the notion of complete-83

ness under the usual polynomial time many to one reductions. A bit more for-84

mally for the latter complexity class which is more uncommon than the others,85

AEXPTIME[poly] consists of all languages that can be decided by alternating86

Turing machines within an exponential runtime of O(2n
O(1)

) and polynomially87

many alternations between universal and existential states. There exist prob-88

lems in propositional team logic with generalized dependence atoms that are89

complete for this class [14]. It is also known that truth evaluation of alternating90

dependency quantified boolean formulae (ADQBF) is complete for this class [14].91

2.1 Probabilistic team semantics92

We denote first-order variables by x, y, z and tuples of first-order variables by93

x,y, z. For the length of the tuple x, we write |x|. The set of variables that94



4 M. Hannula et al.

appear in the tuple x is denoted by Var(x). A vocabulary τ is a finite set of95

relation, function, and constant symbols, denoted by R, f , and c, respectively.96

Each relation symbol R and function symbol f has a prescribed arity, denoted97

by Ar(R) and Ar(f).98

Let τ be a finite relational vocabulary such that {=} ⊆ τ . For a finite τ -99

structure A and a finite set of variables D, an assignment of A for D is a function100

s : D → A. A team X of A over D is a finite set of assignments s : D → A.101

A probabilistic team X is a function X : X → R≥0, where R≥0 is the set of non-102

negative real numbers. The value X(s) is called the weight of assignment s. Since103

zero-weights are allowed, we may, when useful, assume that X is maximal, i.e.,104

it contains all assignments s : D → A. The support of X is defined as supp(X) :=105

{s ∈ X | X(s) ̸= 0}. A team X is nonempty if supp(X) ̸= ∅.106

These teams are called probabilistic because we usually consider teams that107

are probability distributions, i.e., functions X : X → R≥0 for which
∑

s∈X X(s) =108

1.6 In this setting, the weight of an assignment can be thought of as the probabil-109

ity that the values of the variables are as in the assignment. If X is a probability110

distribution, we also write X : X → [0, 1].111

For a set of variables V , the restriction of the assignment s to V is denoted112

by s ↾ V . The restriction of a team X to V is X ↾ V = {s ↾ V | s ∈ X}, and the113

restriction of a probabilistic team X to V is X ↾ V : X ↾ V → R≥0 where114

(X ↾ V )(s) =
∑

s′↾V=s,
s′∈X

X(s′).115

If ϕ is a first-order formula, then Xϕ is the restriction of the team X to116

those assignments in X that satisfy the formula ϕ. The weight |Xϕ| is defined117

analogously as the sum of the weights of the assignments in X that satisfy ϕ,118

e.g.,119

|Xx=a| =
∑
s∈X,

s(x)=a

X(s).120

For a variable x and a ∈ A, we denote by s(a/x), the modified assignment121

s(a/x) : D ∪ {x} → A such that s(a/x)(y) = a if y = x, and s(a/x)(y) = s(y)122

otherwise. For a set B ⊆ A, the modified team X(B/x) is defined as the set123

X(B/x) := {s(a/x) | a ∈ B, s ∈ X}.124

Let X : X → R≥0 be any probabilistic team. Then the probabilistic team125

X(B/x) is a function X(B/x) : X(B/x) → R≥0 defined as126

X(B/x)(s(a/x)) =
∑
t∈X,

t(a/x)=s(a/x)

X(t) · 1

|B|
.127

6 In some sources, the term probabilistic team only refers to teams that are distribu-
tions, and the functions X : X → R≥0 that are not distributions are called weighted
teams.
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If x is a fresh variable, the summation can be dropped and the right-hand side128

of the equation becomes X(s) · 1
|B| . For singletons B = {a}, we write X(a/x)129

and X(a/x) instead of X({a}/x) and X({a}/x).130

Let then X : X → [0, 1] be a distribution. Denote by pB the set of all proba-131

bility distributions d : B → [0, 1], and let F be a function F : X → pB . Then the132

probabilistic team X(F/x) is a function X(F/x) : X(B/x) → [0, 1] defined as133

X(F/x)(s(a/x)) =
∑
t∈X,

t(a/x)=s(a/x)

X(t) · F (t)(a)134

for all a ∈ B and s ∈ X. If x is a fresh variable, the summation can again be135

dropped and the right-hand side of the equation becomes X(s) · F (s)(a).136

Let X : X → [0, 1] and Y : Y → [0, 1] be probabilistic teams with common137

variable and value domains, and let k ∈ [0, 1]. The k-scaled union of X and Y,138

denoted by X ⊔k Y, is the probabilistic team X ⊔k Y : Y → [0, 1] defined as139

X ⊔k Y(s) :=


k · X(s) + (1− k) · Y(s) if s ∈ X ∩ Y,
k · X(s) if s ∈ X \ Y,
(1− k) · Y(s) if s ∈ Y \X.

140

3 Probabilistic independence logic with Boolean negation141

In this section, we define probabilistic independence logic with Boolean nega-142

tion, denoted by FO(⊥⊥c,∼). The logic extends first-order logic with probabilistic143

independence atom y⊥⊥x z which states that the tuples y and z are independent144

given the tuple x. The syntax for the logic FO(⊥⊥c,∼) over a vocabulary τ is as145

follows:146

ϕ ::= R(x) | ¬R(x) | y ⊥⊥x z | ∼ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃xϕ | ∀xϕ,147

where x is a first-order variable, x, y, and z are tuples of first-order variables,148

and R ∈ τ .149

Let ψ be a first-order formula. We denote by ψ¬ the formula which is obtained150

from ¬ψ by pushing the negation in front of atomic formulas. We also use the151

shorthand notations ψ → ϕ := (ψ¬ ∨ (ψ ∧ ϕ)) and ψ ↔ ϕ := ψ → ϕ ∧ ϕ→ ψ.152

Let X : X → [0, 1] be a probability distribution. The semantics for the logic153

is defined as follows:154

A |=X R(x) iff A |=s R(x) for all s ∈ supp(X).155

A |=X ¬R(x) iff A |=s ¬R(x) for all s ∈ supp(X).156

A |=X y ⊥⊥x z iff |Xxy=s(xy)| · |Xxz=s(xz)| = |Xxyz=s(xyz)| · |Xx=s(x)| for all157

s : Var(xyz) → A.158

A |=X ∼ϕ iff A ̸|=X ϕ.159

A |=X ϕ ∧ ψ iff A |=X ϕ and A |=X ψ.160

A |=X ϕ ∨ ψ iff A |=Y ϕ and A |=Z ψ for some Y,Z, k such that Y ⊔k Z = X.161
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A |=X ∃xϕ iff A |=X(F/x) ϕ for some F : X → pA.162

A |=X ∀xϕ iff A |=X(A/x) ϕ.163

The satisfaction relation |=s above refers to the Tarski semantics of first-order164

logic. For a sentence ϕ, we write A |= ϕ if A |=X∅ ϕ, where X∅ is the distribution165

that maps the empty assignment to 1.166

The logic also has the following useful property called locality. Denote by167

Fr(ϕ) the set of the free variables of a formula ϕ.168

Proposition 1 (Locality, [4, Prop. 12]). Let ϕ be any FO(⊥⊥c,∼)[τ ]-formula.169

Then for any set of variables V , any τ -structure A, and any probabilistic team170

X : X → [0, 1] such that Fr(ϕ) ⊆ V ⊆ D,171

A |=X ϕ ⇐⇒ A |=X↾V ϕ.172

In addition to probabilistic conditional independence atoms, we may also173

consider other atoms. If x and y are tuples of variables, then =(x,y) is a depen-174

dence atom. If x and y are also of the same length, x ≈ y is a marginal identity175

atom. The semantics for these atoms are defined as follows:176

A |=X=(x,y) iff for all s, s′ ∈ supp(X), s(x) = s′(x) implies s(y) = s′(y),177

A |=X x ≈ y iff |Xx=a| = |Xy=a| for all a ∈ A|x|.178

For two logics L and L′ over probabilistic team semantics, we write L ≤ L′ if179

for any formula ϕ ∈ L, there is a formula ψ ∈ L′ such that A |=X ϕ ⇐⇒ A |=X ψ180

for all A and X. The equality ≡ and strict inequality < are defined from the181

above relation in the usual way. The next two propositions follow from the182

fact that dependence atoms and marginal identity atoms can be expressed with183

probabilistic independence atoms.184

Proposition 2 ([3, Prop. 24]). FO(=(·)) ≤ FO(⊥⊥c).185

Proposition 3 ([10, Thm. 10]). FO(≈) ≤ FO(⊥⊥c).186

On the other hand, omitting the Boolean negation strictly decreases the187

expressivity as witnessed by the next proposition.188

Proposition 4. FO(⊥⊥c) < FO(⊥⊥c,∼).189

Proof. By Theorems 4.1 and 6.5 of [13], over a fixed universe size, any open190

formula of FO(⊥⊥c) defines a closed subset of Rn for a suitable n depending191

on the size of the universe and the number of free variables. Now, clearly, this192

cannot be true for all of the formulas of FO(⊥⊥c,∼) as it contains the Boolean193

negation, e.g., the formula ∼ x ⊥⊥y z.194
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4 Metafinite logics195

In this section, we consider logics over R-structures. These structures extend196

finite relational structures with real numbers R as a second domain and add197

functions that map tuples from the finite domain to R.198

Definition 5 (R-structures). Let τ and σ be finite vocabularies such that τ199

is relational and σ is functional. An R-structure of vocabulary τ ∪ σ is a tuple200

A = (A,R, F ) where the reduct of A to τ is a finite relational structure, and201

F is a set that contains functions fA : AAr(f) → R for each function symbol202

f ∈ σ. Additionally, (i) for any S ⊆ R, if each fA is a function from AAr(f)
203

to S, A is called an S-structure, (ii) if each fA is a distribution, A is called a204

d[0, 1]-structure.205

Next, we will define certain metafinite logics which are variants of functional206

second-order logic with numerical terms. The numerical σ-terms i are defined as207

follows:208

i ::= f(x) | i× i | i+ i | SUMyi | log i,209

where f ∈ σ and x and y are first-order variables such that |x| = Ar(f). The210

interpretation of a numerical term i in the structure A under an assignment s is211

denoted by [i]As . We define212

[SUMyi]
A
s :=

∑
a∈A|y|

[i]As(a/y).213

The interpretations of the rest of the numerical terms are defined in the obvious214

way.215

Suppose that {=} ⊆ τ , and let O ⊆ {+,×,SUM, log}. The syntax for the216

logic SOR(O) is defined as follows:217

ϕ ::= i = j | ¬i = j | R(x) | ¬R(x) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃xϕ | ∀xϕ | ∃fψ | ∀fψ,218

where i and j are numerical σ-terms constructed using operations from O, R ∈ τ ,219

x, y, and x are first-order variables, f is a function variable, and ψ is a τ∪σ∪{f}-220

formula of SOR(O).221

The semantics of SOR(O) is defined via R-structures and assignments anal-222

ogous to first-order logic, except for the interpretations of function variables f ,223

which range over functions AAr(f) → R. For any S ⊆ R, we define SOS(O) as224

the variant of SOR(O), where the quantification of function variables ranges over225

AAr(f) → S. If the quantification of function variables is restricted to distribu-226

tions, the resulting logic is denoted by SOd[0,1](O). The existential fragment, in227

which universal quantification over function variables is not allowed, is denoted228

by ESOR(O).229

For metafinite logics L and L′, we define expressivity comparison relations230

L ≤ L′, L ≡ L′, and L < L′ in the usual way, see e.g. [13]. For the proofs of the231

following two propositions, see the full version [12] of this paper in ArXiv.232

Proposition 6. SOR(SUM,×) ≡ SOR(+,×).233

Proposition 7. SOd[0,1](SUM,×) ≡ SOR(+,×).234
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5 Equi-expressivity of FO(⊥⊥c,∼) and SOR(+,×)235

In this section, we show that the expressivity of probabilistic independence236

logic with the Boolean negation coincides with full second-order logic over R-237

structures.238

Theorem 8. FO(⊥⊥c,∼) ≡ SOR(+,×).239

We first show that FO(⊥⊥c,∼) ≤ SOR(+,×). Note that by Proposition 7, we240

have SOd[0,1](SUM,×) ≡ SOR(+,×), so it suffices to show that FO(⊥⊥c,∼) ≤241

SOd[0,1](SUM,×). We may assume that every independence atom is in the form242

y ⊥⊥x z or y ⊥⊥x y where x,y, and z are pairwise disjoint tuples. [4, Lemma 25]243

Theorem 9. Let formula ϕ(v) ∈ FO(⊥⊥c,∼) be such that its free-variables are244

from v = (v1, . . . , vk). Then there is a formula ψϕ(f) ∈ SOd[0,1](SUM,×) with245

exactly one free function variable such that for all structures A and all proba-246

bilistic teams X : X → [0, 1], A |=X ϕ(v) if and only if (A, fX) |= ψϕ(f), where247

fX : A
k → [0, 1] is a probability distribution such that fX(s(v)) = X(s) for all248

s ∈ X.249

Proof. Define the formula ψϕ(f) as follows:250

1. If ϕ(v) = R(vi1 , . . . , vil), where 1 ≤ i1, . . . , il ≤ k, then ψϕ(f) := ∀v(f(v) =251

0 ∨R(vi1 , . . . , vil)).252

2. If ϕ(v) = ¬R(vi1 , . . . , vil), where 1 ≤ i1, . . . , il ≤ k, then ψϕ(f) := ∀v(f(v) =253

0 ∨ ¬R(vi1 , . . . , vil)).254

3. If ϕ(v) = v1 ⊥⊥v0 v2, where v0,v1,v2 are disjoint, then255

ψϕ(f) := ∀v0v1v2(SUMv\(v0v1)f(v)× SUMv\(v0v2)f(v) =256

SUMv\(v0v1)f(v)× SUMv\v0
f(v)).257

4. If ϕ(v) = v1 ⊥⊥v0 v1, where v0,v1 are disjoint, then258

ψϕ(f) := ∀v0v1(SUMv\(v0v1)f(v) = 0 ∨ SUMv\(v0v1)f(v) = SUMv\v0
f(v)).259

5. If ϕ(v) = ∼ϕ0(v), then ψϕ(f) := ψ¬
ϕ0
(f), where ψ¬

ϕ0
is obtained from ¬ψϕ0

260

by pushing the negation in front of atomic formulas.261

6. If ϕ(v) = ϕ0(v) ∧ ϕ1(v), then ψϕ(f) := ψϕ0
(f) ∧ ψϕ1

(f).262

7. If ϕ(v) = ϕ0(v) ∨ ϕ1(v), then263

ψϕ(f) := ψϕ0
(f) ∨ ψϕ1

(f)264

∨ (∃g0g1g2g3(∀v∀x(x = l ∨ x = r ∨ (g0(x) = 0 ∧ g3(v, x) = 0))265

∧ ∀v(g3(v, l) = g1(v)× g0(l) ∧ g3(v, r) = g2(v)× g0(r))266

∧ ∀v(SUMxg3(v, x) = f(v)) ∧ ψϕ0
(g1) ∧ ψϕ1

(g2))).267

8. If ϕ(v) = ∃xϕ0(v, x), then ψϕ(f) := ∃g(∀v(SUMxg(v, x) = f(v)) ∧ ψϕ0(g)).268

9. If ϕ(v) = ∃xϕ0(v, x), then269

ψϕ(f) := ∃g(∀v(∀x∀y(g(v, x) = g(v, y)) ∧ SUMxg(v, x) = f(v)) ∧ ψϕ0
(g)).270
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Since the the above is essentially same as the translation in [4, Theorem 14], but271

extended with the Boolean negation (for which the claim follows directly from272

the semantical clauses), it is easy to show that ψϕ(f) satisfies the claim.273

We now show that SOR(+,×) ≤ FO(⊥⊥c,∼, ). By Propositions 3 and 7,274

FO(⊥⊥c,∼,≈) ≡ FO(⊥⊥c,∼) and SOR(+,×) ≡ SOd[0,1](SUM,×), so it suffices275

to show that SOd[0,1](SUM,×) ≤ FO(⊥⊥c,∼,≈).276

Note that even though we consider SOd[0,1](SUM,×), where only distribu-277

tions can be quantified, it may still happen that the interpretation of a numerical278

term does not belong to the unit interval. This may happen if we have a term of279

the form SUMxi(y) where x contains a variable that does not appear in y. For-280

tunately, for any formula containing such terms, there is an equivalent formula281

without them [16, Lemma 19]. Thus, it suffices to consider formulas without such282

terms.283

To prove that SOd[0,1](SUM,×) ≤ FO(⊥⊥c,∼,≈), we construct a useful nor-284

mal form for SOd[0,1](SUM,×)-sentences. The following lemma is based on sim-285

ilar lemmas from [4, Lemma, 16] and [16, Lemma, 20]. The proofs of the next286

two lemmas are in the full version [12] of this paper.287

Lemma 10. Every formula ϕ ∈ SOd[0,1](SUM,×) can be written in the form288

ϕ∗ := Q1f1 . . . Qnfn∀xθ, where Q ∈ {∃,∀}, θ is quantifier-free and such that289

all the numerical identity atoms are in the form fi(uv) = fj(u) × fk(v) or290

fi(u) = SUMvfj(uv) for distinct fi,fj,fk such that at most one of them is not291

quantified.292

Lemma 11. We use the abbreviations ∀∗xϕ and ϕ→∗ ψ for the FO(⊥⊥c,∼,≈)-293

formulas ∼∃x∼ϕ and ∼(ϕ ∧∼ψ), respectively. Let ϕ∃ := ∃y(x ⊥⊥ y ∧ ψ(x,y))294

and ϕ∀ := ∀∗y(x ⊥⊥ y →∗ ψ(x,y)) be FO(⊥⊥c,∼)-formulas with free variables295

form x = (x1, . . . , xn). Then for any structure A and probabilistic team X over296

{x1, . . . , xn},297

(i) A |=X ϕ∃ iff A |=X(d/y) ψ for some distribution d : A|y| → [0, 1],298

(ii) A |=X ϕ∀ iff A |=X(d/y) ψ for all distributions d : A|y| → [0, 1].299

Theorem 12. Let ϕ(p) ∈ SOd[0,1](SUM,×) be a formula in the form ϕ∗ :=300

Q1f1 . . . Qnfn∀xθ, where Q ∈ {∃,∀}, θ is quantifier-free and such that all the301

numerical identity atoms are in the form fi(uv) = fj(u) × fk(v) or fi(u) =302

SUMvfj(uv) for distinct fi,fj,fk from {f1, . . . , fn, p}. Then there is a formula303

Φ ∈ FO(⊥⊥c,∼,≈) such that for all structures A and probabilistic teams X := pA,304

A |=X Φ if and only if (A, p) |= ϕ.305

Proof. Define306

Φ := ∀xQ∗
1y1(x ⊥⊥ y1 ◦1 Q∗

2y2(xy1 ⊥⊥ y2 ◦2 Q∗
3y3(xy1y2 ⊥⊥ y3 ◦3 . . .307

Q∗
nyn(xy1 . . .yn−1 ⊥⊥ yn ◦n Θ) . . . ))),308

where Q∗
i = ∃ and ◦i = ∧, whenever Qi = ∃ and Q∗

i = ∀∗ and ◦i =→∗, whenever309

Qi = ∀. By Lemma 11, it suffices to show that for all distributions f1, . . . , fn,310
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subsets M ⊆ A|x|, and probabilistic teams Y := X(M/x)(f1/y1) . . . (fn/yn), we311

have312

A |=Y Θ ⇐⇒ (A, p, f1, . . . , fn) |= θ(a) for all a ∈M.313

The claim is shown by induction on the structure of the formula Θ. For the314

details, see the full ArXiv version [12] of the paper.315

1. If θ is an atom or a negated atom (of the first sort), then we let Θ := θ.316

2. Let θ = fi(xi) = fj(xj)× fk(xk). Then define317

Θ := ∃αβ((α = 0 ↔ xi = yi) ∧ (β = 0 ↔ xjxk = yjyk) ∧ xα ≈ xβ).318

The negated case ¬fi(xi) = fj(xj)× fk(xk) is analogous; just add ∼ in front319

of the existential quantification.320

3. Let θ = fi(xi) = SUMxk
fj(xkxj). Then define321

Θ := ∃αβ((α = 0 ↔ xi = yi) ∧ (β = 0 ↔ xj = yj) ∧ xα ≈ xβ).322

The negated case ¬fi(xi) = SUMxk
fj(xkxj) is again analogous.323

4. If θ = θ0 ∧ θ1, then Θ = Θ0 ∧Θ1.324

5. If θ = θ0 ∨ θ1, then Θ := ∃z(z ⊥⊥x z ∧ ((Θ0 ∧ z = 0) ∨ (Θ1 ∧ ¬z = 0))).325

326

6 Probabilistic logics and entropy atoms327

In this section we consider extending probabilistic team semantics with novel en-328

tropy atoms. For a discrete random variable X, with possible outcomes x1, ..., xn329

occuring with probabilities P(x1), ...,P(xn), the Shannon entropy of X is given330

as:331

H(X) := −
n∑

i=1

P(xi) log P(xi),332

The base of the logarithm does not play a role in this definition (usually it is333

assumed to be 2). For a set of discrete random variables, the entropy is defined334

in terms of the vector-valued random variable it defines. Given three sets of335

discrete random variables X,Y, Z, it is known that X is conditionally indepen-336

dent of Y given Z (written X ⊥⊥ Y | Z) if and only if the conditional mutual337

information I(X;Y |Z) vanishes. Similarly, functional dependence of Y from X338

holds if and only if the conditional entropy H(Y |X) of Y given X vanishes.339

Writing UV for the union of two sets U and V , we note that I(X;Y |Z) and340

H(Y |X) can respectively be expressed as H(ZX)+H(ZY )−H(Z)−H(ZXY )341

and H(XY ) − H(X). Thus many familiar dependency concepts over random342

variables translate into linear equations over Shannon entropies. In what fol-343

lows, we shortly consider similar information-theoretic approach to dependence344

and independence in probabilistic team semantics.345

Let X : X → [0, 1] be a probabilistic team over a finite structure A with346

universe A. Let x be a k-ary sequence of variables from the domain of X. Let347
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Px be the vector-valued random variable, where Px(a) is the probability that348

x takes value a in the probabilistic team X. The Shannon entropy of x in X is349

defined as follows:350

HX(x) := −
∑
a∈Ak

Px(a) log Px(a). (1)351

Using this definition we now define the concept of an entropy atom.352

Definition 13 (Entropy atom). Let x and y be two sequences of variables353

from the domain of X. These sequences may be of different lengths. The entropy354

atom is an expression of the form H(x) = H(y), and it is given the following355

semantics:356

A |=X H(x) = H(y) ⇐⇒ HX(x) = HX(y).357

We then define entropy logic FO(H) as the logic obtained by extending first-358

order logic with entropy atoms. The entropy atom is relatively powerful com-359

pared to our earlier atoms, since, as we will see next, it encapsulates many360

familiar dependency notions such as dependence and conditional independence.361

The proof of the theorem is in the full version [12] of this paper.362

Theorem 14. The following equivalences hold over probabilistic teams of finite363

structures with two distinct constants 0 and 1:364

1. =(x,y) ≡ H(x) = H(xy).365

2. x ⊥⊥ y ≡ ϕ, where ϕ is defined as366

∀z∃uv
([
z = 0 →

(
=(u,x)∧ =(x,u)∧ =(v,xy)∧ =(xy,v)

)]
∧367 [

z = 1 →
(
=(u,y)∧ =(y,u) ∧ v = 0

)]
∧368 [

(z = 0 ∨ z = 1) → H(uz) = H(vz)
])
,369

where |u| = max{|x|,y|} and |v| = |xy|.370

Since conditional independence can be expressed with marginal indepen-371

dence, i.e., FO(⊥⊥c) ≡ FO(⊥⊥) [10, Theorem 11], we obtain the following corol-372

lary:373

Corollary 15. FO(⊥⊥c) ≤ FO(H).374

It is easy to see at this point that entropy logic and its extension with negation375

are subsumed by second-order logic over the reals with exponentiation.376

Theorem 16. FO(H) ≤ ESOR(+,×, log) and FO(H,∼) ≤ SOR(+,×, log).377

Proof. The translation is similar to the one in Theorem 9, so it suffices to notice378

that the entropy atom H(x) = H(y) can be expressed as379

SUMzf(x, z) log f(x, z) = SUMz′f(y, z′) log f(y, z′).380

Since SUM can be expressed in ESOR(+,×, log) and SOR(+,×, log), we are381

done.382
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7 Logic for first-order probabilistic dependecies383

Here, we define the logic FOPT(≤δ
c), which was introduced in [11].7 Let δ be a384

quantifier- and disjunction-free first-order formula, i.e., δ ::= λ | ¬δ | (δ∧ δ) for a385

first-order atomic formula λ of the vocabulary τ . Let x be a first-order variable.386

The syntax for the logic FOPT(≤δ
c) over a vocabulary τ is defined as follows:387

ϕ ::= δ | (δ|δ) ≤ (δ|δ) | ∼̇ϕ | (ϕ ∧ ϕ) | (ϕ \\/ϕ) | ∃1xϕ | ∀1xϕ.388

Let X : X → R≥0 be any probabilistic team, not necessarily a probability389

distribution. The semantics for the logic is defined as follows:390

A |=X δ iff A |=s δ for all s ∈ supp(X).391

A |=X (δ0|δ1) ≤ (δ2|δ3) iff |Xδ0∧δ1 | · |Xδ3 | ≤ |Xδ2∧δ3 | · |Xδ1 |.392

A |=X ∼̇ϕ iff A ̸|=X ϕ or X is empty.393

A |=X ϕ ∧ ψ iff A |=X ϕ and A |=X ψ.394

A |=X ϕ \\/ψ iff A |=X ϕ or A |=X ψ.395

A |=X ∃1xϕ iff A |=X(a/x) ϕ for some a ∈ A.396

A |=X ∀1xϕ iff A |=X(a/x) ϕ for all a ∈ A.397

Next, we present some useful properties of FOPT(≤δ
c).398

Proposition 17 (Locality, [11, Prop. 3.2]). Let ϕ be any FOPT(≤δ
c)[τ ]-399

formula. Then for any set of variables V , any τ -structure A, and any probabilistic400

team X : X → R≥0 such that Fr(ϕ) ⊆ V ⊆ D,401

A |=X ϕ ⇐⇒ A |=X↾V ϕ.402

Over singleton traces the expressivity of FOPT(≤δ
c) coincides with that of403

FO. For ϕ ∈ FOPT(≤δ
c), let ϕ∗ denote the FO-formula obtained by replacing404

the symbols ∼̇, \\/ ,∃1, and ∀1 by ¬,∨,∃, and ∀, respectively, and expressions of405

the form (δ0 | δ1) ≤ (δ2 | δ3) by the formula ¬δ0 ∨ ¬δ1 ∨ δ2 ∨ ¬δ3.406

Proposition 18 (Singleton equivalence). Let ϕ be a FOPT(≤δ
c)[τ ]-formula,407

A a τ structure, and X a probabilistic team of A with support {s}. Then A |=X ϕ408

iff A |=s ϕ
∗.409

Proof. The proof proceeds by induction on the structure of formulas. The cases410

for literals and Boolean connectives are trivial. The cases for quantifiers are411

immediate once one notices that interpreting the quantifiers ∃1 and ∀1 maintain412

singleton supportness. We show the case for ≤. Let ∥δ∥A,s = 1 if A |=s δ, and413

∥δ∥A,s = 0 otherwise. Then414

A |=X (δ0 | δ1) ≤ (δ2 | δ3) ⇐⇒ |Xδ0∧δ1 | · |Xδ3 | ≤ |Xδ2∧δ3 | · |Xδ1 |415

⇐⇒ ∥δ0 ∧ δ1∥A,s · ∥δ3∥A,s ≤ ∥δ2 ∧ δ3∥A,s · ∥δ1∥A,s416

⇐⇒ A |=s ¬δ0 ∨ ¬δ1 ∨ δ2 ∨ ¬δ3.417

7 In [11], two sublogics of FOPT(≤δ
c), called FOPT(≤δ) and FOPT(≤δ,⊥⊥δ

c), were
also considered. Note that the results of this section also hold for these sublogics.
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The first equivalence follows from the semantics of ≤ and the second follows418

from the induction hypotheses after observing that the support of X is {s}. The419

last equivalence follows via a simple arithmetic observation.420

The following theorem follows directly from Propositions 17 and 18.421

Theorem 19. For sentences we have that FOPT(≤δ
c) ≡ FO.422

For a logic L, we write MC(L) for the following variant of the model checking423

problem: given a sentence ϕ ∈ L and a structure A, decide whether A |= ϕ. The424

above result immediately yields the following corollary.425

Corollary 20. MC(FOPT(≤δ
c)) is PSPACE-complete.426

Proof. This follows directly from the linear translation of FOPT(≤δ
c)-sentences427

into equivalent FO -sentences of Theorem 19 and the well-known fact that the428

model-checking problem of FO is PSPACE-complete.429

The first claim of the next theorem follows from the equi-expressivity of430

FO(⊥⊥c,∼) and SOR(+,×), and the fact that every FOPT(≤δ
c) formula can be431

translated to ESOR(SUM,+,×), a sublogic of SOR(+,×). For the details and432

the proof of the second claim, see the full version [12] of this paper.433

Theorem 21. FOPT(≤δ
c) ≤ FO(⊥⊥c,∼) and FOPT(≤δ

c) is non-comparable to434

FO(⊥⊥c) for open formulas.435

8 Complexity of satisfiability, validity and model checking436

We now define satisfiability and validity in the context of probabilistic team437

semantics. Let ϕ ∈ FO(⊥⊥c,∼,≈). The formula ϕ is satisfiable in a structure438

A if A |=X ϕ for some probabilistic team X, and ϕ is valid in a structure A if439

A |=X ϕ for all probabilistic teams X over Fr(ϕ). The formula ϕ is satisfiable if440

there is a structure A such that ϕ is satisfiable in A, and ϕ is valid if ϕ is valid441

in A for all structures A.442

For a logic L, the satisfiability problem SAT(L) and the validity problem443

VAL(L) are defined as follows: given a formula ϕ ∈ L, decide whether ϕ is444

satisfiable (or valid, respectively).445

Theorem 22. MC(FO(≈)) is in EXPTIME and PSPACE-hard.446

Proof. First note that FO(≈) is clearly a conservative extension of FO, as it is447

easy to check that probabilistic semantics and Tarski semantics agree on first-448

order formulas over singleton traces. The hardness now follows from this and the449

fact that model checking problem for FO is PSPACE-complete.450

For upper bound, notice first that any FO(≈)-formula ϕ can be reduced to451

an almost conjunctive formula ψ∗ of ESOR(+,≤,SUM) [16, Lem, 17]. Then452

the desired bounds follow due to the reduction from Proposition 3 in [16]. The453

mentioned reduction yields families of systems of linear inequalities S from a454
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structure A and assignment s such that a system S ∈ S has a solution if and455

only if A |=s ϕ. For a FO(≈)-formula ϕ, this transition requires exponential time456

and this yields membership in EXPTIME.457

458

This lemma is used to prove the upper-bounds in the next three theorems.459

See the full version [12], for the proofs of the lemma and the theorems.460

Lemma 23. Let A be a finite structure and ϕ ∈ FO(⊥⊥c,∼). Then there is a461

first-order sentence ψϕ,A over vocabulary {+,×,≤, 0, 1} such that ϕ is satisfiable462

in A if and only if (R,+,×,≤, 0, 1) |= ψϕ,A.463

Theorem 24. MC(FO(⊥⊥c)) is in EXPSPACE and NEXPTIME-hard.464

Theorem 25. MC(FO(∼,⊥⊥c)) ∈ 3-EXPSPACE and AEXPTIME[poly]-hard.465

Theorem 26. SAT(FO(⊥⊥c,∼)) is RE-, VAL(FO(⊥⊥c,∼)) is coRE-complete.466

Corollary 27. SAT(FO(≈)) and SAT(FO(⊥⊥c)) are RE- and VAL(FO(≈)) and467

VAL(FO(⊥⊥c)) are coRE-complete.468

Proof. The lower bound follows from the fact that FO(≈) and FO(⊥⊥c) are both469

conservative extensions of FO. We obtain the upper bound from the previous470

theorem, since FO(⊥⊥c,∼) includes both FO(≈) and FO(⊥⊥c).471

9 Conclusion472

We have studied the expressivity and complexity of various logics in probabilistic473

team semantics with the Boolean negation. Our results give a quite comprehen-474

sive picture of the relative expressivity of these logics and their relations to475

numerical variants of (existential) second-order logic. An interesting question476

for further study is to determine the exact complexities of the decision problems477

studied in Section 8. Furthermore, dependence atoms based on various notions478

of entropy deserve further study, as do the connections of probabilistic team479

semantics to the field of information theory.480
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