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Abstract. Purpose: Data integration and applications across knowledge graphs
(KGs) rely heavily on the discovery of links between resources within these KGs.
Geospatial link discovery algorithms have to deal with millions of point sets con-
taining billions of points. Methodology: To speed up the discovery of geospatial
links, we propose COBALT. COBALT combines the content measures with R-tree
indexing. The content measures are based on the area, diagonal and distance of the
minimum bounding boxes of the polygons which speeds up the process but is not
perfectly accurate. We thus propose two polygon splitting approaches for improv-
ing the accuracy of COBALT. Findings: Our experiments on real-world datasets
show that COBALT is able to speed up the topological relation discovery over
geospatial KGs by up to 1.47× 104 times over state-of-the-art linking algorithms
while maintaining an F-Measure between 0.7 and 0.9 depending on the relation.
Furthermore, we were able to achieve an F-Measure of up to 0.99 by applying our
polygon splitting approaches before applying the content measures. Value: The pro-
cess of discovering links between geospatial resources can be significantly faster
by sacrificing the optimality of the results. This is especially important for real-
time data-driven applications such as emergency response, location-based services
and traffic management. In future work, additional measures, like the location of
polygons or the name of the entity represented by the polygon, could be integrated
to further improve the accuracy of the results.

Keywords. Knowledge graphs, Data Integration, Linked Data, Geospatial Knowledge
graphs, Content Measure Similarity, Topological Relations

1. Introduction

The necessity for highly scalable methods for finding links between geospatial resources
has arisen as a result of the rapid proliferation of linked geospatial data. Only 7.1% of
the relationships between resources relate geographical elements, as was noted in earlier
publications [1]. There are two basic causes for this: I) The vast quantity of geospatially
represented resources on Linked Open Data (LOD) necessitates scalable techniques for
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computing linkages between geospatial resources. For example LINKEDGEODATA [2]
has over 20 billion triples describing millions of geographical things. II) The computation
of certain relations, such as distance and topological links between geospatial resources,
have to deal with the vector representation of geospatial data. For instance, for identifying
the nearby points of interest within a certain radius.

Discovering links among KGs in RDF is crucial for many data-driven applica-
tions, according to the Linked Data principles [3]. Nowadays dealing with geospatial
resources is a fundamental in many real-time applications [4], such as emergency re-
sponse, location-based services and real-time traffic management. However, generating
links among such real-time geospatial KGs is challenging task in order to enable real-
time decision making. Thus, both the efficiency and scalability of the link discovery pro-
cess becomes more challenging.

Recently, algorithms such as RADON [5], RADON2 [6], GIA.NT [7], and DORIC [8]
have been developed. These algorithms compute topological relations between geo-
graphical resources quickly and effectively. In all of them, the Dimensionally Extended
Nine-Intersection Model (DE-9IM) [9] is used. The DE-9IM defines topological rela-
tions between two-dimensional geometries by calculating the dimensions of the inter-
sections between the interior, boundary and exterior of two geometries. The relations
defined by the DE-9IM are the ones commonly used in natural language [10]: Equals,
Disjoint, Intersects, Touches, Crosses, Within, Contains, Overlaps, Covers
and Covered By. In an attempt to speedup the computation of geospatial relations,
Ahmed et al. [11] have studied the effect of simplifying the resources’ geometries on the
runtime and F-Measure of link discovery approaches. However, computing the DE-9IM
is still very expensive in terms of runtime.

In this paper, we propose COBALT, an approach based on the content measures com-
bined with R-tree indexing to discover the topological relations defined in [9] and [10].
To the best of our knowledge, this is the first work that uses content-based measures in-
tegrated with R-tree indexing for discovering links among RDF geospatial resources. We
summarize our contribution as follows:

1. We present and formalize the problem of topological relation discovery for geospa-
tial resources based on content measures and R-tree indexing.

2. We study the effect of using different R-tree building algorithms, node capacities
and the impact of indexing both datasets.

3. We study the impact of using the content-based measures for topological relations
discovery on both runtime and accuracy.

4. In order to increase the accuracy of our approach, we propose two polygon splitting
strategies and analyze the effect of them on both runtime and accuracy.

The rest of the paper is structured as follows. We begin by introducing the link dis-
covery problem over RDF KG in Section 2, where we also formally define the topolog-
ical relations based on content measures. Then, we describe our approach in Section 3.
In Section 4, we present our evaluation and results. We then discuss the state-of-the-art
related work in Section 5. Finally, we conclude our paper and present some future work
in Section 6. Our implementation of COBALT is open source and implemented into the
LIMES framework.1

1https://github.com/dice-group/LIMES

https://github.com/dice-group/LIMES


Becker et al. / 3

(a) Equal (b) Disjoint (c) Meet (d) Overlap (e) Contains (f) Covers (g) Inside (h) CoveredBy

Figure 1. The content measure relations.

2. Preliminaries

Knowledge Graph. A Knowledge Graph (KG) G is a set of triples (s, p,o) ∈ (R ∪
B)×P × (R ∪L ∪B), where R is the set of all resources, B is the set of all blank
nodes, P is the set of all predicates, and L the set of all literals.

Link Discovery. Given a source knowledge graph Gs and a target knowledge graph Gt
(for example, two KGs containing the geometric representation of national borders) and
a relation r (e.g., :touches), the goal of the link discovery problem is to find all pairs
(s, t) ∈ Gs×Gt such that r(s, t) holds. The result is produced as a set of links called a
mapping: M = {(s,r, t)|s ∈ Gs, t ∈ Gt}.

Content Measures for Topological Relations. We use the content measures as de-
fined Godoy et al. [12] for deciding if the relation r(s, t) exists. Godoy et al. have im-
plemented three content measures to determine whether a topological relation between
two polygons exists by comparing the area, the diagonal or the area and the diago-
nal of the polygon’s minimum bounding boxes. The relations distinguished by the con-
tent measures are shown in Figure 1. The Minimum Bounding Box (MBB) of a poly-
gon P with n≥ 3 points ((x1,y1), . . . ,(xn,yn)) is defined as the smallest rectangle which
fully contains the polygon’s points. Formally, MBB(P) =

(
(Xmin,Ymax),(Xmax,Ymin)

)
,

where Xmin = min(x1, . . . ,xn), Xmax = max(x1, . . . ,xn), Ymin = min(y1, . . . ,yn) and Ymax =
max(y1, . . . ,yn). The area of a MBB M is defined as area(M) = (Xmax − Xmin) ·
(Ymax − Ymin). The diagonal of a MBB M is formally defined as diagonal(M) =√
(Xmax−Xmin)2 +(Ymax−Ymin)2. We further use the same definitions of intersection,

union and distance among MBBs from [12].

3. Approach

We start our approach by indexing the source dataset polygons using R-tree then we
apply content measure on the indexed polygons.

R-tree Indexing. R-trees [13] are an enhanced variant of binary trees, where an R-
tree stores the MBBs of the polygons instead of the polygons themselves. In COBALT,
we use Guttman’s R-tree [14] to index the source dataset in order to filter out as many
disconnected polygon pairs as possible to reduce the runtime of the linking process.
Every node’s MBB contains all its children’s MBBs, so in case an MBB of a parent
node does not intersect a query rectangle (a query rectangle is a MBB from target data),
none of its descendants can [14]. The bottom layer of an R-tree stores the MBBs of
source dataset polygons, and all layers above it match the criterion applied to indexing
the bottom layer. One example of a handcrafted R-tree is depicted in Figure 2.
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Figure 2. A handcrafted R-tree, green is the bottom layer, blue is the middle, and red is the top layer.

Querying R-tree. R-trees are easy to query recursively. Let q be the target MBB of the
polygon for which we want to find the intersected MBBs of the source polygons. Since
the nodes of an R-tree nodes are R-trees, we utilize the same algorithm for each node. If
the current node of the R-tree is at the bottom layer, (i.e., it contains no other R-trees but
polygons), we then verify if q intersects each of the MBBs of the source polygons saved
in this node and add such source polygons to the query result. In case the current node
of the R-tree is not on the bottom layer, we check if each child node’s MBB has at least
one common point with q and if that is the case, we recursively repeat the method for
that node. In Figure 2 for instance, the MBBs of the left two blue nodes overlap. In case
the query rectangle q lies in the area where two nodes’ MBBs overlap, we have to check
the children of both nodes. Therefore, we need a fast building approach that minimizes
overlapping parent nodes.

Building R-tree. There are two main ways for constructing R-trees: (i) Static building
algorithms work by getting all data as the input and then constructing the tree with all
data at once. (ii) Dynamic building algorithms work by inserting data one by one into
the tree. As our datasets are not changing frequently, we focus on static algorithms as
dynamic algorithms will require more run time for reinserting data to keep the R-tree
balanced. Because we only query the R-tree once for every target geometry, the build
quality (overlap) is not as important for an overall fast execution. To test the impact of
different building algorithms, we use four static R-tree building algorithms (i.e., Small-
estX, STR, OTM and PackedHilbertR-tree) and one dynamic algorithm (i.e., R*-Tree).
The first static algorithm is SmallestX [15], which sorts the MBBs by the smallest x co-
ordinate. The SortTileRecursive [16] algorithm (STR) builds the R-tree bottom-up and
divides the MBBs into slices sorted by the x coordinate and then sorts them by the y
coordinate, then recursively combines the parent nodes of the bottom layer. The OTM
algorithm [17] works similar to STR, but recursively sorts the MBBs by alternating x
and y coordinate with a top-down bulk loading approach. The last static building algo-
rithm we use is the PackedHilbertR-tree [18] algorithm, which sorts the MBBs by their
position on the Hilbert curve. On the other hand, we use the dynamic R-tree building
algorithm R*-Tree [19], which supports inserting of new elements after creation and tries
to minimize the area occupied by nodes. In our experiments, we insert the polygons one
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Relation Disjoint Meets Overlap Equals Covers CoveredBy Contains Inside

Fa(A,B) (0,1) (0,1) (0,1) 1 1 (0,1) 1 (0,1)
Fa(B,A) (0,1) (0,1) (0,1) 1 (0,1) (0,1) (0,1) 1
Fa(A,B)+Fa(B,A) (0,1) (0,1] (0,2) 2 (1,2) (1,2) (1,2) (1,2)

Table 1. Area based content measure relations based on values of Fa. [12]

by one into the R*-Tree and use the values {4,8,16,32,64,128,256} for the capacities
of each node.

Content Measures For Topological Relations. Given two MBBs A and B, the area-
based content measure (Fa) is the first of the three content measures from [12]. Fa is the
normalization of the area of each MBBs of both A and B by the area of the MBB of the
union of A and B. Formally,

Fa(A,B) =
area(A)

area(MBB(A∪B))
, (1)

where Fa(B,A) is defined analogously. The range of Fa ∈ (0,1]. In Table 1, we present the
values of Fa(A,B), Fa(B,A) and Fa(A,B)+Fa(B,A) for the different topological relations.
Fa cannot distinguish the following pairs of relations: (Meet, disjoint), (covers,
contains) and (covered by, inside). For instance, the union MBB will be the
same as the MBB of the MBBs for contains and covers. However, this measure can
accurately detect the equal relation because both the input MBBs have the same area as
their union’s MBB. The second content measure is the diagonal-based content measure
(Fd) [12], formally defined as:

Fd(A,B) =
diagonal(A)

diagonal(MBB(A∪B))
. (2)

The range of Fd ∈ (0,1] and it cannot distinguish (covers, contains) and (covered
by, inside) for the same reason as in the case of Fa. The third content measure is the
mixed content measure (Fm) [12]. Fm utilizes the area, diagonal and distance of the MBBs
for finding the topological relations. Unlike the other two content measures, it is able to
distinguish between (contains, covers) and (inside, covered by). Formally,

Fm(A,B) =
area(A)−2 · area(MBB(A∩B))

area(A)
+

distance(A, B)
diagonal(A)

. (3)

Combining R-tree Indexing and Content Measure. Our R-tree indexing filters out
disjoint polygon pairs based on their MBB. We only keep the indexed source dataset
in memory, which reduces the space complexity as we then stream-process the target
dataset. In the case of the disjoint relation, we first add all pairs of geometries that the
indexing would filter out to the result set then we check the other relations on the rest
of the geometries pairs. In Algorithm 1, we line out the steps for the area based content
measure Fa. For the other measures, we replace Fa with Fd for the diagonal measure
and Fm for the mixed measure (Lines 11-12). Additionally, the values of Fa need to be
checked against the other measures’ values from [12] (Line 14).



6 Becker et al. /

Algorithm 1 DiscoverLinksAreaBased(Gs, Gt , r)

1: Input: Source KG Gs,Target KG Gt ,Topological relation r
2: Output: Mapping : M = {(s,r, t)|s ∈ Gs, t ∈ Gt}
3: tree← buildRtree(Gs)
4: Initialise M←{}
5: for each MBB(t) t ∈ Gt do
6: I← queryRtree(tree, t))
7: if r is disjoint then
8: Add all pairs(s,r, t)∀s ∈ (Gs \ I) to M
9: end if

10: for each MBB(s) s ∈ I do
11: X ← Fa(MBB(s),MBB(t))
12: Y ← Fa(MBB(t),MBB(s))
13: Z← X +Y
14: if X ,Y,Z match the respective values of the relation r in in Table 1 then
15: Add (s,r, t) to M
16: end if
17: end for
18: end for
19: return M

Algorithm 2 MatchTrees(sourceTree, targetTree)

1: Result←{}
2: if area(sourceTree) < area(targetTree) then
3: swap sourceTree and targetTree
4: end if
5: for each child of sourceTree do
6: if child is leaf then
7: Result = Result ∪ queryRtree(targetTree, MBB(child))
8: else
9: Result = Result ∪MatchTrees(child, targetTree)

10: end if
11: end for
12: return Result

Indexing both Datasets. In many cases swapping the source and target datasets results
in different runtimes. In order to reduce the impact of dataset ordering on the runtime,
we study the possibility of indexing both datasets instead of one. Instead of querying the
R-tree for each target geometry, we use Algorithm 2 to match two R-trees to each other
and recursively find all pairs that intersect. This approach removes the need to choose
which dataset to index but comes with the price of increasing the memory footprint of
our approach as we have to keep both datasets in memory.

Splitting Polygons to Gain Accuracy. We are able to improve the F-Measure of
COBALT for some relations by splitting the geometries into multiple pieces before using
the content measure functions to determine the relation. In particular, we split polygons
recursively t times into four pieces using two different strategies: 1) Equal split, where
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(a) Splitting the polygon into equal size parts two times (b) Splitting the polygon into fitting parts two times

Figure 3. Different options to split polygons. The green triangle is the original polygon, the dark red lines
are the splitting lines for the first split iteration, the light red lines are the splitting lines for the second split
iteration. The blue rectangles indicate the MBB used for determining the second iteration splitting lines of the
top left corner.

we are splitting the original polygon into equally sized parts. The resulting polygon parts
are the intersection of a grid pattern over the original polygon and the original polygon
itself. In some cases, this leads to some splits not achieving any additional information
as their parts of the grid are empty. For instance in Figure 3a, any further splits of the top
left corner cell (the blue highlighted cell) would not increase the accuracy of COBALT
as the original polygon does not have any points within this cell. 2) Fitting split, where
we divide the polygon into equally sized parts but using the MBB of the current poly-
gon part for further splitting. Splitting the top left corner cell of the same polygon of the
previous example using this strategy will result in the splitting presented in Figure 3b,
where further splitting of the blue highlighted cell results in more detailed splits that fit
better to the shape of the polygon. After splitting the polygons we compute the MBBs
for all parts. Now as we have multiple polygon parts, we change the way the relation
of the original polygon is determined. Let t be the number of splits into four parts. Let
A(i, j) be the split part of geometry A at column i and row j and B(k,l) be the split part
of geometry B at column k and row l for {(i, j,k, l) ∈ N4|0 ≤ i, j,k, l < 2t}. The newly
defined relations can be found in Table 2. In particular, every grid pattern A(i, j) must be
equal to B(k,l) for the equals relation to hold. For the intersects relation, at least one
A(i, j) has to intersect with at least one B(k,l). For the within relation, all A(i, j) have to be
contained in the MBB of the union of all B(k,l) it intersects. For the contains relation,
we swap A and B then compute within relation instead. For the overlaps relation, we
three conditions must hold: 1) at least one A(i, j) is not within B, 2) at least one B(k,l) is
not within A, and 3) at least one A(i, j) intersects with at least one B(k,l). For the touches
relation, at least one A(i, j) must touch any B(k,l) and every B(i, j) is related to every B(k,l)
by either touches or disjoint relation.

4. Evaluation & Results

Datasets. We use two real-world datasets for evaluating COBALT: 1) The NUTS2

dataset from the Eurostat group describes the territory of countries in the European
Union, (potential) candidate countries and countries belonging to the European Free

2https://ec.europa.eu/eurostat/de/web/gisco/geodata/reference-data/
administrative-units-statistical-units/NUTS, accessed on 01.09.2022

https://ec.europa.eu/eurostat/de/web/gisco/geodata/reference-data/administrative-units-statistical-units/NUTS
https://ec.europa.eu/eurostat/de/web/gisco/geodata/reference-data/administrative-units-statistical-units/NUTS
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equals ∀ {(i, j) ∈ N2|0≤ i, j < 2t}: A(i, j) equals B(i, j)

intersects ∃ {(i, j,k, l) ∈ N4|0≤ i, j,k, l < 2t}: A(i, j) intersects B(k,l)

disjoint ∀ {(i, j,k, l) ∈ N4|0≤ i, j,k, l < 2t}: A(i, j) disjoint B(k,l)

within ∀ {(i, j) ∈ N2|0≤ i, j < 2t}: A(i, j) within MBB({B(k,l)|∀{(k, l) ∈ N2|0≤ k, l < 2t} :
A(i, j) intersects B(k,l)})

contains swap A and B then compute within

overlaps (∃ {(i, j,k, l) ∈ N4|0≤ i, j,k, l < 2t}: A(i, j) equals B(k,l)) ∨ A(i, j) within B(k,l)) ∨
A(i, j) contains B(k,l)) ∨ A(i, j) overlaps B(k,l))∧
(∃ {(i, j) ∈ N2|0≤ i, j < 2t}: A(i, j) ¬ within MBB ({B(k,l)|∀{(k, l) ∈ N2|0≤ k, l < 2t} :
A(i, j) intersects B(k,l)}))∧
(∃ {(i, j) ∈ N2|0≤ i, j < 2t}: B(i, j) ¬within MBB({A(k,l)|∀{(k, l) ∈ N2|0≤ k, l < 2t} :
B(i, j) intersects A(k,l)}))

touches (∃ {(i, j,k, l) ∈ N4|0≤ i, j,k, l < 2t}: A(i, j) touches B(k,l))∧
¬(∃ {(i, j,k, l) ∈ N4|0≤ i, j,k, l < 2t}: A(i, j) equals B(k,l)) ∨ A(i, j) within B(k,l)) ∨
A(i, j) contains B(k,l)) ∨ A(i, j) overlaps B(k,l))

Table 2. Topological relations based on multiple splits of polygons.

Trade Association. 2) The Corine Land Cover (CLC)3 [20] created by the European En-
vironment Agency. CLC contains information about the land use of the 39 EEA39 coun-
tries4.

Hardware & Software. All experiments were conducted on the NOCTUA15 cluster
of the Paderborn university. NOCTUA1 consists of 256 compute nodes, each having
two Intel Xeon Gold "Skylake" 6148 processors, which comes to a total of 40 cores
with 2.4 GHz and 192 GiB main memory. All used algorithms were implemented in
Java, and the compute nodes ran on OpenJDK version 11.0.2. For an accurate runtime
measurement, all experiments were started with all datasets already loaded into the main
memory. Additionally, for linking each dataset pair, we ran the algorithms on the same
compute node. All experiments were conducted with a memory limit of 30 GB. Unless
otherwise stated, we use only one core for all the experiments.

Experiments Settings. We use COBALTarea, COBALTdiagonal and COBALTmixed to dub
the area, diagonal and the mixed measures of COBALT, respectively. We use the fol-
lowing four baselines: i) RADON [5], ii) RADON with only the MBBs of the orig-
inal polygons (dubbed RADONMBB), iii) GIA.NT [7] and iv) GIA.NT with only the
MBBs of the original polygons (dubbed GIA.NTMBB). For a fair runtime comparison,
we use a version of GIA.NT that computes only one relation at a time. We also imple-
mented a space-indexing-based version of COBALT, where we optimized the content-
based measures based on the space tiling indexing of RADON [5]. We use COBALTarea(R),
COBALTdiagonal(R) and COBALTmixed(R) to dub the area, diagonal and the mixed mea-
sures of the space-tiling-based indexing measures of COBALT, respectively. We also used
the Douglas-Peucker polygon simplification algorithm [21]. The simplification is ap-

3https://land.copernicus.eu/pan-european/corine-land-cover, accessed on 01.09.2022
4https://land.copernicus.eu/portal_vocabularies/geotags/eea39
5https://pc2.uni-paderborn.de/hpc-services/available-systems/noctua1

https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/portal_vocabularies/geotags/eea39
https://pc2.uni-paderborn.de/hpc-services/available-systems/noctua1
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plied to the dataset using simplification thresholds {0.05, 0.1, 0.2}, then the relations
are computed using RADON. They were labeled as RADONsimp(0.05), RADONsimp(0.1)
and RADONsimp(0.2). Within all experiments, we computed the topological relations
{equals, intersects, contains, within, touches, overlaps}.

Research questions. We aim to answer the following research questions:

Q1. What is the effect of indexing the input datasets on the runtime of COBALT?
Q2. How much efficiency (i.e., less runtime) we gain by using content measure for

topological relation discovery?
Q3. How much accuracy we lose (i.e., less F-Measure) by using content measure for

topological relation discovery?
Q4. In case we use a simplified version of the original polygons, will we have a better

trade-off between accuracy and efficiency than using COBALT?
Q5. Will COBALT benefit from parallelization for big KGs such as CLC?
Q6. What is the trade-off between accuracy and efficiency when we integrate our poly-

gon splitting strategies into COBALT?

Research question Q1. The aim of our first set of experiments was to evaluate different
R-tree indexing options for COBALT. To measure the difference in runtime between in-
dexing only one dataset vs. indexing both the source and target datasets, we linked NUTS
to CLC (see Table 3) and CLC to NUTS (see Table 4). First, we compared the algorithms
that index both datasets to the algorithms that only index one dataset. Our results showed
that when linking NUTS to CLC most of the algorithms that only index one dataset are
faster than the matching algorithms that index both of them. On the CLC to NUTS ex-
periment (CLC×NUTS ), however, the matching algorithms that index both datasets are
faster than the algorithms that only index one dataset. This shows that the choice of the
source dataset makes a difference regarding the runtime and the smaller dataset should be
indexed instead of the bigger one. Because of the higher memory need for indexing both
datasets, we decided to index only one dataset in our further experiments. In addition,
our results showed that computing the Hilbert curve, or inserting entries one by one with
the R*-Tree, takes much more time than the other algorithms. OMT and STR have the
best runtime of the algorithms as their computations are not expensive and produce high
quality R-trees. We conclude that the choice of the R-tree building algorithm as well as
the capacity of the R-tree are highly dependent on the datasets used for benchmarking.
It is important to find a balance between a fast building algorithm and an algorithm that
allows efficient queries. Sorting entries by both x and y coordinate like OMT and STR is
a good way to achieve this. This answers our first research question Q1.

For the following experiments we use the STR building algorithm with a capacity of
4, but to respect the downside of only indexing one dataset, we also use the longer taking
dataset combination for runtime values.

To answer Q2, Q3 and Q4, we conducted our second set of experiments where we
evaluate the performance of COBALT vs. all the baselines in terms of runtime and F-
Measure. In particular, we aim to find the topological relations within the NUTS dataset
against itself (i.e., NUTS×NUTS) and CLC×NUTS using each of the aforementioned
algorithms. For linking NUTS×NUTS, the total required runtimes to compute the topo-
logical relations are shown in Figure 4a. The F-Measure for each relation can be seen in
Table 5. For linking CLC×NUTS, the total required runtimes to compute the same six
relations are shown in Figure 4b. The F-Measure of each relation can be seen in Table 6.
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Table 3. Runtime in milliseconds for linking NUTS to CLC using different R-tree building algorithms and
capacities combined with the mixed content measure

Algorithm 4 8 16 32 64 128 256

R*TREE 55745 49757 61810 77957 137733 202192 208227
HILBERT 258193 245062 233901 236357 363893 270579 273802
SMALLESTX 204226 95004 58875 64362 65360 62508 65948
OMT 35055 35778 36415 44063 71217 82937 103397
STR 36986 37088 38366 44042 48191 61899 77262

MATCHHILBERT 398502 345562 328975 320710 327772 357677 410224
MATCHSMALLESTX 85300 71626 62810 59780 46495 53344 66957
MATCHOMT 72359 56792 55213 50404 44134 48084 54525
MATCHSTR 45716 42130 41216 41769 41859 42278 43248

Table 4. Runtime in milliseconds for linking CLC to NUTS using different R-tree building algorithms and
capacities combined with the mixed content measure

Algorithm 4 8 16 32 64 128 256

R*TREE 135037 139044 189439 372823 1067386 3527572 1067386
HILBERT 801618 866145 621211 793548 556130 540250 556130
SMALLESTX 263744 245692 422600 195218 93560 134091 324985
OMT 77928 62193 60354 55639 48598 54950 66138
STR 51448 47783 46708 47289 47359 48344 47359

MATCHHILBERT 401815 357914 363288 358353 344742 370740 417821
MATCHSMALLESTX 138362 106530 73954 70796 57164 68377 107256
MATCHOMT 72590 57643 56258 51175 45958 50478 56514
MATCHSTR 45245 42892 42077 42613 43233 43218 43849

Research question Q2. From Figure 4a, we can see that all the content-based mea-
sures implemented in COBALT (i.e., COBALTarea, COBALTdiagonal and COBALTmixed)
with R-tree indexing are 4 to 8 times faster than their counterparts (i.e., COBALTarea(R),
COBALTdiagonal(R) and COBALTmixed(R)) deployed based on the RADON’s space tiling
indexing. For instance, the total runtime of COBALTmixed is 195 milliseconds while the
total runtime in COBALTmixed(R) is 849 milliseconds, which means that COBALTmixed is
4.3 times faster than COBALTmixed(R). The slowest content-based measure of COBALT

(i.e., the COBALTarea) is on average 4840 times faster than RADON. COBALTmixed is
up to 1.47× 104 times faster than RADON, which is the best speedup COBALT has in
comparison to all other algorithms. This shows clearly how efficient are the the content-
based measures when it comes to the runtime, which clearly answers our second research
question Q2.

Research question Q3. Based on the results of Table 5, we analysed the impact of using
the content-based measures on the F-Measure. For discovering the equals relation based
on MBBs of the original polygons, all algorithms achieved an F-Measure of 0.996. For
the intersects, contains and within relations, the F-Measures were 0.852, 0.853
and 0.853, respectively. The overlaps relation was the most affected relation by us-
ing the MBBs. In the case of the NUTS×NUTS experiment for instance, using MBBs
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Figure 4. Runtime results of KG linking experiments.

instead of the original polygons as the input for discovering the overlaps relation re-
sulted in 586 true positives (out of 790 or 74.47%), 26884 false positives, 4012426 true
negatives (out of 4039310 or 99.33%) and 204 false negatives. In total, using MBBs
classified 45 times more polygon pairs falsely as being overlapped than the true num-
ber of overlapping pairs. The high number of pairs that was correctly identified as not
overlapping is caused by the indexing algorithm, which filters out a high percentage of
non-intersecting pairs. The only relation where the content-based measures produce bet-
ter F-Measures than both RADONMBB and GIA.NTMBB was the touches relation. Both
RADONMBB and GIA.NTMBB were not able to detect the touches relation correctly in
most cases as the intersection matrix of the MBBs depends heavily on the polygon shape.
For instance, using both RADONMBB and GIA.NTMBB for discovering the touches re-
lation for the NUTS×NUTS Experiment (again see Table 5) resulted in an F-Measure
of 0.001, while COBALTarea and COBALTdiagonal achieved an F-Measure of 0.678 and
0.779, respectively. Both the area and diagonal measures benefited from the fact that
there are 20150 pairs that touch each other but only 790 pairs that overlap. To sum-
marise, by using the content-based measures we lose on average 32% of the F-Measure
compared to the F-Measure of 1.0 produced by RADON or GIA.NT. This answers our
third research question Q3.

Research question Q4. State-of-the-art approaches tend to use polygons simplification
in order to speed up the link discovery of topological relations [22]. As part of our sec-
ond set of experiments, we studied the trade-off between accuracy and efficiency by us-
ing content-based measures on the polygons’ MBBs vs. using a simplified version of the
original polygons. Based on the results of Table 5, the F-Measures of RADONsimp(0.05),
RADONsimp(0.1) and RADONsimp(0.2) for the relations contains and within were worse
than all the results produced using MBBs of polygons. For instance, RADONsimp(0.05),
RADONsimp(0.1), and RADONsimp(0.2) achieved the F-Measures 0.7, 0.72 and 0.733, re-
spectively. While using COBALT on the MBBs of the original polygons achieved an F-
Measure of 0.853 for the contains and within relations. When using the polygon sim-
plification algorithms, the F-Measure for the equals relation is 1.0 for RADON with sim-
plified polygons when linking NUTS×NUTS. The content measures are able to achieve
an F-Measure of 0.996 for this relation. From the aforementioned results, we can con-
clude that using content-based measures on the polygons’ MBBs result in a better trade-
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Table 5. F-Measure for linking NUTS×NUTS (all values rounded to three decimal places). The results of
COBALT combined with RADON indexing are omitted, because the indexing does not change the accuracy.

Algorithm equals intersects contains within touches overlaps

RADON 1.000 1.000 1.000 1.000 1.000 1.000
RADONMBB 0.996 0.852 0.853 0.853 0.001 0.041

GIA.NT 1.000 1.000 1.000 1.000 1.000 1.000
GIA.NTMBB 0.996 0.852 0.853 0.853 0.001 0.041

RADONsimp(0.2) 1.000 0.916 0.733 0.733 0.177 0.068
RADONsimp(0.1) 1.000 0.953 0.721 0.721 0.199 0.064
RADONsimp(0.05) 1.000 0.980 0.700 0.700 0.209 0.061

COBALTarea 0.996 0.852 0.853 0.853 0.678 0.041
COBALTdiagonal 0.996 0.852 0.853 0.853 0.779 0.041
COBALTmixed 0.996 0.852 0.853 0.853 0.001 0.041

Table 6. F-Measure for linking CLC×NUTS. All values rounded to three decimal places and - indicate the
total absence of the relation in the result set. The results of COBALT combined with RADON indexing are
omitted, because the indexing does not change the accuracy.

Algorithm equals intersects contains within touches overlaps

RADON - 1.000 1.000 - - 1.000
RADONMBB - 0.709 0.689 - - 0.066

GIA.NT - 1.000 1.000 - - 1.000
GIA.NTMBB - 0.709 0.689 - - 0.066

RADONsimp(0.2) - 0.938 0.931 - - 0.332
RADONsimp(0.1) - 0.963 0.958 - - 0.419
RADONsimp(0.05) - 0.980 0.975 - - 0.540

COBALTarea - 0.709 0.689 - - 0.066
COBALTdiagonal - 0.709 0.689 - - 0.066
COBALTmixed - 0.709 0.689 - - 0.066

off between efficiency and accuracy than using a simplified version of polygons. We can
see the same behavior also for our second linking task, i.e., CLC×NUTS, see results in
Table 6. This clearly answers our fourth research question Q4.

Research question Q5 To answer Q5, we conducted our third set of experiments by
linking CLC against itself (i.e., CLC×CLC). For this experiment we implemented a
parallelised version of COBALT, where we used {1,3,4,8} thread(s). As shown in Ta-
ble 7, all MBB based algorithms did not benefit from using multiple threads. Because the
MBB-based algorithms are so fast, to the extent that the time needed for threads coordi-
nation is the same as the time saved by allocating the work to other threads. All of the
MBB-based algorithms were able to finish linking CLC to itself in less than one hour.
This is clearly answer our research question Q5. On the other hand, multiple threads
decreased the runtime of RADON and GIA.NT, because they use the intersection matrix
that requires expensive computing which can take advantage of employing more threads.
In particular, RADON is 6.31 times faster with 8 threads than with only one thread. All
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Table 7. Runtime for linking CLC×CLC using a different number of threads. All runtimes are recorded in
hours, where all values are rounded to three decimal places.

Algorithm 1 Thread 2 Threads 4 Threads 8 Threads

RADON 1179.489 686.007 340.827 186.913
RADONMBB 0.703 0.729 0.597 0.586

GIA.NT 1179.463 675.589 334.928 179.415
GIA.NTMBB 0.635 0.458 0.346 0.329

COBALTarea(R) 0.710 0.670 0.583 0.573
COBALTdiagonal(R) 0.539 0.564 0.513 0.505
COBALTmixed(R) 0.494 0.550 0.509 0.503

COBALTarea 0.209 0.215 0.186 0.192
COBALTdiagonal 0.190 0.195 0.175 0.183
COBALTmixed 0.179 0.190 0.171 0.180

of the content measures with R-tree indexing are at least three times faster than RADON
with MBBs.

Research question Q6. To study the trade-off between accuracy and efficiency when
we apply our polygons splitting strategies (i.e., the equal split and the fitting split strate-
gies) before applying the content measures, we conducted our last set of experiments.
In particular, we are interested in comparing COBALT with the two splitting strategies
to other approximation algorithms (i.e., polygon simplification). For this experiment we
compute the topological relations for NUTS×NUTS. We benchmarked both split strate-
gies defined in Section 3 against RADON and the combination of RADON and polygon
simplification as we did in the previous experiments. The splitting algorithms are com-
bined with the diagonal-based content measure. We dubbed our first splitting strategy
(depicted in Figure 3a) as EQUAL-t-FD and the second splitting strategy as FITTING-t-
FD (depicted in Figure 3b) with t being the number of recursive splits (We used 0 to 4 re-
cursive splits) and FD being the diagonal-based content measure. As both split strategies
produce the same result for 0 and 1 recursive splits, we only each of them once as SPLIT-
0-FD and SPLIT-1-FD. For the equals relation (see Figure 5a), the diagonal content
measure function achieved an F-Measure of 0.996 before applying the splitting algorithm
on the polygons. The fitting split strategy with 3 and 4 recursive splits (i.e., FITTING-
3-FD and FITTING-4-FD) achieved the best accurate results. On the other hand, the
polygon simplification algorithms were all able to achieve perfect results in less time
than both FITTING-3-FD and FITTING-4-FD. The diagonal content measure however
achieved a high F-Measure of 0.996 while being over 100 times faster than the simplifi-
cation algorithms. For the intersects relation (see Figure 5b), SPLIT-0-FD achieved
an F-Measure of 0.852 without splitting polygons. The fitting-split strategy has a better
accuracy for the intersects relation than the equal-split strategy for each t but with
increased runtime. When compared FITTING-3-FD to EQUAL-4-FD we also notice that
FITTING-3-FD is both faster and more accurate than EQUAL-4-FD. FITTING-3-FD is
three times faster than the simplification algorithms and is only slightly worse in accuracy
than the RADONsimp(0.05) algorithm, but better than RADONsimp(0.1) and RADONsimp(0.2).
For the contains and within relation (see Figure 5c and 5d), the content measures
without splitting were able to achieve an F-Measure of 0.853, which was already better
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Figure 5. Runtime in seconds (blue) and F-Measure (orange) results for linking NUTS × NUTS.

than the simplification algorithms. By splitting the polygons, we were able to achieve
a higher F-Measure.In particular, the FITTING-3-FD was 99% accurate while it used
only 26.4% of the runtime RADON needs to compute the contains relation. This in-
dicated that FITTING-3-FD was the strategy with the best runtime/accuracy trade-off.
The overlaps relation (see Figure 5f) is a relation that cannot be accurately detected
by the content measures or the polygon simplification algorithms. In this case splitting
the polygons has a positive effect on the accuracy, but it is still too low to be usable with
all F-Measures being smaller than 0.07. For the touches relation (see Figure 5e), the
diagonal content measure was able to achieve a higher F-Measure (0.779) without split-
ting. This happens because the diagonal content measure focuses on recall rather than
precision and by splitting the polygons there are more cases where parts from the two
polygons are overlapping. Therefore, the splitting reduces accuracy and the normal di-
agonal content measure function should be used for the touches relation. Overall, split-
ting polygons is good way to improve the accuracy of COBALT for the spatial relations
intersects, contains, and within. Our experiments show that the FITTING-T-FD
achieves a higher F-Measure than the EQUAL-T-FD algorithms for each respective T but
also have a higher runtime. By using our splitting technique, we could guarantee to finish
a linking task in a predetermined amount of time while also fully utilizing the time to
maximize the accuracy of the result. This answers our research question Q6.
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5. Related Work

In last years many algorithms have been proposed to address both the efficiency and
accuracy of link discovery in general and link discovery over geospatial RDF KGs in
particular. For instance, Ngonga Ngomo [1] computes the distance between geographical
items using the Hausdorff distance. Sherif et al. [23] provide a review of 10 point-set dis-
tance metrics for link discovery. SILK [24] computes topological relations in accordance
with the DE-9IM standard based on the MultiBlock. To compute topological relations
between geographical resources quickly and accurately, RADON [5] offers an indexing
technique coupled with space tiling approach. While RADON computes the intersection
matrix for each relation between a pair of geometries repeatedly, RADON2 [6] caches
the computed intersection matrix and reuses it whenever it is possible. In GIA.NT [7],
Papadakis et al. have adapted RADON’s indexing. In particular, instead of calculating the
estimated total hypervolume to decide which dataset to index, the authors simply index
the first dataset using a grid approach. In DORIC [8], Jin et al. the relation computation
problem is optimized by using existing links to infer new links. For instance, in case A
equals B and A equals C, DORIC infers that B equal C. Ahmed et al. [11] studied the effect
of simplifying the resources’ geometries on the runtime and F-Measure of link discovery
approaches over geospatial KGs. However, our approach computes topological relations
using content measures as defined in [12] instead of computing the DE-9IM intersection
matrix. Accuracy has received a considerable attention from the research society of link
discovery. For instance, algorithms such as RADON [5], RADON2 [6], GIA.NT [7], and
DORIC [8] achieve an F-Measure of 1, while algorithm such as the ones in [11] and our
presented algorithm here (COBALT) scarify the accuracy in favour of efficiency.

6. Conclusion & Future Work

In this paper, we propose COBALT, an approach for topological relation discovery.
COBALT combines the R-tree indexing with the content-based measures in order to scale
up the topological relations discovery process. Based on our experiments, COBALT is
able to achieve a speed up of up to 1.47× 104 over state-of-the-art algorithms. On the
other side, we also study the impact of applying our proposed approach on the accuracy
of the generated links. In order to optimize COBALT, we propose two polygon splitting
strategies. Without applying our splitting strategies, COBALT achieves an F-Measure be-
tween 70% and 90%. By applying our proposed splitting strategies, the F-Measure of
COBALT is improved to up to 99%. In future work, we aim to improve the accuracy of
COBALT by incorporating more non-spacial information into the linking process. In par-
ticular, we will consider information regarding the type, location, description, and name
of the resources represented by the polygons in the linking process.
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