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Abstract. Linked knowledge graphs build the backbone of many data-
driven applications such as search engines, conversational agents and e-
commerce solutions. Declarative link discovery frameworks use complex
link specifications to express the conditions under which a link between
two resources can be deemed to exist. However, understanding such com-
plex link specifications is a challenging task for non-expert users of link
discovery frameworks. In this paper, we address this drawback by devis-
ing NMV-LS, a language model-based verbalization approach for trans-
lating complex link specifications into natural language. NMV-LS relies
on the results of rule-based link specification verbalization to apply con-
tinuous training on T5, a large language model based on the Transformer
architecture. We evaluated NMV-LS on English and German datasets us-
ing well-known machine translation metrics such as BLUE, METEOR,
ChrF++ and TER. Our results suggest that our approach achieves a ver-
balization performance close to that of humans and outperforms state of
the art approaches. Our source code and datasets are publicly available
at https://github.com/dice-group/NMV-LS.

Keywords: KG Integration · Neural Machine Verbalization · Explain-
able AI · Semantic Web · Machine Learning Applications · Large Lan-
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1 Introduction

Heterogeneous knowledge graphs that obey the principles of linked data are
increasing in number. However, relatively few heterogeneous knowledge graphs
are actually linked. The current Linked Open Data (LOD) statistic1 shows that
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there are 1301 knowledge graphs having 395.12 billion triples and only 2.72 billion
links. Therefore, discovering links among these knowledge graphs is a major
challenge to achieving the LOD vision2. Moreover, the linked knowledge graphs
build the backbone of various data-driven applications, including information
retrieval, recommender systems, search engines, question answering systems and
digital assistants.

Declarative link discovery (LD) frameworks are used to link entities among
knowledge graphs. These frameworks use complex link specifications (LSs) to
express the conditions required to declare a link between two resources. For
instance, state-of-the-art LD frameworks such as Limes [15] and Silk [10] adopt
a property-based computation of links between entities. For configuring link
discovery frameworks, the user can either (1) manually enter a LS or (2) use
machine learning for automatic generation of LSs. In both cases, a domain expert
must manually write LS or set the configuration of machine learning algorithms
that are used to generate LS. Furthermore, LD experts can easily understand the
LS produced by such algorithms and modify it if needed. However, most lay users
lack the expertise to proficiently interpret those LSs. Due to this lack of expertise,
these users have difficulty when they i) check the correctness of the generated
LS, ii) customize their LS, or iii) decide between possible interpretations of their
input in an informed manner.

The aforementioned challenges can be seen as a bottleneck problem which
degrade the effort and potential for ML algorithms to create such LSs auto-
matically. Thus, addressing the explainability of link discovery-based artificial
intelligence has become increasingly popular. For instance, the authors from [2]
introduced a bilingual rule-based approach to verbalize the LS thus address-
ing the explainability of LD. In addition, Ahmed et al [1] extended the previ-
ous approach and devised a multilingual rule-based approach including English,
German, and Spanish. They also presented a first attempt for creating neu-
ral architecture, which is a bidirectional RNN-LSTM 2 layers encoder-decoder
model with an attention mechanism [14]. However, their neural model failed to
generalize as the vocabulary was very small and not diverse.

In this work, we alleviate the vocabulary problem found in Ahmed et al [1]
by proposing a language-based LS approach, named NMV-LS. To this end, we
propose a pipeline architecture consisting of two stages. The first stage is a rule-
based verbalizer to generate the necessary data to feed the second stage. The
second stage relies on a few-shot learning approach by fine-tuning a large lan-
guage model (LLM), in our case, T5. The underlying idea of using a language
model is to verbalize LS from different types of systems only by using few ex-
amples. For example, LSs from Limes [15] differ from the ones used in Silk
[10]. In addition, the second stage contains a standard seq2seq 2 layers encoder-
decoder architecture using different RNN cells such as GRU, LSTM, BiLSTM,
and transformer trained with more diverse data. Figure 2 depicts the proposed
architecture.

2 https://www.w3.org/DesignIssues/LinkedData.html
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To evaluate NMV-LS, we designed two settings. In the first setting, we used
two datasets for assessing the first part of our approach (i.e., standard encoder-
decoder architectures). The first dataset contains 107 thousand English pairs and
the second dataset contains 73 thousand German pairs. It should be noted that
each pair is nothing but an LS and its verbalization. In the second setting, we
used human annotated data for evaluating our second part of our approach (i.e.,
few-shot learning using T5 model). We created a human annotated data from
Limes with only 100 pairs, human annotated manipulated data from Limes
with only 8 pairs, and human annotated data from Silk with only 8 pairs. It is
important to note that we evaluated our second part only on English.

Our main contributions are as follows:

– We present NMV-LS, a language model-based LS verbalization approach
which relies on a few-shot learning strategy.

– We propose an approach which is capable of verbalizing different types of LS
thus mitigating the high efforts for creating linguistic rules to each system.

– We propose an approach which is easily extensible to other languages.

The rest of this paper is structured as follows: First, we introduce our basic
notation in Section 2. Then we give an overview of our approach underlying
neural machine verbalization LS in Section 3, followed by the evaluation of our
approach with respect to the automatic evaluation standard metrics BLEU, ME-
TEOR, ChrF++, and TER. We used BENG [12] to automatically measure the
performance of our approach in Section 4. After a brief review of related work
in Section 5, we conclude with some final remarks in Section 6.

2 Preliminaries

2.1 Link Specification LS

LS consists of two types of atomic components: similarity measures m, which are
used to compare the property values of input resources, and operators ω that are
used to combine these similarities into more complex specifications. We define a
similarity measure m as a function m : S × T → [0, 1], where S and T are the
sets of source and target resources, respectively. We use mappings M ⊆ S × T
to store the results of the application of a similarity function m to S × T .

We also define a filter as a function f(m, θ). A specification is named atomic
LS when it consists of exactly one filtering function. Although a complex spec-
ification (complex LS ) can be obtained by merging two specifications L1 and
L2 through an operator ω that combines the results of L1 and L2, here we use
the operators ⊓, ⊔ and \ as they are complete and frequently used to define
LS [20]. A graphical representation of a complex LS is given in Figure 1. We
define the semantics [[L]]M of an LS L w.r.t. a mapping M as given in Table 1.
The mapping [[L]] of an LS L with respect to S × T contains the links that will
be generated by L.
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f(soundex(:name, :name), 0.52)

f(trigrams(:name, :description), 0.61)

⊔

LS [[LS]]M

f(m, θ) {(s, t)|(s, t) ∈ M ∧m(s, t) ≥ θ}
L1 ⊓ L2 {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) ∈ [[L2]]M}
L1 ⊔ L2 {(s, t)|(s, t) ∈ [[L1]]M ∨ (s, t) ∈ [[L2]]M}
L1\L2 {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) /∈ [[L2]]M}

Fig. 1: A complex LS. The filter nodes are rect-
angles while the operator node is a circle.

Table 1: Link Specification Syntax and Seman-
tics.

2.2 Neural Machine Verbalization

Given a source sentence x and a target sentence y, verbalization is tasked with
finding y that maximizes the conditional probability of y (i.e., argmaxy p(y |
x)). In neural machine verbalization, an encoder-decoder model with a set of
parameters is trained to maximize the conditional probability of sentence pairs
using a parallel training dataset. Accordingly, a verbalization model that learned
the conditional distribution can generate a corresponding verbalization of a given
sentence by searching for the sentence that maximizes the conditional probabil-
ity.

3 Approach

NMV-LS consists of two stages. The first stage is rule-based verbalizer introduced
in [1] to generate silver data for the second stage, blue colored background in
Figure 2 . The second stage is with green colored background in Figure 2. The
second stage contains two independent parts. The first part of stage 2 is based
on standard encoder-decoder architectures such as two layers seq2seq with GRU,
LSTM and BiLSTM, and transformer. The second part of stage 2 applies the
concept of few-shot learning and is based on T5 model. In Figure 2, 1○ means
that the data is from Limes silver data, 2○ means that the training data is a
combination of Limes silver data and human annotated Limes silver data, 3○
is a combination of 2○ and humane annotated manipulated Limes LS, and 4○ is
a combination of 3○ and humane annotated Silk LS. In 2○, the human annota-
tion is applied only on the verbalization of LS without changing LS. Manipulated
Limes LS means that we altered the structure of Limes LS. Listing 1.1 shows
an example of Limes silver data, Listing 1.2 is an example of Limes human an-
notated data, Listing 1.3 is an example of Limes human annotated manipulated
data, and Listing 1.4 is an example of Silk human annotated data.

3.1 Rule-based verbalizer

The rule-based verbalizer in [1] is based on Reiter & Dale NLG architecture [19].
In [1] , real datasets (knowledge graphs) are used to generate LSs using Wom-
bat [20]. Since the number of properties used in [1] is limited, it results in
less diverse LSs. Our goal is to add more proprieties into each generated LSs.
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1 Source =
2 OR(mongeElkan(x.title ,y.title)|0.45 ,
3 cosine(x.title ,y.streetName)|0.37)
4
5 Target =
6 A link will be generated if
7 - the titles of the source and the target have a Mongeelkan similarity of 45%

or
8 - the title of the source and the streetName of the target have a Cosine

similarity of 37%.

Listing 1.1: Limes silver data: A pair that contains an LS and its verbalization in English.

1 Source=
2 AND(AND(ratcliff(x.givenName ,y.givenName)|0.0,AND(OR(jaroWinkler(x.givenName ,

y.authors)|0.37, cosine(x.givenName ,y.givenName)|0.0) |0.0, ratcliff(x.
givenName ,y.givenName)|0.37) |0.37) |0.0, jaroWinkler(x.givenName ,y.
givenName)|0.37)

3
4 Target= a link will be produced supposing that the givenNames of the source

and the target have a Ratcliff similarity of 0% or the givenName of the
source and the author of the target have a Jarowinkler similarity of 37%
or the givenNames of the source and the target have a Cosine similarity
of 0% and a Ratcliff similarity and a Jarowinkler similarity of a 37%

Listing 1.2: Limes human annotated data: A pair that contains an LS and its verbalization in English.

Therefore, in this work we create 10 templates to generate LSs relying on the
rules defined in Wombat. The complexity of an LS is formally defined as the
number of the combined atomic LS so that an LS is more complex when it con-
tains a higher number of the combined atomic LS. For example, the template
(A1 ⊔ A2) ⊓ (A3 ⊔ A4) is less complex than (A1 ⊔ A2) ⊓ (A3 ⊔ A4) ⊓ (A5 ⊔ A6),
where Ai is atomic LS.

3.2 Standard Encoder-Decoder Architectures

As we can see in Figure 2, the first part of the second stage in our approach
deploys a set of standard encoder-decoder architectures. Our first part of the
second stage is motivated by the advance in sequence-to-sequence neural trans-
lation, which belongs to a family of encoder-decoder architecture [22]. The en-
coder neural network reads and encodes a source sentence into a vector. The de-
coder translates from the encoded vectors to a sequence of symbols (i.e., words).
The goal here is to maximize the probability of a correct translation by jointly
training the whole encoder-decoder system using source sentences. We rely on
a Recurrent Neural Network (RNN) for both encoding and decoding [7], with
the attention mechanism introduced in [3]. We deploy RNN-GRU-2 layer and
RNN-Bi/LSTM-2 layer architectures to perform the verbalization. The first ar-
chitecture is based on Long Short-Term Memory (LSTM) [9], while the second
architecture is based on Gated Recurrent Unit (GRU) [7]. Given a sequence of
tokens (i.e., words) x = (x1, · · · , xT ) as input at time step t and a sequence of
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1 Source=
2 trigrams(x.givenName , y.name)|0.8 AND cosine(x.title , y.label)|0.7 Or

levenshtein(x.streetAdress , y.locationAdress)|0.9
3
4 Target=
5 The link will be generated when the givenname of the source and the name of

the target have a trigrams similarity of 80% and the title of the source
and the label of the target have a cosine similarity of 70% or the
streetAdressenname of the source and the locationAdress of the target
have a levenshtein similarity of 90%

Listing 1.3: Limes human annotated manipulated data: A pair that contains an LS and its
verbalization in English.

1 Source=
2 min( mongeelkanSimilarity (?x/p:producer , ?y/p:producer), ratclifDisitance(x/

p:city ,y/p:city))
3
4 Target=
5 The link will be generated if the labels of the source and the target have

minimum mongeelkan similarity or the cities of the source and the target
have minimum ratclif distance

Listing 1.4: Silk human annotated data: A pair that contains an LS and its verbalization in English.

tokens y = (y1, . . . , yT ) as output, our encoder-decoder is jointly trained to max-
imize the probability of a correct verbalization.Where x is the representation of
LS and y is the representation of natural text verbalized by a trained decoder.
The length of x may differ from the length of y. For our proposed NMV-LS
(i.e., part one of stage two), we use additive attention (as in [3]) with the con-
ditional probability p(yi|y1, . . . , yi−1,x) = g(yi−1, si, ci), where si is an RNN
decoder’s hidden state at time i. Formally, si = f(si−1, yi−1, ci) (see [7] for more
details). In this part of our approach, we also deploy transformer. Transformer is
a sequence-to-sequence architecture that relies entirely on the attention mecha-
nism to transform one sequence into another with the help of two parts encoder
and decoder without implying any recurrent networks (GRU, LSTM, etc). The
architecture consists of multiple identical encoders and decoders stacked on top
of each other (more details in [25]). We use our rule-based verbalizer to generate
silver data to train our models. However, before feeding these data, we need to
apply some preprocessing techniques.

3.3 Few-shot Learning using T5 model

As depicted in Figure 2, the second part of the second stage in our approach is
based on a few-shot learning strategy that involves fine-tuning a large language
model (LLM).

To address the vocabulary issue in Ahmed et al [1], we base our approach on
a few-shot learning approach by fine-tuning a large language model (LLM) such
T5 model [18]. T5 is a pre-trained model for text-to-text generative multitasking
based on transformer encoder-decoder and it is pre-treained on a large pre-
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Stage 1

English Verbalization LS

T5 Model

Few-shot training data

Rule Based 
Verbalizer

Other LS Systems 
(e.g., SILK)

Annotated

Manipulate LS

LS

1

2 Pair (LS, Verbalization LS)
34

Annotated

LSLink Specification (LS)

Annotated

Beam Search

LSLS

Pair (LS, Verbalization LS)

Standard Encoder-Decoder 
(e.g., BiLSTM, LSTM, GRU, Transformer)

1

English Verbalization LS

NMV-LS
Stage 2 
(Part 2)

  Stage 2 (Part 1)

Fig. 2: LS Neural Machine Verbalization System

training dataset (C4) [18]. Using T5 pre-trained model allows the model to learn
the structure and pattern of natural language from a vast quantity of diverse,
real-world text data. This can assist the model in learning to comprehend and
generate high-quality, human-like text, which is useful for a variety of natural
language processing tasks. In addition, T5 pre-trained model can frequently be
fine-tuned for specific tasks, particularly in our case to learn the complexity of
LS and generate verbalizations of LS with additional data and training time.

To use the T5 pre-trained model for few-shot learning in our model, as shown
in figure 2, we fine-tune it on four different small training datasets, as detailed
in section 4.3, where those datasets were designed based on the LSs of Limes.
The model’s goal is to generalize the verbalization of a wide range of LSs. Given
a sequence LS tokens as input represented by ls = {w1, w2, ..., wN} and mapped
into sequence embeddings before being fed into the encoder of T5, which out-
puts a sequence of embedding vectors. Furthermore, the decoder of T5 accepts
as inputs both encoder outputs and previously generated tokens from the de-
coder during the auto-regressive decoding. Moreover, linear transformation and
softmax functions are applied to the decoder outputs. In addition, beam search
decoding [23] is utilized to generate the verbalization LS from the model outputs.

4 Evaluation

4.1 Data

Since there are no gold standard datasets for an NM verbalization task to trans-
late link specification to natural languages, we generated silver standard datasets
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Table 2: Statistics about our datasets used in the experiments, where Vmax is the maximum ver-
balization length (in words) and V is the verbalization length.

Data # Records V < 50 51 < V < 100 V > 100

EN 107424 3744 (3.49%) 88320 (82.22%) 15360 (14.30%)
DE 73008 3888 (5.33%) 48384 (66.27%) 20736 (28.40%)

using the rule-based approach introduced in [2] and [1]. For evaluating the stan-
dard encoder-decoder architecture, we generated three datasets with the follow-
ing sizes: 107k pairs (English) and 73k pairs (German). Table 2 shows statistical
information about the data. For evaluating the fine-tuning of T5, we combined
10k pairs (English) from 107k pairs (English) with 100 pairs human annotated
data from Limes, 8 pairs human annotated manipulated data from Limes, and
only 8 pairs human annotated data from Silk.

4.2 Evaluation Metrics.

To ensure consistent and clear evaluation, we evaluate our approach with re-
spect to the automatic evaluation standard metrics BLEU [16], METEOR [4],
ChrF++ [17] and TER [21].

We used BENG [12] to evaluate our approach automatically. BENG is an
evaluation tool for text generation that abides by the FAIR principles and is
built upon the successful benchmarking platform GERBIL [24].

4.3 Experimental Setup

As we can see in Figure 2, our approach consists of two stages. The first stage is
the rule-based verbalizer and the second stage contains two parts. The first part
is based on standard encoder-decoder architectures and the second part is based
on few-shot learning method by fine-tuning a large language model (LLM) such
T5. However, the first stage feeds the two parts of the second stage. For instance,
1○ means that the data is from Limes silver data generated by the first stage
of NMV-LS which is the rule-based verblizer. 1○ feeds the both two parts of the
second stage in our pipeline architecture. For evaluating our first part of of the
second stage in our approach(i.e., standard encoder-decoder architectures), we
conducted three sets of experiments for both English and German to answer the
following research question:

Q1. Does the complexity of LS impact the performance of our NMV-LS in case
of training standard encoder-decoder architectures?

For evaluating our second part of the second stage in our approach(i.e., few-shot
learning using T5 model), we conducted one set of experiments for English to
answer the following research questions:

Q2. Does fine-tuning a LLM improve the verbalization of our NMV-LS system ?
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Q3. Does fine-tuning a LLM help to the generalization of different LS for verbal-
ization.

Q4 How large is the impact of using human annotated data on the quality of
verbalization in comparison with using silver data?

Experiment Set 1, English Language (107k dataset). We evaluated a
GRU/LSTM/BiLSTM-2 layers encoder-decoder on an English dataset consist-
ing of 107k pairs (each pair contains an LS and its verbalization in English or
German), split into 70% for training, 20% for validation, and 10% for testing.
For all experiments, we set the parameters as follows: The learning rate is {0.1,
0.01, and 1}, the dropout is 0.1, the embedding dimensionality is 256, the epochs
number is {100, 1000, and 10000}, the clipping value is 0.25, SGD optimizer with
negative log-likelihood loss function, and the max length of a sentence is {107
and 187 tokens}. The max length of a sentence means that model can filter out
all the pairs that have a length greater than the max length. For LSTM/BiL-
STM, the batch size is 256. The selection of parameters is manually tuned. We
run all GRU on colab and LSTM/BiLSTM on a local server with 1 GPU, 16
CPUs and 32 GB of memory. We use Pytorch library to implement our model.
The results are listed in Table 3. For these results, we set the learning rate to
0.01 in case for using GRU and to 0.1 in case with using LSTM/BiLSTM. We
conducted additional experiments with the learning rate set to 1 to study the
impact of learning rate on the results using LSTM/BiLSTM. The results are
provided in the Table 5.

Experiment Set 2, German Language. We evaluated the GRU/LSTM/-
BiLSTM-2 layers encoder-decoder on the German dataset containing only 73k
pairs. LSs are also complex in terms of atomic LSs. For instance, an LS can
contain up to 6 atomic LSs Ai combined using operators ⊔ and ⊓. The results
of the experiments are shown in the Table 4. The results in Table 4 are obtained
with the learning rate set to 0.01 for GRU and to 0.1 for LSTM/BiLSTM with
a batch size of 265. We ran more experiments with the learning rate set to 1
to study the impact of learning rate on the results. The results are presented in
Table 6.

Table 3: BLEU, METEOR, ChrF++, and TER scores for the English language, evaluated on the
107k dataset; the learning rate is 0.01 for GRU and 0.1 for LSTM/BIlSTM.

Model Length Iter. BLEU BLEU-NLTK METEOR ChrF++ TER

GRU 107 100 35.92 0.36 0.36 0.66 0.69
GRU 187 100 21.73 0.22 0.33 0.58 1.69
GRU 107 1000 41.05 0.41 0.39 0.71 0.63
GRU 187 1000 22.07 0.22 0.22 0.44 0.56
GRU 107 10000 99.22 0.99 0.78 0.99 0.01
GRU 187 10000 88.81 0.89 0.60 0.93 0.05
LSTM 107 100 82.61 0.83 0.65 0.92 0.27
LSTM 187 100 77.31 0.77 0.58 0.87 0.40
BiLSTM 107 100 85.37 0.85 0.64 0.91 0.26
BiLSTM 187 100 79.23 0.79 0.59 0.89 0.34
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Table 4: BLEU, METEOR, ChrF++, and TER scores for the German language evaluated on the
73K dataset. The learning rate is 0.01 for GRU and 0.10 for LSTM/BiLSTM.

Model Length Iter. BLEU BLEU-NLTK METEOR ChrF++ TER

GRU 107 100 41.84 0.42 0.43 0.74 0.66
GRU 187 100 28.67 0.29 0.4 0.67 1.41
GRU 107 1000 49.75 0.5o 0.47 0.79 0.59
GRU 187 1000 54.01 0.54 0.40 0.71 0.38
GRU 107 10000 99.98 1.00 0.90 1.00 0.00
GRU 187 10000 79.52 0.80 0.54 0.84 0.32
LSTM 107 100 60.40 0.60 0.44 0.70 0.45
LSTM 187 100 76.67 0.77 0.63 0.86 0.49
BiLSTM 107 100 81.90 0.82 0.59 0.86 0.21
BiLSTM 187 100 81.30 0.81 0.59 0.85 0.30

Table 5: BLEU, METEOR, ChrF++, and TER scores for English language evaluated on the 107K
dataset with learning rate set to 1.00.

Model length Iter. BLEU BLEU-NLTK METEOR ChrF++ TER

LSTM 107 100 83.01 0.83 0.61 0.86 0.22
LSTM 187 100 68.06 0.68 0.67 0.89 0.55
BiLSTM 107 100 94.45 0.94 0.70 0.96 0.08
BiLSTM 187 100 86.18 0.86 0.66 0.89 0.16

Experiment Set 3, Transformer. We implemented our transformer model
using the Pytorch framework with the default parameters, i.e., the number of
epochs is 30, the batch size is 256, and the max sentence length is {107, 187}.
The results are listed in Table 7.

Experiment Set 4, Few-shot learning on T5. To address the issues raised
by employing conventional architectures, such as overfitting and limited vocab-
ulary size as we have seen in previous experiments, we implemented few-shot
learning of text generation on the T5 model with a small number of training
samples. This experiment is designed with four distinct sets of few-shot training
data and three distinct sets of testing data, as shown in Table 8. In the first
experiment, we fine-tuned the T5 model using a training dataset of 10k pairs,
each consisting of a LS and its English verbalization from Limes silver data 1○.
In the second experiment, we fine-tuned T5 using the previous training dataset
in combination with 70 pairs of LS and their human-annotated verbalizations
from the Limes silver data 2○. In the third experiment, the training dataset

Table 6: BLEU and METEOR, ChrF++, and TER scores for the German language evaluated on
the 73K pairs dataset with learning rate set to 1.

Model Length Iter. BLEU BLEU-NLTK METEOR ChrF++ TER

LSTM 107 100 87.19 0.87 0.66 0.90 0.13
LSTM 187 100 96.67 0.97 0.82 0.99 0.06
BiLSTM 107 100 91.74 0.92 0.71 0.93 0.07
BiLSTM 187 100 99.58 1.00 0.85 1.00 0
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Table 7: BLEU, METEOR, ChrF++, and TER scores for German and English evaluated on the
73K and 107K pairs datasets using Transformers.

Data Length Iter. BLEU BLEU-NLTK METEOR ChrF++ TER

107K (En) 107 30 90.89 0.91 0.67 0.98 0.12
107K (En) 187 30 90.92 0.91 0.67 0.98 0.12
73K (De) 107 30 89.98 0.90 0.66 0.97 0.15
73K (De) 187 30 79.11 0.79 0.60 0.93 0.29

Table 8: BLEU, METEOR, ChrF++, and TER scores for English language using Fine-tuned T5
model leveraging few-shot learning.

Train set Test set BLEU BLEU-NLTK METEOR ChrF++ TER

1○ Limes original LS 76.27 0.76 0.54 0.87 0.15
1○ Silk LS 34.26 0.35 0.26 0.54 0.71
2○ Limes original LS 77.91 0.78 0.54 0.89 0.13
2○ Limes Manipulated LS 45.76 0.46 0.37 0.68 0.55
3○ Limes Manipulated LS 63.64 0.64 0.43 0.80 0.48
3○ Silk LS 34.93 0.35 0.27 0.54 0.67
4○ Silk LS 36.58 0.37 0.34 0.59 0.62

from the second experiment is combined with human-annotated manipulated
Limes LS 3○. By modifying the formula, the manipulated Limes LS is defined
differently than the previous LS. In addition, we fine-tuned the T5 model on the
training dataset in an effort to determine whether the model can improve the
verbalization of manipulated Limes LS. In the last experiment, we fine-tuned
the T5 model using the training data from the previous experiment in combi-
nation with Silk LS 4○. All experiments are built using the Pytorch lightning
framework, with following hyper-parameters: We set the number of epochs to
five and the learning rate to 3e-5 and use beam search decoding to generate ver-
balization LS with the parameters max length=256, num beams=15, no repeat
ngram size=6. In addition, t5-base is utilized as a pre-trained model. All mod-
els based on few-shot learning are evaluated using Table 8’s test set, which is
designed to investigate the effect of each training dataset on the model’s ability
to improve the generalization quality of LS verbalization.

4.4 Results & Analysis

To answer Q1, we set the maximum length of a sentence to be either 107 words
(tokens) or 187 words (tokens) based on the statistics in Table 2. This means we
filtered out all verbalized sentences that have a length greater than 107 words
for experiments where the maximum length of a sentence is set to 107 words.
We also removed all verbalized sentences that exceed 125 words for experiments
where the maximum sentence length is set to 125 words. In Table 3, we can
observe that NMV-LS using GRU achieves a better BLEU score, up to 99.22
(see Table 3). In Table 4, we can observe that the BLEU score is up to 99.98
obtained from our model using GRU when the length of a verbalized sentence is
also less than or equal to 107. In Table 5, the BLEU score is 94.45 using BiLSTM
with a max length of 107. Furthermore, Table 4 and 6 show that the NMV-LS
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model achieves better scores when the length of a verbalized sentence is 187. For
instance, the BLEU score on the 73k German dataset is 76.67 using LSTM and
99.58 using BiLSTM (see Table 4 and 6). The reason is that the 73k German
dataset contains complex LSs and 28.40% of their verbalizations have sentence
lengths greater than 100 words, and these sentences are filtered out, which in
turn affects the training process. Especially since the size of the dataset is only
73k pairs, resulting in a decreased performance. From all these observations, we
conclude that the complexity of LS plays a crucial role in the performance of
our NMV-LS model. Furthermore, GRU is more sensitive to the complexity of
LS than LSTM/BiLSTM. LSTM/BiLSTM can handle very complex LSs and
improve performance.

To answer Q2, we analysed the results in Table 8. First, Limes original LS
(i.e, it means that LS generated by Limes) is used to evaluate the second part of
NMV-LS. Our findings indicate that our technique is capable of generating ver-
balization at the human level and outperforms earlier approaches. For instance,
BLUE score is 76.27, ChrF++ is 0.87, and METEOR is 0.54. Note that we fine-
tuned our model with only 1○. In another word, we only used Limes silver data
generated by the first stage of NMV-LS (i.e., rule-based verbalizer) to fine-tune
our model. This answers Q2.

To answer Q3, we deployed the fine-tuned model on 1○ Limes silver data and
evaluated on Silk LS as extremest case because Limes & Silk have different
rules and grammars to build their LSs. The goal is to study to which extent our
model can be generalized to verbalize LSs in different formats and from different
systems (e.g., Silk). The results in Table 8 show that our model achieves BLUE
score of 34.26. Another case is that we fine-tuned NMV-LS using 2○ and tested
on Limes manipulated LSs. In this case, NMV-LS scores 45.76 BLUE, 0.68
ChrF++, and 0.37. Another case is fine-tuning our model on training data 3○
and evaluating on Silk. From the results, there is no improvement comparing
with the result generated by the model fine-tuned on 1○ and tested on Silk.
This can be justified that both 1○ and 3○ do not contain any information about
Silk. To investigate this further, we added few samples of Silk LSs to create 4○.
To this end, we used 4○ for fine-tuning NMV-LS and then evaluated on Silk.
This improved the performance by 1.65%. We see these results, in all cases, as
a big milestone toward generalizing our approach to verbalize LSs produced by
other systems.

To answer Q4, we implemented a couple of cases. In first case, we fine-tuned
NMV-LS using 2○ and evaluated on Limes original LSs. The results in Table 8
indicates that human annotated verbalization of a LS improves the verbalization
very slightly. For instance, BLUE score is 77.91 and it is 1.65% higher than BLUE
score produced using 1○. In the second case, we fine-tuned NMV-LS applying
3○ and evaluated on Limes manipulated LSs. This improved the performance
by 17.88 in BLUE score. We believe that the improvement is lead by including
Limes manipulated LSs in the training data 3○. This answer Q4.
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5 Related Work

Explainable artificial intelligence (XAI) is widely acknowledged as a crucial fea-
ture for the practical use of AI models. Thus, there is an emerging need for
understanding the results achieved by such models. With this comes the need
for the verbalization of semantic data (i.e., translation to natural text) involved
with such approaches (e.g., LD and LS systems which are our focus here). For
instance, the authors of [5] have surveyed (XAI) as new field of research and cov-
ered many aspects of it. While in the work [8], the authors used a convolutional
neural network (CNN) model combined with a BiLSTM model as encoder to
extract video features and then feed these features to an LSTM decoder to gen-
erate textual descriptions. This work [8] and our work both fall under post-hoc
explainability approaches such as text explanations(see [5]). In last years, the
neural machine translation has achieved a notable momentum [11] [3][7][22][6].
These papers have proposed the use of neural networks to directly learn this
conditional distribution that reads a sentence and outputs a correct translation
(from a natural language to another natural language, e.g., English to French or
English to German).

Recently,transfer learning, where a model is initially pre-trained on a data-
rich task before being fine-tuned on a downstream task, has emerged as a potent
method in natural language processing (NLP). Applying few-shot learning by
fine-tuning LLM such as T5 on a range of English-based NLP tasks, including
as sentiment analysis, question answering, and document summarizing achieves
state-of-the-art results [18]. However, few works have addressed the link specifi-
cation verbalization (i.e., translation to natural languages). Recently, the authors
addressed the readability of LS and proposed a generic rule-based approach to
produce natural text from LS [2]. Their approach is motivated by the pipeline
architecture for natural language generation (NLG) systems performed by sys-
tems such as those introduced by Reiter & Dale [19]. While in this work [1],
they proposed a multilingual rule-based approach, including English, German,
and Spanish, to produce natural text from LS. They also have presented a neu-
ral architecture which is a bidirectional RNN-LSTM 2 layers encoder-decoder
model with an attention mechanism [13]. We used [2] and [1] to generate our
silver dataset.

6 Conclusion & Future Work

In this paper, we present NMV-LS, a language-based LS verbalization system
that is able to translate (verbalize) LS into natural language. our approach con-
sists of two independent parts. The first part is based on standard encoder-
decoder architectures such as two layers seq2seq with GRU, LSTM and BiL-
STM, and transformer. The second part applies the concept of few-shot learning
and is based on T5 model. The first part of our approach is multilingual in
nature, where we tested it to generate both English and German verbalization.
The second part is evaluated on English. In future work, we plan to evaluate the
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second part of the second stage in NMV-LS on more languages such as German,
French, and Spanish. In addition, we will integrate our model into the LS learn-
ing algorithms, e.g., Wombat and Eagle for generating on-the-fly multilingual
verbalization of the learned LS.
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