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ABSTRACT
Knowledge graphs (KGs) that follow the Linked Data principles are created daily. However, there are no
holistic models for the Linked Open Data (LOD). Building these models( i.e., engineering a pipeline system)
is still a big challenge in order to make the LOD vision comes true. In this paper, we address this challenge
by presenting NELLIE, a pipeline architecture to build a chain of modules, in which each of our modules
addresses one data augmentation challenge. The ultimate goal of the proposed architecture is to build a
single fused knowledge graph out of the LOD. NELLIE starts by crawling the available knowledge graphs
in the LOD cloud. It then finds a set of matching KG pairs. NELLIE uses a two-phase linking approach
for each pair (first an ontology matching phase, then an instance matching phase). Based on the ontology
and instance matching, NELLIE fuses each pair of knowledge graphs into a single knowledge graph. The
resulting fused KG is then an ideal data source for knowledge-driven applications such as search engines,
question answering, digital assistants and drug discovery. Our evaluation shows an improved Hit@1 score
of the link prediction task on the resulting fused knowledge graph by NELLIE in up to 94.44% of the cases.
Our evaluation also shows a runtime improvement by several orders of magnitude when comparing our
two-phases linking approach with the estimated runtime of linking using a naïve approach.

INDEX TERMS Knowledge Graphs, Linked Data, Semantic Web, Data Augmentation, Link Discovery,
Data Fusion, Data Integration, Link Prediction, LOD

I. INTRODUCTION

The number of heterogeneous knowledge graphs that obey
the principles of linked data rises steadily. These KGs are
broadly used in data-driven applications, including informa-
tion retrieval, Natural Language Processing (NLP), recom-
mendation systems, search engines, conversational agents,
e-commerce solutions, and drug discovery. Currently, there
are no holistic models for the LOD to build a single fused
knowledge graph out of the LOD ( i.e., the development
of a 24/7 solution (similar to the Never Ending Language
Learner) for fusing knowledge graphs on the LOD).

For LOD to have such a complete model, the instances and
ontologies in each KG must be linked. Currently, only a small
number of such KGs are linked. In particular, the current

statistic1 of LOD2 shows that there are 1564 KGs with
395.121 billion triples and only 2.72 billion links (0.07%)
among them. Therefore, discovering links among these KGs
is a major challenge for achieving the vision behind the
LOD3.

Establishing links is a tedious process when performed
manually, especially in giant KGs such as DBpedia4, Linked

1Accessed 10.03.2022 https://lod-cloud.net/#about, retrieved using https:
//github.com/lod-cloud/lod-cloud-draw/blob/master/scripts/count-data.py

2https://lod-cloud.net/
3https://www.w3.org/DesignIssues/LinkedData.html
4https://wiki.DBpedia.org/
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Geo Data (LGD) 5, Bio2RDF6, KEGG [1] and Wikidata7.
In addition to the ever-increasing number of published KGs,
the size of individual KGs increases with each new edi-
tion. For example, DBpedia has grown from 103 million
triples (DBpedia 2.0), representing 1.95 million entities, to
10.094 billion triples representing more than 8.85 million
entities in 20228. Moreover, as the number of independent
data providers grows, the simultaneous publication of KGs
with the same information is more likely to take place. For
instance, DBLP have been published by several bodies,9

leading to duplicate content in the Data Web. Furthermore,
different KGs contain different facets concerning the same
data. For example, the drug data within the DrugBank10

KG are mainly describe the drugs’ interactions, pharmacol-
ogy, chemical structures, targets and metabolism, while The
Sider11 dataset contains data concerning the drugs’ side
effects. As a result of such huge data expansion as well as
multifaceted data publishing, there is a growing demand for
the data augmentation tasks such as ontology and instance
linking as well as data fusion.

Many frameworks have been developed to address differ-
ent data augmentation challenges. Prior to fusing KGs, such
systems mainly identify semantically equivalent entities in
different KGs, where they try to achieve both high effec-
tiveness and efficiency in the linking process. For instance,
LogMap [2] and Codi [3] use structural matching based on
the ontology structure to discover links between ontologies.
Nentwig et al. [4] list many data augmentation systems that
have been developed in the last two decades. For example,
LIMES [5], [6] and SILK [7] apply matching strategies on
instance level for computing the property values. Nentwig et
al [4] address many challenges and aspects of the current link
discovery frameworks. In a more recent survey [8], Mountan-
tonakis and Tzitzikas presented some linked data integration
approaches, including link discovery and KG fusion. For
fusing data, the linked data quality assessment and fusion
Sieve [9] is proposed, which is integrated into the linked data
integration framework (LDIF) [10]. DEER [11] is another
data augmentation framework that is capable of performing
both links discovery and fusion to produce enriched data.

In this work, we propose NELLIE, a pipeline architecture
to build a chain of modules, in which each of our modules
addresses one data augmentation challenge. NELLIE first ad-
dresses the problem of finding relevant KGs to be integrated.
Thereafter, NELLIE tackles the KG data integration task on
both the ontology and instance levels. NELLIE then fuses
the matched classes and instances to generate a fused KG.
Finally, NELLIE carries out KG embedding of the resulting

5http://linkedgeodata.org/About
6https://download.bio2rdf.org/release/4
7https://www.wikidata.org/
8Accessed in 10.03.2022 fromhttps://DBpedia.org/sparql
9http://dblp.l3s.de/, http://datahub.io/dataset/fu-berlin-dblp and http://

dblp.rkbexplorer.com/.
10https://go.drugbank.com/
11http://sideeffects.embl.de/

fused KG. The ultimate goal of the proposed architecture is
to build a single fused knowledge graph out of the LOD (
i.e., the development of a 24/7 solution (similar to the Never
Ending Language Learner) for fusing knowledge graphs on
the LOD), especially since such a graph does not exist yet.

Our proposed architecture consists of three layers: the core
layer, the application layer, and the publication layer. In this
paper, we pay more attention to the core layer as it contains
the main components and modules of our architecture. In
particular, we address the following challenges in our paper:
1) KGs matching (i.e., matching KGs based on their content);
2) KGs linking, including ontology and instance matching; 3)
KGs fusion and 4) KGs embedding. Note that, all these chal-
lenges are implemented in our core layer. In the application
layer, we address the link prediction challenge to evaluate
the impact of our KGs fusion on the link prediction task.
Figure 1 shows the NELLIE architecture. We summarize our
contributions as follows:

• We develop a pipeline modular architecture as a mile-
stone toward the 24/7 linking and fusing the LOD.

• We propose the two-phases linking strategy starting
with ontology matching, then instance matching.

• In the KG matching stage, we implemented the three
presented methods ourselves.

• In the ontology matching stage, we implemented the
content-based class matching ourselves and integrated
two state-of-the-art systems.

• For the instance matching stage, we base our implemen-
tation on the state-of-the art link discovery framework
LIMES [6], where we modified the way of training
the WOMBAT [12] to generate link specifications. We
then integrated LIMES into NELLIE as listed in Algo-
rithm 1in the paper.

• In the KG fusion stage, we implemented the additive
fusion operator with many different fusion strategies.
Finally, We study the impact of KGs fusion on the link
prediction task.

We evaluated our two-phase linking by computing a
pseudo-F-Measure. We also evaluated our approach on the
link prediction task and studied the impact of KG fusion
on this task. We used different KGs and different link pre-
diction models. Evaluating the efficiency and dependability
of NELLIE as a whole is worthy of consideration but is
currently too resource-intensive to implement. We used ex-
isting benchmarks for the sake of comparability. However,
we do agree that the benchmarks we have now are made for
specific subtasks like link prediction, ontology matching, and
instance matching.

The rest of this paper is structured as follows: Section II
introduces the preamble and context of this work. Then, we
give an overview of our approach in Section III. We then eval-
uate and discuss the results of our system in Section IV. After
a brief review of related work in Section V, we conclude our
work with some final remarks and future work in Section VI.
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FIGURE 1: The modular pipeline architecture of NELLIE.
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FIGURE 2: Example of linking the DBpedia resource dbr:Mount-Juliet with the LinkedGeoData resource
lgdt:node153471134 using LIMES link discovery framework.

Our source code is available on 12.

II. PRELIMINARY
In this section, we present the core of the formalization and
notation necessary to implement NELLIE.

Knowledge Graph. A Knowledge Graph (KG) G is a set
of triples (s, p, o) ∈ (R ∪ B)× P × (R ∪ L ∪ B), where R
is the set of all resources, B is the set of all blank nodes, P is
the set of all predicates, and L the set of all literals.

12https://github.com/dice-group/NELLIE

Knowledge Graphs Matching. Given a source KG G and a
set of target KGs T = {G1 · · ·Gn}. The goal of KG match-
ing is to rank all KGs within T based on their likelihood
of containing entities that have the potential to be linked to
entities in G [13].

Link Specifications.

Our linking is based on the link discovery framework
LIMES [6]. LIMES uses link specifications (LSs) to express
the conditions necessary for linking resources in input KGs.
A LS consists of two types of atomic components: similarity
measures m and operators op.
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Similarity measuresm is used to compare the property val-
ues of input instances. A thresholded similarity measure is an
atomic link specification. The operators op allow combining
link specifications to create complex specifications. In detail,
a similarity measure m is defined as a function m : Gs ×
Gt → [0, 1]. A LS is called atomic when it only contains one
similarity measure, while a complex specification (complex
LS) can be obtained by gluing two specifications L1 and L2

through an operator op that combines the results of two LSs
L1 and L2. Here, we use the operators u, t and \ as they are
complete and frequently used to define LS [12]. A LS is also
called linkage rule in the literature [7]. Note that a LS can be
generated manually or automatically. In NELLIE, we use the
state-of-the-art algorithm WOMBAT [12] to automatically
generate LS. WOMBAT learns link specifications based on
the concept of generalisation in quasi-ordered spaces. We
use the unsupervised version of WOMBAT. WOMBAT is
integrated to LIMES.

Ontology Matching. Given two sets of classes Cs and
Ct and a relation r (e.g., owl:equivalentClass),
the goal of ontology matching is to find all pairs
(ci, cj) ∈ Cs × Ct such that r(ci, cj) holds [2] (e.g.,
owl:equivalentClass(City, Town).

Instance Matching. The instance matching problem can be
expressed as follows: Given two sets of resources Gs and Gt

and a relation r (e.g., owl:sameAs), the goal of the instance
matching is to find all pairs (s, t) ∈ Gs × Gt such that
r(s, t) holds (e.g., owl:sameAs(Munich, München).
The result is produced as a set of links called a mapping:
M = {(s, r, t)|s ∈ Gs, t ∈ Gt}. Optionally, a similarity
score (sim ∈ [0, 1]) calculated by the instance matching
approach can be added to the entries of mappings to express
the approach’s confidence in the computed links [6].

Knowledge Graphs Fusion. Let Gs be a finite source KG
and Gt be a finite target KG. The aim of KG fusion is to
find a consolidated KG Gs⊕t that contains a fused version
of both related entities from Gs and Gt. We assume that
we have a mapping Mmerge that contains a set of pairs of
similar entities among Gs and Gt. A KG fusion approach
fuses each pair of similar entities into a single entity applying
some predefined fusion strategy operator ⊕.

Link Prediction. Given a subset of all true triples, the goal
of link prediction is to learn a scoring function φ for each
possible triple (es, r, eo), where es is the subject entity eo is
the object entity and r is a relation. In the case of linear mod-
els such as TuckER [14], ComplEx [15], and DistMult [16] ,
the scoring function is a specific form of tensor factorization,
while in non-linear models, the scoring function is a more
complex (deep) neural network architecture. For a particular
triple, a score is either positive in case a true fact is predicted
by the model or negative for a false one. Furthermore, logistic
sigmoid function is typically applied to the score to return a
corresponding probability prediction p = σ(s) ∈ [0, 1] as to
if a certain fact is true. Table 1 lists the score functions of
three state-of-the-art link prediction models we selected for
our experiments. All three models are linear.

III. APPROACH
NELLIE is a modular pipeline architecture consists of three
layers: the core layer, the publication layer and the applica-
tion layer. The NELLIE architecture is depicted in Figure 1.
In this paper, we focus on building the core layer as it is the
backbone of our system. In the following, we explain the core
layer components which are KG matching, linking, fusion,
and embedding. Given a set of KGs {G1, . . . , Gn} as input
for our system, which are available either from the web of
Data (LOD13) or stored in a local storage (Pool of Data).

A. KNOWLEDGE GRAPHS MATCHING
For the current version of NELLIE, we implemented three
methods for KGs matching:
• Metadata-Based KGs Matching. In this method, we

first collect KGs’ metadata from the LOD Cloud14.
The KGs’ metadata include various features of each
KG such as links to other KGs, website, SPARQL
endpoint, keywords and domain. We then configure the
link discovery framework LIMES [6] to match KGs
using the exact match string similarity among both
keywords and domain features. We provide the full
LIMES configuration file in Listing 3.

• Content-Based KGs Matching. For each KG, we retrieve
all the text within the literal objects using the SPARQL
query in Listing 1. We then concatenate all the literals
contained in each KG in order to generate a content
document for each input KG. Afterward, we carry out
a preprocessing of each KG content document by ap-
plying:

1) Tokenization. We perform word tokenization by
breaking a raw text into words (tokens) using
White Space Tokenization15

2) Stop words removal: We remove all stop words
such as {a, an, the, in, · · ·} to increase
the performance during string similarity measure.

3) Text Normalization. We use Normalization
Form KC (NFKC)16Next, we clean the text
from numbers and special symbol using regular
expressions.

To this end, we store the set of tokens from the source
KG as the first document A = {a1 . . . an} and the set
of tokens from the target KG as the second document
B = {b1 . . . bn}. To calculate the similarity between
A and B, we use the following similarities Jaccard,
Cosine with TF-IDF document vectors, weighted
Jaccard, Dice, and BERT [17].
Given A = {a1 . . . an} a set of tokens as a first
document and B = {b1 . . . bn} a set of tokens as a
second document 17, we can compute the weighted

13https://lod-cloud.net/
14https://lod-cloud.net/lod-data.json
15https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/process/

WhitespaceTokenizer.html
16https://docs.oracle.com/javase/tutorial/i18n/text/normalizerapi.html
17We trim the longer document to n tokens as the shorter one.
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TABLE 1: Scoring functions for three state-of-the-art link prediction models, together with the dimensionality of their relation
parameters and major terms of their space complexity. eo ∈ Cde is the complex conjugate of eo, es,wr ∈ Rdw×dh denote a 2D
reshaping of es and wr respectively, hes , tes ∈ Rde are the head and tail entity embedding of entity es, and wr−1 ∈ Rdr is the
embedding of relation r−1 (which is the inverse of relation r). 〈·〉 denotes the dot product and ×n denotes the tensor product
along the n-th mode, andW ∈ Rde×de×dr is the core tensor of a Tucker decomposition.

Model Scoring Function Relation Parameters Space Complexity

TuckER [14] W ×1 es ×2 wr ×3 eo wr ∈ Rdr O(nede + nrdr)
DistMult [16] 〈es,wr, eo〉 wr ∈ Rde O(nede + nrde)
ComplEx [15] Re(〈es,wr, eo〉) wr ∈ Cde O(nede + nrde)

SELECT DISTINCT ?literal
WHERE {

?s ?p ?literal
FILTER isLiteral(?literal)

}

Listing 1: SPARQL query to retrieve literal objects.

Jaccard similarity between the two preprocessed con-
tent documents using the formula:

Jw =

∑n
i min(ai, bi)∑n
i max(ai, bi)

,

where ai is a token in A and bi is a token in B.
For Cosine with TF-IDF document vectors, we used
the framework 18 developed by DKPro, where we start
by calculating the TF-IDF document vectors for each
document, then, applying cosine similarity.

• Manual KGs Matching. In order to evaluate the per-
formance of NELLIE within a small set of KGs, we
manually select some KGs that belong to the biol-
ogy domain: Kegg, Drugbank, Sider, Omim,
Sgd. We also select to match the two KGs LGD and
DBpedia. Although LGD belongs to geographic do-
main and DBpedia belong to general domain, they still
have potential to be linked since they have many classes
in common (e.g., organization, place, location and city)
with many instances that refer to the same physical
facts. For instance, :Mount_Juliet,_Tennessee
is a city located in western Wilson County, Tennessee as
described in DBpedia and :node153471134 refers
to the same city in LGD, which we used as our running
example (See Figure 2).

B. LINKING
For each pair of matched KGs, we carry out our two-phases
linking process. In particular, we first perform ontology
matching followed by instance matching. In the following,
we explain these two linking phases in details.

1) Class Matching
Based on our formal definition of ontology matching in
Section II, we implemented Content-Based Class Matching
ourselves and integrated two state-of-the-art systems:

18https://github.com/dkpro/dkpro-similarity

PREFIX owl:<http://www.w3.org/2002/07/owl#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?c where {
?c a owl:Class.
FILTER NOT exists {[] rdfs:subClassOf ?c}

}

Listing 2: SPARQL query for finding leaf classes.

• Content-Based Class Matching. We match classes
based on the assumption that similar classes describe
similar things. Therefore, we measure class similarity
based on the overall similarity of the literal objects
within those classes.
We start our class matching process by extracting all
classes Cs and Ct from source KG Gs and target KG
Gt, respectively. As shown in Listing 2, we query only
for the most specific classes (i.e., the leaf classes) of
each KG. However, a more specific list of classes can
be provided by the user if necessary. We then rank the
properties for each class by calculating their coverage
and pick up only the properties with a coverage that
exceed a certain propriety-coverage threshold β ∈ [0, 1]
defined by the user. The goal of the ranking of prop-
erties is to make sure that only the most important
properties have been retrieved. For instance, properties
such (label, name, title) have a high cover-
age which lead to the retrieval of more information. For-
mally, we query for proprieties with coverage(p) ≥ β),
where the coverage is defined as

coverage(p) =
|{s : (s, p, o) ∈ ci}|
|{s : ∃q (s, q, o) ∈ ci}|

, (1)

where ci ∈ Cs. β is a user defined value between
[0, 1]. For the target KG, we replace ci by cj in Equa-
tion 1. After extracting all classes and ranking proper-
ties, we retrieve only the objects with literal values using
SPARQL queries. The retrieved data (i.e., the literals)
require to be pre-processed before it can be used for the
class matching task. We used the same preprocessing
steps as in the case of content-based KG matching (see
Section III for more details). Accordingly, we store the
set of the distinct tokens (i.e., words) that belong to
each class ci ∈ Gs as Li = {l1 · · · ln}. Formally,
(key = ci, value = Li). We repeat the same proce-
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dures for each target class cj ∈ Gt. Now, the classes
together with their cleaned lateral objects values are
ready for matching. Our content-based class matching
is formally defined as ClassMatching(ci,Li, cj ,Lj),
where ci ∈ Gs, cj ∈ Gt, Gs is the source KG and Gt is
the target KG. We define the class similarity threshold
τ ∈ [0, 1]. In case the StringSimilarity(Li,Li) ≥ τ ,
then ci is equivalent to cj . These equivalent pairs of
class are stored in a list of equivalentClasses(ci, cj).
By default, we use the Jaccard string similarity to
measure the similarity between Li and Lj . Still, the user
can configure NELLIE to use other string similarities.

• Class matching using LogMap. LogMap [2] is a highly
scalable ontology matching system with built-in reason-
ing and diagnostic mechanisms capabilities. LogMap
uses highly optimized data structures to index the in-
put ontologies lexically and structurally. LogMap starts
by generating an initial set of anchor mappings (with
almost exact lexical correspondences) and give each of
them a confidence score. The main part of LogMap is
an iterative process that starts with the initial anchors
and alternates between mapping repair and mapping
discovery. LogMap offers a sound and highly scalable
(but potentially incomplete) ontology reasoner as well
as a greedy diagnosis method to find and correct unsat-
isfiable classes on the fly during the matching process.
Given the ability of LogMap to successfully match
semantically rich ontologies of classes as well as its
scalability, we embedded LogMap into NELLIE as an
external library.

• Class matching using FCA-Map. FCA-Map [18] is
based on formal concept analysis to find and evalu-
ate mappings across ontologies, including one-to-one
mappings, complicated mappings and correspondences
between object characteristics. It generates lexical map-
pings from class names and labels, as well as mappings
based on ontology structures. FCA-Map generates three
types of formal contexts before extracting mappings
from the resultant lattices. To begin, the token-based
formal context illustrates how class names, labels, and
synonyms all share lexical tokens, leading to lexical
mappings (anchors) between ontologies. Second, the
relation-based formal context specifies how classes are
connected to anchors in taxonomic, partonomic, and
disjoint ways, yielding positive and negative structural
evidence for lexical matching validation. Third, the
positive relation-based context may be leveraged to find
more structural mappings once incoherence has been
rectified [19]. Thus, we can use FCA-Map to extract
lexical and structural mappings of matched classes,
objects, and data attributes. As in the case of LogMap,
we embedded FCA-Map into NELLIE as an external
library.

Note that, this class matching phase reduces the runtime
needed for the instance matching phase (our second link-

ing phase) as we only perform instance matching among
instances of the matched pairs of classes.

2) Instance Matching
Based on our formal definition of instance matching in Sec-
tion II, we focus only on the owl:sameAs as the relation r
between s and t. We rely on LIMES [6] as it is a state-of-the-
art declarative link discovery framework with open source
implementation that can be easily adopted and extended in
NELLIE. The Algorithm 1 shows the procedures we follow
to establish the linking among the instances of the source KG
Gs and target KG Gt. Computing the mapping M among all
source and target KGs’ instances in a trivial way would result
on a quadratic complexity (i.e., O(|Gs| × |Gt|)). Therefore,
we compute the approximate mapping M ′ = {(s, t) ∈
Gs×Gt owl:sameAs(s,t) ≥ θ}, where θ is a threshold
between [0, 1] to filter out all pairs with similarity measures
less than θ.

While Lines 1-11 in Algorithm 1 describe the configu-
ration and preparation for instance matching using LIMES,
Lines 12-18 describe the preparation of caches to train
WOMBAT. The goal of the procedures stated in (Lines 12-
18) is to reduce the training time in case there is a large KG.
For instance, the idea in Line 12 is to filter out any cache
that has a small number of instances (i.e., less than 100). Ac-
cordingly, we define the parameter the minimum cache size
mcs for both source and target caches. For example, setting
mcs to 100 means that the caches must contain at least 100
instances. We also define the parameter minimum sample size
mss. The large size of cache increases the training time of
WOMBAT. Therefore, the parametermss plays an important
role in such a case (i.e., cache size > mss) by only training
WOMBAT on a sample of the cached data. For example,
in case we have a source cache of size of 10000 instances,
target cache of size 5000 instances andmss with the value of
4000, we then select a sample of size 4000 instances from the
smaller cache which is the target cache in our example here.
By taking the sample from the smaller cache, we have a better
potential to find matches, if such a matches exists. As we
can see in (Lines 13-16) in Algorithm 1. We train WOMBAT
then by the source and target training caches from previous
step in (Line 19) to generate the best link specification. Using
LIMES, we generate the mapping among the instances of the
pair of the input classes in (Line 20) by applying the best link
specification to the original KG.

C. KNOWLEDGE GRAPH FUSION
In order to perform the KGs fusion, we merge all the
mappings Mset = {M1 . . .Mn} of the matched instances
(from the previous linking step) into one universal mapping
Mmerge = M1 · · · ∪Mn. Accordingly, the KG fusion task
uses Mmerge to fuse Gs and Gt. In the following, we present
our fusion operator and strategies implemented so far in
NELLIE.
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Algorithm 1: Linking of Knowledge Graphs
input : EQ = {(cs1 , ct1) . . . (csn , ctn)} is list of

equivalent classes
input : mcs is the minimum cache size
input : mss is the minimum saple size
output : approximate mapping: M ′ = {(s, t) ∈

Gs ×Gt : sameAs(s, t) ≥ θ}
1 foreach (csi , cti) ∈ EQ do
2 psi=GetPropertiesWitAtLeast

Covering(csi , β);
3 pti=GetPropertiesWitAtLeast

Covering(cti , β);
// Configure LIMES

4 LIMES.sourceKG(Gs);
5 LIMES.sourceKGRestriction(csi);
6 LIMES.sourceKGProperties(psi);
7 souceCache =

LIMES.fillSourceCache();
8 LIMES.targetKG(Gt);
9 LIMES.targetKGRestriction(cti);

10 LIMES.targetKGProperties(pti);
11 targetCache =

LIMES.fillTargetCache();
12 if souceCache.size() > mcs &

targetCache.size() > mcs then
13 if souceCache.size() > mss &

targetCache.size() > mss then
14 sourceTrainingCache =

Max(souceCache, targetCache);
15 targetTrainingCache =

Sample(Min(souceCache, targetCache));

16 else
17 sourceTrainingCache = souceCache;
18 targetTrainingCache = targetCache;

19 BestLS =
LIMES.runUnsupervisedWombat(
sourceTrainingCache, targetTrainingCache);

20 M ′ =
LIMES(sourceCache, targetCache,BestLS);

21 return M ′

Additive Fusion Operator. Based on the mapping Mmerge

that contains the linked resources fromGs andGt, we imple-
ment our additive fusion operator to combine all resources
from Gs and Gt. In particular, our additive fusion operator
starts by adding all triples from the source KG Gs to the
fused KG Gs⊕t. Thereafter, it combines all similar triples
from the target KG Gt (i.e., triples which subjects contained
in Mmerge) with the similar triples from Gs. Note that, all
the subjects of the fused triples are from Gs. We present our

additive fusion operator formally in Algorithm 2. Figure 3
shows an example of fusing one DBpedia resource with
one LinkedGeoData resource using our additive fusion
operator. Note that, our operator is additive in the sense that
is keep all triples of source KG Gs, even the ones with no
similar triples in Gt (See Figure 4 for an example).

Algorithm 2: KGs additive fusion algorithm.
input : Source KG Gs,

Target KG Gt,
Mapping Mmerg = {(x, y)|x ∈ Gs, y ∈ Gt}

output: Fused KG Gs⊕t
/* Add every triple in Gs to Gs⊕t */

1 foreach triple(〈s, p, o〉) ∈ Gs do
2 Gs⊕t = Gs⊕t.addTriple(〈s, p, o〉)
/* Fuse only similar triples in Gt

into Gs⊕t */
3 foreach Mapping pair (x, y) ∈Mmerg do
4 foreach triple(〈y, p, o〉) ∈ Gt do
5 Gs⊕t = Gs⊕t.addTriple(〈x, p, o〉)

6 return Gs⊕t

Fusion Strategies. After applying our additive fusion
operator, we define a number of type-based strategies
for fusing the literal objects of the same subject and
predicate. For example, in our example in Figure 3, we
have the triple from DBpedia <dbr:Mount_Juliet,
rdfs:label, "Mount Juliet,Tennessee"@en>
and the triple from LinkedGeoData <lgdt:node153471134,
rdfs:label, "Mount Juliet">. For the two lat-
eral objects "Mount Juliet,Tennessee"@en and
"Mount Juliet", we need to decide to keep either one of
them, both of them or to combine them somehow. Formally,
for any two triples 〈s, p, λ1 > and 〈s, p, λ2〉, we implement
the following type-based fusion strategies:
• KEEPBOTH STRATEGY: We add the two triples
〈s, p, λ1〉 and 〈s, p, λ2〉 to the fused KG.

• PREFERSOURCE STRATEGY: We add only the triples
〈s, p, λ1〉 from the source KG to the fused KG.

• PREFERTARGET STRATEGY: We add only the
triples 〈s, p, λ2〉 from the target KG to the fused KG.

• MAXIMUM STRATEGY: We define the Maximum
strategy for all numeric object literals such as
xsd:integer19 and xsd:decimal as well as
dates (e.g., xsd:date), where we add the triple
〈s, p,max(λ1, λ2)〉 to the result fused KG. For
object string literals, the Maximum strategy se-
lects the longest string. Formally, add the triple
〈s, p, argmax(|λ1|, |λ2|)〉 to the result fused KG, where
|λ1| is the string length of the string λ1. For literal

19xsd=<http://www.w3.org/2001/XMLSchema#>
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FIGURE 3: Example of fusing the DBpedia resource dbr:Mount-Juliet with the LinkedGeoData resource
lgdt:node153471134 using our additive fusion operator from Algorithm 2.

KG Fusion

FIGURE 4: An example of fusing knowledge graphs using
our additive fusion operator ⊕.

objects of type xsd:boolean, the triple 〈s, p, λ1||λ2〉
is added the the fused KG, where || is the logical OR
operator.

• MINIMUM STRATEGY: Flowing the same manner
of the Maximum strategy, we define the Minimum
strategy for numeric and date literals literal ob-
jects, where we add the triple 〈s, p,min(λ1, λ2)〉 to
the result fused KG. For object string literals, the
Minimum strategy selects the shortest string. i.e., add
the triple 〈s, p, argmin(|λ1|, |λ2|)〉 to the result fused
KG. For xsd:boolean object literals, the triple
〈s, p, λ1&&λ2〉 is added the the fused KG, where &&
is the logical AND operator.

• AVERAGE STRATEGY: We define the Average strat-
egy for numeric and date object literals, where we add
the triple 〈s, p, 12 (λ1 + λ2)〉 to the result fused KG.

For string object literals, the Average strategy is not
defined. For xsd:boolean object literals, the triple
〈s, p, λ1&&λ2〉 is added the the fused KG.

• UNION STRATEGY: We define the Union strategy for
the object literals of type xsd:boolean, where we
add the triple 〈s, p, λ1&&λ2〉 to the result fused KG. For
object string literals, the Union strategy is the string
concatenation operator. i.e., the triple 〈s, p, λ1 + λ2〉
to the result fused KG, , where + is the string con-
catenation operator. Union strategy is not defined for
numerical and date data types.

Table 2 lists all the type-based fusion strategies we have
implemented so far. For our experiments, we apply the
KEEPBOTH strategy.

D. KG EMBEDDING & LINK PREDICTION

Although there are dozens of embedding models that can
be used to perform our link prediction task, we deploy the
three embedding models TuckER [14], ComplEx [15] and
DistMult [16] for embedding in our link prediction task. We
use these models as they are state-of-the-art linear models for
link prediction on knowledge graphs. Based on the NELLIE
architecture, any other embedding model could be easily
added to it.

• TuckER. TuckER is based on Tucker decomposi-
tion [20] that factorizes a tensor into a set of matrices
and a smaller core tensor. In a three-mode case, given
the original tensor X ∈ RI×J×K , Tucker decomposi-
tion produces a tensorZ ∈ RP×Q×R and three matrices
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TABLE 2: Fusion strategies for fusing the two triples 〈s, p, λ1〉 and 〈s, p, λ2〉 .

Method xsd:string xsd:integer xsd:date xsd:boolean

KEEPBOTH 〈s, p, λ1〉, 〈s, p, λ1〉, 〈s, p, λ1〉, 〈s, p, λ1〉,
〈s, p, λ2〉 〈s, p, λ2〉 〈s, p, λ2〉 〈s, p, λ2〉

PREFERSOURCE 〈s, p, λ1〉 〈s, p, λ1〉 〈s, p, λ1〉 〈s, p, λ1〉
PREFERTARGET 〈s, p, λ2〉 〈s, p, λ2〉 〈s, p, λ2〉 〈s, p, λ2〉
MAXIMUM 〈s, p, argmax(|λ1|, |λ2|)〉 〈s, p,max(λ1, λ2)〉 〈s, p,max(λ1, λ2)〉 〈s, p, λ1||λ2〉
MINIMUM 〈s, p, argmin(|λ1|, |λ2|)〉 〈s, p,max(λ1, λ2)〉 〈s, p,max(λ1, λ2)〉 〈s, p, λ1&&λ2〉
AVERAGE 〈s, p, 1

2
(λ1 + λ2)〉 〈s, p, 1

2
(λ1 + λ2)〉 〈s, p, 1

2
(λ1 + λ2)〉 〈s, p, λ1&&λ2〉

UNION 〈s, p, λ1 + λ2〉 - - 〈s, p, λ1&&λ2〉

A ∈ RI×P , B ∈ RJ×Q, C ∈ RK×R:

X ≈ Z ×1 A×2 B×3 C, (2)

And, The score function of TuckER model:

φ(es, r, eo) =W ×1 es ×2 wr ×3 eo, (3)

For link prediction on a KG’s binary tensor represen-
tation, TuckER model uses Tucker decomposition by
constructing entity embedding matrix E that is equal for
subject and object entities, i.e., E = A = C ∈ Rne×de

and relation embedding matrix R = B ∈ Rnr×dr ,
where ne and nr denote the number of entities and
relations and de and dr the dimensionality of entity and
relation embedding vectors. TuckER architecture can be
seen in Figure 5, where es, eo ∈ Rde are the rows of
E representing the subject and object entity embedding
vectors, wr ∈ Rdr the rows of R representing the
relation embedding vector and W ∈ Rde×dr×de is the
core tensor.

• DistMult. The scoring function of DistMultin Table 1
can be regarded as equivalent to the scoring function of
TuckER in Equation 2. The scoring function consists of
a core tensor Z ∈ RP×Q×R, P = Q = R = de. The
superdiagonal ofZ is with 1s (i.e. all elements zpqr with
p = q = r are 1 and all the other elements are 0). In
DistMult, subject and object entity embedding vectors
es, eo ∈ Rde are represented by rows of E = A =
C ∈ Rne×de and rows of R = B ∈ Rnr×de represent
relation embedding vectors wr ∈ Rde . Given that ma-
trices A and C are identical, the TuckER interpretation
of the DistMult scoring function can alternatively be
interpreted as a special case of CP decomposition [21].
DistMult belongs to the family of bilinear models.

• ComplEx. The scoring function of ComplEx in 1 can
also be viewed as equivalent to the scoring function of
TuckER in Equation 2. The core tensor Z ∈ RP×Q×R,
P = Q = R = 2de in which 3de elements on different
tensor diagonals are set to 1 and de elements on one
tensor diagonal are set to -1 while all other elements are
set to 0. [22] explained that ComplEx can be regarded
a bilinear model with the real and imaginary part of
an embedding for each entity concatenated in a single
vector.

W

de

de

dr

es

eo

wr

FIGURE 5: TuckER architecture [14].

IV. EVALUATION & DISCUSSION
In this section, we evaluate each of the NELLIE components,
i.e., KG matching, linking, fusion, and embedding, where
we performed a set of experiments to evaluate the different
techniques we implemented for each component.

A. KNOWLEDGE GRAPHS MATCHING EVALUATION
Metadata-based KGs Matching. We start by retrieving the
global metadata of all knowledge graphs available on the
LOD20. In total, we get the metadata of 1118 knowledge
graphs. We convert the metadata into RDF format21. We then
use the link discovery framework LIMES for matching KGs
based on their metadata. The LIMES configuration file we
used to match the KGs’ metadata is presented in Listing 3,
also publically available from the project web site22. In
particular, we configure LIMES to compute the exact match
string similarity between the keywords and domain prop-
erties. With this configuration, LIMES generated 186452
links.

Content-based KGs Matching. To the best of our knowl-
edge, there is no benchmark for the KGs matching task,
therefore we had to create our own benchmark. In partic-
ular, we chose a list of 8 KGs and manually annotated
them by three annotators into either matched (3) or not
matched (7). We then computed the mutual agreement (MA)
of our three annotators as listed in Table 3. To this end,

20https://lod-cloud.net/lod-data.json, accessed in October 2022
21https://git.cs.uni-paderborn.de/kgfusionpg/kgfusion/-/blob/main/lod_

metadata_11_2022.ttl
22https://git.cs.uni-paderborn.de/kgfusionpg/kgfusion/-/blob/main/

LIMESConfig.xml
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TABLE 3: Manually annotation results of our KGs matching. A1 to A3 are our 3 annotators, MA is the mutual agreement.

KGs KGt A1 A2 A3 MA

harvard_eagle-i_net_sparqler.nt onto_fel_cvut_cz_rdf4j-server_repositories.nt 7 7 7 7
harvard_eagle-i_net_sparqler.nt ldf_fi_ww1lod.nt 3 7 3 3
harvard_eagle-i_net_sparqler.nt lov_linkeddata_es_dataset_lov.nt 3 3 3 3
harvard_eagle-i_net_sparqler.nt dbtune_org_bbc_peel_sparql.nt 3 3 3 3
harvard_eagle-i_net_sparqler.nt www_imagesnippets_com_sparql.nt 3 3 3 3
harvard_eagle-i_net_sparqler.nt dbtune_org_magnatune_sparql.nt 3 7 3 3
harvard_eagle-i_net_sparqler.nt data_nobelprize_org.nt 3 3 3 3
onto_fel_cvut_cz_rdf4j-server_repositories.nt ldf_fi_ww1lod.nt 7 7 7 7
onto_fel_cvut_cz_rdf4j-server_repositories.nt lov_linkeddata_es_dataset_lov.nt 3 3 3 3
onto_fel_cvut_cz_rdf4j-server_repositories.nt dbtune_org_bbc_peel_sparql.nt 7 3 7 7
onto_fel_cvut_cz_rdf4j-server_repositories.nt www_imagesnippets_com_sparql.nt 7 3 7 7
onto_fel_cvut_cz_rdf4j-server_repositories.nt dbtune_org_magnatune_sparql.nt 7 3 7 7
onto_fel_cvut_cz_rdf4j-server_repositories.nt data_nobelprize_org.nt 7 7 7 7
ldf_fi_ww1lod.nt lov_linkeddata_es_dataset_lov.nt 3 7 3 3
ldf_fi_ww1lod.nt dbtune_org_bbc_peel_sparql.nt 3 3 3 3
ldf_fi_ww1lod.nt www_imagesnippets_com_sparql.nt 3 3 7 3
ldf_fi_ww1lod.nt dbtune_org_magnatune_sparql.nt 3 3 3 3
ldf_fi_ww1lod.nt data_nobelprize_org.nt 3 3 3 3
lov_linkeddata_es_dataset_lov.nt dbtune_org_bbc_peel_sparql.nt 3 3 3 3
lov_linkeddata_es_dataset_lov.nt www_imagesnippets_com_sparql.nt 3 3 3 3
lov_linkeddata_es_dataset_lov.nt dbtune_org_magnatune_sparql.nt 3 3 3 3
lov_linkeddata_es_dataset_lov.nt data_nobelprize_org.nt 3 3 3 3
dbtune_org_bbc_peel_sparql.nt www_imagesnippets_com_sparql.nt 3 3 7 3
dbtune_org_bbc_peel_sparql.nt dbtune_org_magnatune_sparql.nt 3 3 3 3
dbtune_org_bbc_peel_sparql.nt data_nobelprize_org.nt 3 3 3 3
www_imagesnippets_com_sparql.nt dbtune_org_magnatune_sparql.nt 3 3 3 3
www_imagesnippets_com_sparql.nt data_nobelprize_org.nt 3 3 3 3
dbtune_org_magnatune_sparql.nt data_nobelprize_org.nt 3 3 3 3

we applied our content-based KGs matching as described
in Section III-A. We set the threshold of similarity between
the generated documents of KGs to be ≥ 0.1. Using the
mutual agreement among our annotators (MA) as the ground
truth, we compute precision, recall and F-Measure among
the KG content documents using the Cosine, Jaccard,
Weighted Jaccard, Dice and BERT similarity mea-
sures. The results are listed in Table 4. In particular, we
achieve an F-Measure of 1.0 using Jaccard similarity
and 0.95 using Cosine-TF-IDF similarity. On the other
hand, using the BERT similarity resulted in an F-Measure of
only 0.88. However, the document similarity scores resulted
using the BERT similarity is in general higher than the other
similarity measures such as Jaccard. The reason is that
BERT is an advanced language model that takes into account
semantic, contextual and relation between words in its word
representation vectors. For computing Dice similarity, we
used the open-source Java library SimMetrics23. We use
the pre-trained BERT from HuggingFace24 for the embed-
ding of the preprocessed documents, where we calculate the
similarity of vectors using the cosine similarity.

Manual KGs matching. For Manual KGs matching, we
select the following KGs from the biological domain:
Kegg, Drugbank, Sider, Omim and Sgd. We man-
ually match these KGs to ensure the best matching of them,
as we used them to evaluate all the next components of
NELLIE (i.e., ontology matching, instance matching, fusion

23https://github.com/Simmetrics/simmetrics
24https://huggingface.co/sentence-transformers/all-mpnet-base-v2

TABLE 4: Content-based KGs matching.

Similarity
Method

Cosine
TF-IDF

Jaccard Weighted
Jaccard

DICE BERT

Precision 0.95 1.0 1.0 1.0 0.79
Recall 0.95 1.0 0.68 0.86 1.0
F-Measure 0.95 1.0 0.81 0.93 0.88

TABLE 5: Evaluation KGs characteristics.

# Kegg Omim Sider Drugbank Sgd

Classes 71 34 12 98 85
Entities 8.627 M 1.127 M 0.479 M 0.421 M 0.991 M
Triples 67.89 M 9.68 M 5.57 M 5.5 M 12.95 M

and link predication). Table 5 provides the characteristics of
these KGs.

B. LINKING EVALUATION
Setup. For the linking task, we set the configuration of NEL-
LIE as follows: We set the propriety-coverage threshold β to
0.5 and the minimum threshold for string similarities when
computing equivalent classes τ to 0.2. We also configured
the parameter of Wombat as follows: We set the string
similarity measures to {jaccard, cosine, qgrams,
levenshtein}, the maximum iteration number to 10, the
maximum execution time to 200 minutes and minimum the
properties coverage to 0.9.

Content-based Class Matching. In Table 6, we present
the results of applying the content-based class matching
to the classes within the manually matched KGs from our
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<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE LIMES SYSTEM "limes.dtd">
<LIMES>

<PREFIX>
<NAMESPACE>http://www.w3.org/2000/01/rdf-schema#</
NAMESPACE>
<LABEL>rdfs</LABEL>

</PREFIX>
<PREFIX>
<NAMESPACE>http://www.w3.org/2002/07/owl#</NAMESPACE>
<LABEL>owl</LABEL>

</PREFIX>

<SOURCE>
<ID>S</ID
<ENDPOINT>lod_metadata_11_2022.ttl</ENDPOINT>
<VAR>?x</VAR>
<PAGESIZE>-1</PAGESIZE>
<RESTRICTION> </RESTRICTION>
<PROPERTY>rdfs:keywords</PROPERTY>
<PROPERTY>rdfs:domain</PROPERTY>
<TYPE>NT</TYPE>

</SOURCE>

<TARGET>
<ID>T</ID>
<ENDPOINT>lod_metadata_11_2022.ttl</ENDPOINT>
<VAR>?y</VAR>
<PAGESIZE>-1</PAGESIZE>
<RESTRICTION> </RESTRICTION>
<PROPERTY>rdfs:keywords</PROPERTY>
<PROPERTY>rdfs:domain</PROPERTY>
<TYPE>NT</TYPE>

</TARGET>
<METRIC>AND(exactmatch(x.rdfs:keywords,y.rdfs:keywords)

|0.9, exactmatch(x.rdfs:domain,y.rdfs:domain)|0.9)
</METRIC>

<ACCEPTANCE>
<THRESHOLD>0.98</THRESHOLD>
<FILE>accepted.ttl</FILE>
<RELATION>owl:sameAs</RELATION>

</ACCEPTANCE>

<REVIEW>
<THRESHOLD>0.80</THRESHOLD>
<FILE>review.ttl</FILE>
<RELATION>owl:sameAs</RELATION>

</REVIEW>

<EXECUTION>
<REWRITER>default</REWRITER>
<PLANNER>default</PLANNER>
<ENGINE>default</ENGINE>

</EXECUTION>

<OUTPUT>TTL</OUTPUT>
</LIMES>

Listing 3: LIMES configuration for metadata-based KGs
matching.

previous step. In particular, we computed the Jaccard
string similarity between the cleaned laterals of class pairs
within each pair of KGs as described in Section III-B1.
Accordingly, a pair of classes is matched if the similarity
between their respective cleaned laterals ≥ 0.2. In the next
step, we run LIMES on each pair of matched classes to link
the instances with these classes following the procedures
defined in Algorithm 1. In Table 6, we list the pairs of
matched classes for each of the manually matched KGs
(from Section 5). Algorithm 1 then runs LIMES on each
pair of the matched classes. We also calculate the Pseudo-F-
Measure F [23] for the instances with each paired of classes.

The basic assumption behind the pseudo-F-Measure is that
symmetrical one-to-one links exist between the resources
in source and target datasets. For example, F = 0.89 for
the matched classes (Settlement, Place) of DBpedia
and LGD. We used unsupervised version of the WOMBAT
algorithm [12] to calculate F . We also computed average
macro Pseudo-F-Measure in case there is more than one pair
of matched classes such as (DBpedia, LGD), (Kegg,
Omim), (Kegg, Drugbank) and (Kegg, Sgd). The
average macro Pseudo-F-Measure is also listed in Table 6
with bold font. We also report the time required to link the
instances with in each pair of matched classes.

LogMap & FCA Based Class Matching. We embed the
ontology matching components of LogMap and FCA into the
NELLIE ontology matching phase as external libraries. For
the evaluation of each of the two systems, please refer to the
original papers of the systems [18], [24].

Performance gain using our two-phase linking. By ap-
plying the ontology matching phase prior to the instance
matching phase, we aim to reduce the overall runtime of the
linking procedure. In particular, when to apply a single phase
linking of all-against-all instances directly, we would need(

n∑
i=1

|Ci|
)(

n∑
j=1

|Dj |

)
comparisons between the instances

of the leaf classesCi of the source KGGs and the leaf classes
Dj of the target KG Gt. Note that, we assume that both Gs

and Gt have the same number of classes n without loss of
generality. W.l.o.g, we will also assume that the classes are
ordered in such as manner that the first k ≤ n classes match.
On the other side, using our two-phases linking, we need n2

comparisons for the first linking phase (i.e., class matching).
Note that, in general, the average class in a knowledge graph
has a magnitude larger than the total number of classes.

Hence, n <<
n∑

i=1

(
|Ci|
n

)
. The analog holds for Gt. For

the second linking phase (i.e., instance matching), we need
k∑

i=1

|Ci||Di| for the k pairs of the matched leaf classes from

Gs and Gt. This gives us a total cost of
(

k∑
i=1

|Ci||Di|+ n2
)

comparisons of our 2-phase linking. Our gain is then the
difference between the number of comparisons of all-against-
all instance linking and our 2-phase linking. Given that

n <<
n∑

i=1

(
|Ci|
n

)
, the expected value of this difference is

positive for k < n.
Empirically, we can compute the speedup achieved by

our two-phase linking as the number of comparisons using
all-against-all instance linking divided by the number of
comparisons of our two-phase linking. For example, if we
carry out the all-against-all for the KGs Drugbank and
Sgd, we get 0.421 × 106 × 0.991 × 106 = 41.211 × 1010

comparisons. On the other hand, the number of comparisons
using our two-phases linking needs only 1819×3488+n2 =
6.3446×106+8330 given that k = 1, where |C1| = 1819 and
|D1| = 3488, and n2 is 8330. Accordingly, our the speedup
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TABLE 6: Class matching results. |c| is the number of instances of a class c. Time is in milliseconds. F is Pseudo-F-Measure.

Gs Gt Source class (cs) |cs| Target class (ct) |ct| Time F

Kegg Omim

uniprot_vocabulary:Resource 25009 uniprot_vocabulary:Resource 14259 180686 0.82
ncbigene_vocabulary:Resource 39726 ncbigene_vocabulary:Resource 16080 227034 0.68
ensembl_vocabulary:Resource 22171 ensembl_vocabulary:Resource 29006 586008 0.67

Average macro Pseudo-F-Measure 0.72

Kegg Drugbank
cas_vocabulary:Resource 21271 cas_vocabulary:Resource 3167 17261 0.35
atc_vocabulary:Resource 3775 atc_vocabulary:Resource 1739 5 0.77

Average macro Pseudo-F-Measure 0.56

Kegg Sgd
go_vocabulary:Resource 3665 go_vocabulary:Resource 5555 6094 0.38
ec_vocabulary:Resource 6172 ec_vocabulary:Resource 444 570 0.27

Average macro Pseudo-F-Measure 0.32

Drugbank Sider pubchem.compound_vocabulary:Resource 6111 pubchem.compound_vocabulary:Resource 2097 8376 0.31

Drugbank Omim uniprot_vocabulary:Resource 8392 uniprot_vocabulary:Resource 14259 62370 0.34

Drugbank Sgd pfam_vocabulary:Resource 1819 pfam_vocabulary:Resource 3488 2291 0.46

DBpedia LGD

Settlement 11705 Place 11485 22516 0.89
Settlement 11705 Village 8443 15756 0.83
PopulatedPlace 11318 Place 11485 16709 0.89
PopulatedPlace 11318 Village 8443 11966 0.83
Place 11367 Place 11485 17717 0.89
Place 11367 Village 8443 15174 0.83

Average macro Pseudo-F-Measure 0.86

here is

41.211× 1010

6.3446× 106 + 8330
= 6.48695× 104

which is 4 orders of magnitude.

C. THE FUSION OF KNOWLEDGE GRAPHS & LINK
PREDICTION TASK
In the third task of our evaluation, we study the impact of
fusion on the link prediction task. Since the cost of computing
and resources allocation of the link prediction task on KGs
that contain millions of triples is very high, we made two
data augmentation scenarios for conducting experiments on
data fusion and link prediction tasks:
• Scenario A: The idea of this scenario is to study the

impact of fused KG on the quality of the link prediction
task. Thus, we used augmented versions of the source
KG Gs and target KG Gt by only filtering them to
the entities within the mapping: M = {(s, t)|s ∈
Gs, t ∈ Gt}. Formally, we augmented our data as
follows: Given the mapping M , we retrieve the sub-
KG G′s = {〈s, r, o〉 ⊆ Gs∀s ∈ M} and the sub-KG
G′t = {〈t, r, o〉 ⊆ Gt∀t ∈ M}. To this end, we run
Algorithm 2 to fuse the triples of G′s and G′t into the
fused KG Gs⊕t. For evaluating the link prediction task,
we compute Hit@1, Hit@3, Hit@10 and MRR for the
source KGs G′s and fused KGs Gs⊕t The results are in
Tables 8, 9, 10, 11, 12, and 13

• Scenario B: The idea of this scenario is similar to the
one of Scenario A. However, we modify Scenario A by
adding a random subset X of resources from Gs, which
are not included within the mappingM , toG′s. The goal

TABLE 7: Hyper-parameter values for TuckER, DistMult,
and ComplEx across all datasets, where lr denotes learning
rate, dr decay rate, ls label smoothing.

Model lr dr de dr ls

TuckER 0.005 1.0 200 200 0.1
DistMult 0.001 0.99 200 200 0.1
ComplEx 0.001 0.99 200 200 0.1

here is to perform the link prediction task on KGs that
contains some enriched entities and some non-enriched
ones. Formally, X = {〈s, r, o〉 ⊆ Gs ∀s ∈ Gs ∧ s /∈
M} and |X| = |M |. Note that, we limit the size of
X to the the size of M to keep the balance between
the enriched and non-enriched resources. This results in
G′s = {〈s, r, o〉 ⊆ Gs ∀s ∈ M ∪ X}. To this end,
we repeat the procedures done in Scenario A. See the
results in Tables 14, 15, 16, 17, 18, and 19

Setup. We set the hyper-parameters as listed in the Ta-
ble 7. We followed the same setting, training and evaluation
procedures introduced in the TuckER model [14] and the
codebase25 for TuckER, ComplEx and DistMult.

Results. We calculate the improvement percentage of
each source KG and its fused KG using the formula:
(Hit@kfusedKG − Hit@ksourceKG) ∗ 100. For MRR, we
apply a similar formula. For example, The improvement
of fused KG between KEGG and Omim in Table 12 for
Hit@1 is (0.5008− 0.3808) ∗ 100 = 12.0% using DistMulti
model. By repeating this procedure, we calculate all values
for all KGs. In particular, we found that the fused KG shows

25https://github.com/ibalazevic/TuckER
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TABLE 8: Link Prediction for Drugbank, Omim and the
fused data in Scenario A

Model Data Hit@1 Hit@3 Hit@10 MRR |Data|

TuckER Source 0.6580 0.6581 0.7223 0.6741 18.545
Fused 0.5735 0.6209 0.6506 0.6034 20.891

Improve -8.45 -3.73 -7.17 -7.07

DistMulti Source 0.5458 0.6378 0.6858 0.5997 18.545
Fused 0.5919 0.6279 0.6750 0.6197 20.891

Improve 4.61 -0.98 -1.08 2.00

ComplEx Source 0.6887 0.7486 0.7704 0.7236 18.545
Fused 0.5768 0.6468 0.6800 0.6179 20.891

Improve -11.19 -10.17 -9.04 -10.58

TABLE 9: Link Prediction for Kegg, Drugbank and the fused
data in Scenario A

Model Data Hit@1 Hit@3 Hit@10 MRR |Data|

TuckER Source 0.5326 0.5540 0.5999 0.5523 30.351
Fused 0.4351 0.5207 0.5625 0.4830 34.731

Improve -9.75 -3.34 -3.74 -6.92

DistMulti Source 0.4172 0.4596 0.4936 0.4459 30.351
Fused 0.4160 0.4727 0.5043 0.4517 34.731

Improve -0.12 1.31 1.07 0.58

ComplEx Source 0.4713 0.6075 0.6336 0.5445 30.351
Fused 0.4057 0.4479 0.4646 0.4311 34.731

Improve -6.56 -15.96 -16.90 -11.33

improvement of Hit@1 compared to the Hit@1 of source
KG. To the best of our knowledge, there is no scientific
evidence about the impact of KG alignment or KG fusion on
link prediction task. However, the results show improvement
in all metrics Hit@1, Hit@3, Hit@10, and (MRR). For
example, in Scenario A KG fusion improved 10 Hit@1 out
of 18 Hit@1 which is 55.55% of cases.While in Scenario B
KG fusion improved 17 Hit@1 out of 18 Hit@1 which is
94.44% of cases.

The results of Scenario A for the KG KEGG and KG
Omim (Table 12) shows that KG fusion improves Hit@1,
Hit@3, Hit@10 and (MRR) by up to 12%, 8.31%, 7.66%
and 10.10% respectively. Hence, we could see that KG fusion
plays an important role in improving the link prediction task.

In Scenario B, using TuckER embedding for the KG Drug-
bank and Omim (Table 16), the results show the improvement
in Hit@1, Hit@3, Hit@10, and (MRR) by up to 1.7%,
1.49%, 2.22% and 1.79%, respectively. Another example is
the KGs Kegg and Sgd (Scenario B) using TuckER, the
improvement is up to 9.34%, 8.94%, 7.05%, and 8.77% for
Hit@1, Hit@3, Hit@10, and (MRR), respectively (see,
Table 15).

From the results, we also can see in some cases that KG
fusion reduces the performance of link prediction task. For
instance, KG Drugbank and KG Omim in Scenario A using
TuckER. See Table 8. However, because of the absence of a
benchmark KGs for such task (i.e. the impact of KGs fusion

TABLE 10: Link Prediction for Drugbank, Sider and the
fused data in Scenario A

Model Data Hit@1 Hit@3 Hit@10 MRR |Data|

TuckER Source 0.6460 0.6735 0.723 0.6668 11.511
Fused 0.6426 0.7669 0.8132 0.7076 25.491

Improve -0.34% 9.33% 8.99% 4.08%

DistMulti Source 0.6086 0.668766 0.7040 0.6446 11.511
Fused 0.6215 0.7297 0.7964 0.6839 25.491

Improve 1.29% 6.09% 9.24% 3.93%

ComplEx Source 0.7040 0.7995 0.8249 0.7569 11.511
Fused 0.6003 0.7066 0.7727 0.6613 25.491

Improve -10.37% -9.29% -5.23% -9.56%

TABLE 11: Link Prediction for Kegg, Sgd and the fused data
in Scenario A

Model Data Hit@1 Hit@3 Hit@10 MRR |Data|

TuckER Source 0.551 0.5982 0.632 0.5809 12.641
Fused 0.5628 0.6357 0.6761 0.604 21.215

Improve 1.18 3.75 4.41 2.31

DistMulti Source 0.4527 0.5249 0.5649 0.4962 12.641
Fused 0.5132 0.5861 0.6264 0.5568 21.215

Improve 6.05 6.12 6.16 6.07

ComplEx Source 0.5279 0.6665 0.6928 0.6026 12.641
Fused 0.5244 0.6 0.6409 0.5679 21.215

Improve -0.35 -6.65 -5.19 -3.47

on the quality of the link prediction task), it is difficult to say
that this improvement is caused by the models used or the
KGs. Fundamentally, the performance of TuckER, DistMulti,
and ComplEx in litterateur is evaluated on a benchmark KGs
(see, [14]). These benchmark KGs are tailored to evaluate
KGE. DistMulti is limited to symmetric relations, while
ComplEx is able to capture antisymmetric relations. Thus,
if a KG contains many antisymmetric relations, DistMulti
may perform poorly. ComplEx can handle antisymmetric
relations, but its parameter number grows quadratically with
the number of relations, which frequently leads to overfitting,
especially for connections with a limited number of train-
ing triples. TuckER gets around this problem by modeling
relations as vectors wr, so the number of parameters scales
linearly with the number of relations. Another reason that
can affect the results and the performance is the selection
of hyper-parameters. In our current experiments, we did not
conduct any sort of hyper-parameters optimizations. We used
hyper-parameters from [14]. Based on these observations,
the impact of KGs fusion on the quality of the link prediction
task is still an open question and it needs thorough inves-
tigation from benchmarking KGs to the hyper-parameters
optimization.

V. RELATED WORK
To the best of our knowledge, there are no previous attempts
to carry out the 24/7 never ending linking over RDF KG
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TABLE 12: Link Prediction for Kegg, Omim and the fused
data in Scenario A

Model Data Hit@1 Hit@3 Hit@10 MRR |Data|

TuckER Source 0.5020 0.5350 0.5541 0.5212 307.375
Fused 0.5023 0.5605 0.5856 0.5350 496.462

Improve 0.03 2.55 3.14 1.38

DistMulti Source 0.3808 0.4773 0.5090 0.4322 307.375
Fused 0.5008 0.5604 0.5856 0.5332 496.462

Improve 12.00 8.31 7.66 10.10

ComplEx Source 0.4421 0.5481 0.5703 0.4976 307.375
Fused 0.4959 0.5668 0.5855 0.5323 496.462

Improve 5.38 1.87 1.52 3.48

TABLE 13: Link Prediction for DBpedia,
LinkedGeoData and the fused data in Scenario A

Model Data Hit@1 Hit@3 Hit@10 MRR |Data|

TuckER Source 0.4504 0.5326 0.5997 0.5033 271.706
Fused 0.4802 0.5598 0.6088 0.5278 326.792

Improve 2.98 2.72 0.91 2.45

DistMulti Source 0.3601 0.4548 0.5249 0.4187 271.706
Fused 0.3772 0.4515 0.5224 0.4277 326.792

Improve 1.71 -0.33 -0.25 0.89

ComplEx Source 0.3350 0.4501 0.5127 0.4022 271.706
Fused 0.3725 0.4507 0.5361 0.4275 326.792

Improve 3.76 0.06 2.34 2.52

to enable building a holistic model for the LOD. Accord-
ingly the related work comes from four different research
area: knowledge graph matching, ontology/instance match-
ing, data fusion and Knowledge graph embedding, therefore
we brief some related works for each research area.

A. KNOWLEDGE GRAPHS MATCHING
The use of topic-modeling-based document similarities is
well recognized and has been extensively researched in ear-
lier papers, such as [25]. Topic modelling has been utilized
for texts with natural language, particularly for applications
involving information retrieval. To return documents that are
thematically linked to a particular query, Buntime et al. [26]
created an information retrieval system based on a hierarchi-
cal topic modelling method. In NELLIE, we adopted KG
matching techniques based on document similarity, where
we generated one document per KG. Sleeman et al. [27]
developed a method for using topic modeling with RDF data.
This method produces a separate document for each entity
described in a KG, whereas our method generates documents
that describe an entire KG. Tapioca [13] is based on Latent
dirichlet allocation (LDA) [28] to identify the topics of RDF
KGs.

B. ONTOLOGY AND INSTANCE MATCHING
Ontology Matching. Knowledge integration depends heavily
on ontology alignment, which has been the subject of ex-

TABLE 14: Link Prediction for Drugbank, Sider and the
fused data in Scenario B

Model Data Hit@1 Hit@3 Hit@10 MRR |Data|

TuckER Source 0.4210 0.4567 0.5047 0.4485 29.02
Fused 0.4571 0.5248 0.5940 0.5037 36.222

Improve 3.60 6.81 8.94 5.52

DistMulti Source 0.3332 0.4233 0.4854 0.3885 29.02
Fused 0.6943 0.8016 0.8303 0.7485 36.222

Improve 36.11 37.82 34.49 36.01

ComplEx Source 0.4061 0.4842 0.5380 0.4551 29.02
Fused 0.4189 0.53 0.5941 0.4846 36.222

Improve 1.28 4.58 5.61 2.95

TABLE 15: Link Prediction for Kegg, Sgd and the fused data
in Scenario B

Model Data Hit@1 Hit@3 Hit@10 MRR |Data|

TuckER Source 0.4445 0.4840 0.5366 0.4747 23.712
Fused 0.5379 0.5733 0.6071 0.5624 31.337

Improve 9.34 8.94 7.05 8.77

DistMulti Source 0.3123 0.3792 0.4283 0.3549 23.712
Fused 0.3998 0.4736 0.5373 0.4482 31.337

Improve 8.75 9.44 10.90 9.33

ComplEx Source 0.3687 0.5128 0.5614 0.4489 23.712
Fused 0.4580 0.5598 0.5874 0.5150 31.337

Improve 8.93 4.70 2.60 6.61

tensive research in recent years. We list here some state-of-
the-art systems. LogMap [2] is a highly scalable ontology
matching system that provides reasoning and diagnosis ca-
pabilities. Codi [3] is another ontology matching framework
relying on Markov logic. The system defines the syntax and
semantics and formalizes the ontology matching problem.
Chen et al. [24] introduced a machine learning algorithm
that makes advantage of distant supervision and semantic
embedding to improve the conventional ontology alignment
systems. To put it simply, it first generates high precision
seed mappings using the original ontology alignment system
and class disjointness constraints (as heuristic rules), it then
uses these mappings to train a Siamese Neural Network
(SiamNN) for predicting cross-ontology class mappings via
semantic embeddings in OWL2Vec [29]. VeeAlign [30], a
deep learning-based model, employs a new dual-attention
technique to compute the contextualized representation of a
notion, which is then utilized to find alignments. By doing
this, VeeAlign is able to take advantage of the syntactic and
semantic data embedded in the ontologies. OntoConnect [31]
is a recent domain-independent, non-human intervention on-
tology alignment approach that uses graph embedding with
negative sampling.

Instance Matching. Declarative link discovery frameworks
build complex link specifications to specify the conditions
necessary for linking resources between RDF knowledge
graphs. The SILK [7] and LIMES [5], [6] frameworks, for
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TABLE 16: Link Prediction for Drugbank, Omim and the
fused data in Scenario B

Model Data Hit@1 Hit@3 Hit@10 MRR |Data|

TuckER Source 0.4158 0.4537 0.4936 0.4428 46.981
Fused 0.4328 0.4686 0.5157 0.4607 49.308

Improve 1.70 1.49 2.22 1.79

DistMulti Source 0.3169 0.3906 0.4627 0.3671 46.981
Fused 0.3297 0.3930 0.4585 0.3737 49.308

Improve 1.28 0.24 -0.42 0.66

ComplEx Source 0.3921 0.4644 0.5054 0.4363 46.981
Fused 0.4038 0.4765 0.5188 0.4476 49.308

Improve 1.17 1.21 1.34 1.14

TABLE 17: Link Prediction for Kegg, Omim and the fused
data in Scenario B

.

Model Data Hit@1 Hit@3 Hit@10 MRR |Data|

TuckER Source 0.4085 0.4397 0.4642 0.4285 591.5
Fused 0.4410 0.4856 0.5133 0.4674 690.224

Improve 3.26 4.59 4.92 3.89

DistMulti Source 0.2883 0.3284 0.3483 0.3116 591.5
Fused 0.3480 0.4091 0.4452 0.3839 690.224

Improve 5.97 8.07 9.68 7.23

ComplEx Source 0.3760 0.4555 0.4766 0.4192 591.5
Fused 0.4243 0.4950 0.5261 0.4651 690.224

Improve 4.83 3.95 4.95 4.59

instance, employ a property-based methods for the computa-
tion of links between instances. Such link specifications can
be generated using various machine learning approaches such
as Wombat [12] and Eagle [32]. Serimi [33] is an automatic
interlinking method and matches instances between a source
and a target knowledge bases. Niu et al. [34] introduce a
a semi-supervised learning algorithm for automatically dis-
covering dataset-specific instance matching rules. Slint [35]
uses an approach for schema-independent interlinking. In
particular, Slint starts by automatically selecting important
RDF predicates using the coverage and discriminability, then
it uses the weighted co-occurrence and adaptive filtering for
carrying out the instance matching.

C. DATA FUSION
Data fusion is one of the key goals of data integration. Data
fusion increases the conciseness through fusing duplicate en-
tries and merging common attributes together. The work [36]
defines the goals of data fusion as to achieve more data
completeness and conciseness. The main challenges of data
fusion are uncertainty due to conflicting data values. In [36],
the authors survey different ways of fusing data and present
several methods. In the systematic survey [37], the authors in-
troduce the challenges of the knowledge graph fusion, where
they discuss advanced techniques for handling knowledge
graph fusion. The linked data quality assessment and fusion
framework Sieve [9] is based on the linked data integration

TABLE 18: Link Prediction for Kegg, Drugbank and the
fused data in Scenario B

Model Data Hit@1 Hit@3 Hit@10 MRR |Data|

TuckER Source 0.4451 0.4718 0.4921 0.4636 56.970
Fused 0.4530 0.4795 0.5046 0.4736 61.332

Improve 0.79 0.76 1.26 1.00

DistMulti Source 0.3146 0.3749 0.4150 0.3526 56.970
Fused 0.5325 0.5540 0.6122 0.5548 61.332

Improve 21.79 17.90 19.72 20.22

ComplEx Source 0.3591 0.4869 0.5105 0.4245 56.970
Fused 0.3743 0.4878 0.5115 0.4344 61.332

Improve 1.52 0.09 0.10 1.00

TABLE 19: Link Prediction for DBpedia,
LinkedGeoData and the fused data in Scenario B

Model Data Hit@1 Hit@3 Hit@10 MRR |Data|

TuckER Source 0.3662 0.4313 0.4906 0.4107 511.294
Fused 0.3728 0.4348 0.4969 0.4161 566.380

Improve 0.66 0.35 0.63 0.54

DistMulti Source 0.2684 0.3645 0.4275 0.3273 511.294
Fused 0.2637 0.3406 0.4113 0.3152 566.380

Improve -0.48 -2.39 -1.62 -1.22

ComplEx Source 0.2598 0.3149 0.3924 0.3034 511.294
Fused 0.2813 0.3349 0.3966 0.3217 566.380

Improve 2.16 2.00 0.42 1.83

framework (LDIF) [10]. LDIF is an open-source framework
that provides data translation and identity resolution while
keeping track of data provenance.

D. KNOWLEDGE GRAPH EMBEDDING
In recent years, dozens of Knowledge graph embedding
(KGE) techniques have been developed to address tasks such
as graph completion, question answering, and link prediction
( [15], [38]–[41]. For instance, RESCAL [41] computes a
three-way factorization of an adjacency tensor representing
the input KG. The adjacency tensor is decomposed into a
product of a core tensor and embedding matrices. HolE [40]
uses circular correlation as its compositional operator. On the
another hand, TransE [42] is an energy-based KGE model in
which a relation r between entities h and t corresponds to
a translation of their embeddings, i.e., h + r ≈ t provided
that (h, r, t) exists in the KG. More details can concerning
knowledge graph embedding approaches and applications
can be found in [43].

VI. CONCLUSION & FUTURE WORK
We introduce NELLIE, a pipeline architecture to create a
series of modules, each of which handles a different problem
involving data augmentation. NELLIE starts by dealing with
the problem of identifying relevant KGs for integration.
NELLIE then takes over the KG data integration effort at
both the ontology and instance levels. Then, NELLIE fuses
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the matching classes and instances to make a fused KG.
The last step is NELLIE’s KG embedding of the fused
KG.The ultimate goal of the proposed architecture is to create
a single fused knowledge graph from the LOD (i.e., the
development of a 24/7 solution for fusing knowledge graphs
on the LOD, akin to the Never Ending Language Learner).
In the KG matching stage, we implemented the three pre-
sented methods ourselves. In the ontology matching stage,
we implemented the content-based class matching ourselves
and integrated two state-of-the-art systems. For the instance
matching stage, we base our implementation on the state-
of-the-art link discovery framework LIMES [6], where we
modified the way of training the WOMBAT [12] to generate
link specifications. We then integrated LIMES into NELLIE
as listed in Algorithm 1 in the paper. In the KG fusion stage,
we implemented the additive fusion operator with many dif-
ferent fusion strategies. Finally, we studied the impact of KGs
fusion on the link prediction task. In the paper, an ultimate
goal would make it more comprehensive when we run it 24/7
efficiently, reliably, and fully automatically. However, in this
paper, we present the architecture as a milestone toward this
ultimate goal. Before that, we need a benchmark to test the
efficiency and dependability of NELLIE as a whole, since the
benchmarks we have now are made for specific subtasks like
link prediction, ontology matching, and instance matching.
In future work, we plan to apply more approaches for each
task. For instance, we aim to apply automatic KGs matching
approaches such as Tapioca [13] in order to make NELLIE
fully automated 24/7 never ending linking framework. In
addition, We plan to integrate fact checking to NELLIE. In
the future, we aim to implement a benchmark for evaluating
the efficiency and dependability of NELLIE as a whole.
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