
Neural Class Expression Synthesis in
ALCHIQ(D)⋆

N’Dah Jean Kouagou[0000−0002−4217−897X](�),
Stefan Heindorf[0000−0002−4525−6865], Caglar Demir[0000−0001−8970−3850], and

Axel-Cyrille Ngonga Ngomo[0000−0001−7112−3516]

Department of Computer Science, Paderborn University, Germany
{ndah.jean.kouagou, heindorf, caglar.demir, axel.ngonga}@upb.de

Abstract. Class expression learning in description logics has long been
regarded as an iterative search problem in an infinite conceptual space.
Each iteration of the search process invokes a reasoner and a heuristic
function. The reasoner finds the instances of the current expression, and
the heuristic function computes the information gain and decides on
the next step to be taken. As the size of the background knowledge
base grows, search-based approaches for class expression learning become
prohibitively slow. Current neural class expression synthesis (NCES)
approaches investigate the use of neural networks for class expression
learning in the attributive language with complement (ALC). While they
show significant improvements over search-based approaches in runtime
and quality of the computed solutions, they rely on the availability of
pretrained embeddings for the input knowledge base. Moreover, they are
not applicable to ontologies in more expressive description logics. In this
paper, we propose a novel NCES approach which extends the state of
the art to the description logic ALCHIQ(D). Our extension, dubbed
NCES2, comes with an improved training data generator and does not
require pretrained embeddings for the input knowledge base as both the
embedding model and the class expression synthesizer are trained jointly.
Empirical results on benchmark datasets suggest that our approach
inherits the scalability capability of current NCES instances with the
additional advantage that it supports more complex learning problems.
NCES2 achieves the highest performance overall when compared to
search-based approaches and to its predecessor NCES. We provide our
source code, datasets, and pretrained models at https://github.com/

dice-group/NCES2

Keywords: Neural network · Description logic · Class expression learning

⋆ This work has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie grant No 860801 and
the European Union’s Horizon Europe research and innovation programme under
the grant No 101070305. This work has also been supported by the Ministry of
Culture and Science of North Rhine-Westphalia (MKW NRW) within the project
SAIL under the grant No NW21-059D and by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation): TRR 318/1 2021 – 438445824.

https://github.com/dice-group/NCES2
https://github.com/dice-group/NCES2

2 N. J. Kouagou et al.

1 Introduction

Class expression learning approaches [13, 14, 22, 24, 30, 35] are supervised
machine learning approaches that learn class expressions in description logics:
Given a knowledge base, and a subset of the individuals in the knowledge base,
the goal is to learn a class expression that holds for the given individuals, i.e.,
describes them. For example, given the set of individuals {Marie Curie, Linus
Pauling, John Bardeen, Frederick Sanger}, a learner should compute the class
expression ≥ 2hasWon.{NobelPrize} (i.e., individuals who have won at least two
Nobel prizes). As the learned class expressions provide a concise and human-
readable explanation for why individuals are classified as positives or negatives,
class expressions can be considered explainable, interpretable white-box models.
Class expression learning has important applications in ontology engineering [23],
bio-medicine [25] and Industry 4.0 [4].

Although several approaches have been developed to solve class expression
learning problems, most of them do not scale to large knowledge bases. In
particular, approaches based on refinement operators [13, 17, 21, 22, 24, 30] and
evolutionary algorithms [14] suffer from the exploration of an infinite conceptual
space where each step invokes a reasoner to compute the instances of numerous
intermediary refinements. Moreover, the reasoning complexity grows with the
expressivity of the underlying description logic [16, 29], and existing search-based
approaches cannot leverage previously solved learning problems [18].

To alleviate the aforementioned issues, Kouagou et al. [18] proposed a new
family of approaches, dubbed neural class expression synthesis (NCES) approaches.
These approaches work in a fashion akin to neural machine translation [9, 39] and
translate (embeddings of) sets of positive/negative examples to class expressions.
Extensive experiments on different datasets showed that post-training, NCES
approaches do not suffer the costly exploration encountered by search-based
approaches as they directly synthesize class expressions in a single forward pass
in approximately one second on average. Moreover, these approaches have the
ability to solve multiple learning problems at the same time as they accept
batches of inputs. NCES approaches are therefore well suited for deployment in
large-scale applications of class expression learning, e.g., on the web.

Despite their effectiveness, current implementations of NCES have some
important limitations. First, they cannot solve learning problems beyond ALC,
e.g., data properties are not supported. Second, they assume the availability of
pretrained embeddings for each input knowledge base. In this work, we propose
a novel implementation of NCES that goes beyond existing instantiations in
three directions: (1) We extend the supported description logic to ALCHIQ(D)
to increase reasoning capabilities, (2) we improve the training data generation
method, and (3) we incorporate an embedding model into the approach so
that embeddings for the input knowledge base can be jointly learned with class
expressions. As a result, our approach works in an end-to-end manner and
does not require pretrained embeddings. Our approach achieves the highest
performance overall when compared to search-based approaches and current
NCES implementations.

Neural Class Expression Synthesis in ALCHIQ(D) 3

We organize the rest of the paper as follows: First, we present related works
for class expression learning and the background needed throughout the paper.
Next, we describe our proposed approach and evaluate it with respect to existing
state-of-the-art approaches on four benchmark datasets. Finally, we conclude the
paper and introduce new directions for future work.

2 Related Work

Many approaches for class expression learning have been developed in the last
decade [7, 13, 22, 23], and even recently [14, 17, 18, 32]. The former are based on
refinement operators while the most recent approaches use additional techniques
such as evolutionary algorithms [14] or neural networks [17, 18]. The state-of-
the-art EvoLearner [14] initializes its population by random walks on the input
knowledge graph where nodes are atomic classes or data values, and edges are
abstract or concrete roles. The results of the random walks are then converted to
description logic concepts and further refined by means of mutation and crossover
operations. CELOE [23] is a state-of-the-art class expression learning algorithm
tailored towards ontology engineering. It is implemented in DL-Learner [21]
alongside other search-based algorithms such as OCEL [22]—which formed
the basis for CELOE, and ELTL [7]—which learns concepts in the lightweight
description logic EL. ECII [32] is a search-based algorithm, too, but it does not
use a refinement operator and only invokes a reasoner once for each run. CLIP [17]
is an extension of CELOE that uses neural networks to predict an approximate
length of the solution during concept learning. NCES (neural class expression
synthesis) approaches were proposed by Kouagou et al. [18] to overcome the
runtime limitations of search-based approaches. NCES instances use pretrained
embeddings of input knowledge bases and translate them into class expressions
in ALC. They can solve hundreds of learning problems at a time because they
accept batches of inputs.

Apart from the recent family of approaches NCES, the rest of the well-known
approaches for class expression learning are search-based. Hence, these approaches
need to perform numerous expensive entailment checks [29] and evaluations of
candidate concepts during concept learning. Our approach inherits the scalability
capability of current NCES instances and achieves superior performance on
complex learning problems, i.e., learning problems involving data properties,
cardinality restrictions, or inverse properties.

3 Background

In the rest of the paper, we denote a knowledge base by K = (TBox ,ABox),
i.e., a pair consisting of a terminological box, and an assertion box [18, 27]. Its
sets of individuals, roles, and atomic classes are denoted by NI , NR, and NC ,
respectively. |.| denotes the cardinality of a set or the size of an array. Given a
non-empty one-dimensional array A and an integer i such that 0 < i ≤ |A|, both
A[i] and Ai denote the element of A at position i. We adopt similar notations for

4 N. J. Kouagou et al.

Table 1. Description logic constructs supported by NCES2.

Syntax Construct

ALC

r Abstract role

¬C Negation

C ⊔ C Disjunction

C ⊓ C Conjunction

∃ r.C Existential restriction

∀ r.C Universal restriction

H

r1 ⊑ r2 Role inclusion

I

r− Inverse role

Syntax Construct

Q

≤ n r.C Max. cardinality restriction

≥ n r.C Min. cardinality restriction

(D)

b Boolean concrete role

d Numeric concrete role

d ≤ v Max. numeric restriction

d ≥ v Min. numeric restriction

b = True; b = False Boolean value restriction

high-dimensional arrays. As in [18], we convert input knowledge bases into sets
of triples with RDFLib [19]. These triples are used as inputs to the embedding
model in NCES2 during training, see Section 4.4.

3.1 Description Logics

Description logics [27] are a family of knowledge representation systems that are
widely used in artificial intelligence, the semantic web, and automated reasoning.
They are designed to express the meaning of a statement in a formal language
that is then used for automated reasoning. Indeed, the web ontology language,
OWL, uses description logics to represent the TBox of RDF ontologies. Our
approach runs in ALCHIQ(D), i.e., ALC [33] extended with property hierarchies
(used during training data generation), inverse properties, cardinality restrictions,
and data properties. We present the syntax of ALCHIQ(D) in Table 1. For its
semantics, we refer to Lehmann [22].

3.2 Refinement Operators

Definition 1 ([18, 24]). Given a quasi-ordered space (S,⪯), a downward (re-
spectively upward) refinement operator on S is a mapping ρ : S → 2S such that
for all C ∈ S, C ′ ∈ ρ(C) implies C ′ ⪯ C (respectively C ⪯ C ′).

In this work, we extend the refinement operator by Kouagou et al. [17] to the
description logic ALCHIQ(D) and use the latter to generate training data for
our approach, see Section 5.1 for more details.

Neural Class Expression Synthesis in ALCHIQ(D) 5

3.3 Class Expression Learning

Definition 2 (Theoretical Solution). Given a knowledge base K, a target
concept T , a set of positive examples E+ = {e+1 , e

+
2 , . . . , e

+
n1
}, and a set of

negative examples E− = {e−1 , e
−
2 , . . . , e

−
n2
}, the learning problem is to find a class

expression C such that for K′ = K ∪ {T ≡ C}, we have ∀ e+ ∈ E+ ∀e− ∈
E−, K′ |= C(e+) and K′ ̸|= C(e−).

While search-based approaches such as CELOE and EvoLearner repeatedly
invoke a reasoner and a heuristic function to incrementally construct the solu-
tion C, our approach directly synthesizes the solution by mapping the output
(computed in approximately one second) of its neural network component to the
vocabulary of tokens. In Section 4.2, we adapt Definition 2 to our approach.

3.4 Knowledge Graph Embedding

A knowledge graph is a collection of assertions. In this paper, we consider
knowledge graphs G ⊆ E × R × E , where E is a finite set of entities and R is
a finite set of relations. Knowledge graph embeddings are mappings of entities
(and relations) into a vector space. Embeddings can be used for a variety of tasks
such as link prediction [6], recommendation systems [43], and natural language
processing [8]. A large number of embedding approaches have been developed
in the recent past [10, 36]. They can be classified in two main categories: (1)
Approaches that use only facts observed in the knowledge graph [5, 28], and
(2) approaches that leverage additional available information about entities and
relations, such as textual descriptions [37, 40]. Our approach uses the state-of-
the-art approach ConEx [11], which belongs to the first category, as its default
embedding model. We also conduct additional experiments with DistMult [41].
The results obtained with DistMult are similar to those of ConEx. They are
omitted due to space constraints and can be found in our supplementary material.

3.5 The Set Transformer Architecture

Class expression learning from examples deals with set-structured inputs (see
Definition 2). Several neural network architectures have been proposed to solve
set-structured input tasks, the most prominent of which include Deep Set [42] and
Set Transformer [20]. Deep Set encodes the elements of the input set independently
and applies a pooling function, usually a summation, to represent the entire
set. Contrarily, Set Transformer computes an encoding of the input set via a
self-attention mechanism on its elements. In its original paper, Set Transformer
outperforms other set-compatible architectures on most tasks [20], including Deep
Set. For this reason, the neural network component of our approach uses the Set
Transformer architecture. Its building blocks are the Multi-head Attention Block
(MAB), the Set Attention Block (SAB), the Induced Set Attention Block (ISAB),
and the Pooling by Multi-head Attention (PMA). Due to space constraints, we
refer to [20] for more details on the Set Transformer architecture.

6 N. J. Kouagou et al.

4 Proposed Approach (NCES2)

4.1 Preliminaries

We create a vocabulary of tokens VK (we simply write V when there is no
ambiguity) for each input knowledge base K. The vocabulary consists of all
atomic concept and role names in K in addition to the following constructs: “⊤”
(top concept), “⊥” (bottom concept), “False”, “True” (Boolean values), “−” (for
inverse properties), “:”, “xsd”, “double”, “integer”, “date” (for time data values),
“≤”, “≥”, “ ” (white space), “.” (dot), “⊔”, “⊓”, “∃”, “∀”, “¬”, “[”, “]”, “{”,
“}”, “(”, and “)”. We add the special token “PAD” to pad all class expressions in
a batch of training examples to the same length. The token also serves as the
end token at inference time when parsing the output of NCES2. Finally, we add
numeric data values to the vocabulary. These values are obtained by creating
evenly spaced bins ranging from the lowest to the highest value observed in the
knowledge base.

We now choose a fixed ordering for the elements of VK and use them to
synthesize class expressions (more details in Section 4.6). In fact, class expres-
sions in ALCHIQ(D) are written using tokens in VK as can be seen in the
learning problems below, which are extracted from test datasets: LP1 = Man

⊓ (∀ knows.(¬SonOfGod)) ⊓ (≤ 2 visitedPlace.⊤) (Semantic Bible), LP2 =
Fluorine-92 ⊔ Sulfur-74 ⊔ (∃ drosophila rt.{False}) (Carcinogenesis), LP3

= (Atom ⊓ (Tin ⊔ (¬Carbon-25))) ⊔ (∃ inBond.(¬Carbon-10)) (Mutagenesis),
and LP4 = Measurable-Trend ⊔ (∃ related.(Idea ⊔ Uprising)) (Vicodi). We
discuss the solutions computed by different class expression learning approaches
for each of these learning problems in Section 5.

4.2 Learning Problem

Definition 3 (Solution by NCES2). Given a knowledge base K and sets of
positive/negative examples E+ = {e+1 , e

+
2 , . . . , e

+
n1
} and E− = {e−1 , e

−
2 , . . . , e

−
n2
},

the learning problem is to compute a class expression C in ALCHIQ(D) (using
tokens in VK) that maximizes the F-measure and Accuracy defined by

F1 = 2× Precision×Recall

Precision+Recall
, (1)

Precision =
|CI ∩ E+|

|CI ∩ E+|+ |CI ∩ E−|
, Recall =

|CI ∩ E+|
|E+|

, (2)

Accuracy =
|CI ∩ E+|+ |(NI \ CI) ∩ E−|

|E+|+ |E−|
, (3)

where CI denotes the set of instances of C, and NI the set of all individuals.

The metrics Accuracy and F1 are used to compare different approaches on class
expression learning problems—see Table 4. One difference between Definition 2
and Definition 3 is for example that the latter targets a specific description logic

Neural Class Expression Synthesis in ALCHIQ(D) 7

(in this case ALCHIQ(D)) while the former is general, i.e., applicable to any
description logic. Moreover, Definition 3 allows for approximate solutions to be
returned when the exact solution is not found, while Definition 2 does not. In
theory, there can be multiple solutions to the learning problem; NCES2 generates
only one.

4.3 Encoding Positive and Negative Examples

Set Transformer is an encoder-decoder architecture. The encoder Enc consists of
two ISAB layers. The decoder Dec is composed of one PMA layer (with k = 1),
and a linear layer for the desired output shape. During training, the embedding
model component provides embeddings for positive examples xpos and negative
examples xneg. These two embeddings are fed to the encoder independently. The
outputs are then concatenated row-wise and fed to the decoder which produces
the final scores s for all tokens in the vocabulary V:

Opos = Enc(xpos), Oneg = Enc(xneg), (4)

s = Dec(Concat(Opos, Oneg)). (5)

4.4 Loss Function

Our approach is trained by minimizing two joint loss functions: (1) The loss
L1 from the embedding model, and (2) the loss L2 from the class expression
synthesizer. Formally, let G ⊆ E ×R× E be the knowledge graph representation
of the input knowledge base, and let h ∈ E , r ∈ R be a head entity and a relation.
We define L1 to be the binary cross-entropy loss:

L1(y
hr, ŷhr) = − 1

|E|

|E|∑
i=1

yhri log(ŷhri) + (1− yhri) log(1− ŷhri). (6)

Here, yhr ∈ {0, 1}|E| is the binary representation of {(h, r, t)|t ∈ E} in G, i.e.,
yhr[id(t)] = 1 if (h, r, t) ∈ G, and yhr[id(t)] = 0 otherwise. Accordingly, ŷhr ∈
[0, 1]|E| is the vector of scores predicted by the embedding model for all candidate
tail entities. On the other hand, L2 is defined by

L2(s, t) = − 1

L

L∑
i=1

log

(
exp(sti,i)∑|V|
c=1 exp(sc,i)

)
, (7)

where L is the maximum length of class expressions our approach can generate, |V|
the total number of tokens in the vocabulary, s ∈ R|V|×L the matrix of predicted
scores for each position in the target sequence of tokens, and t ∈ {1, 2, . . . , |V|}L
the vector of target token indices in the input class expression.

Our total loss L is defined as the average of L1 and L2, computed on the
inputs (yhr, ŷhr) and (s, t):

L(yhr, ŷhr, s, t) = L1(y
hr, ŷhr) + L2(s, t)

2
. (8)

8 N. J. Kouagou et al.

During training, we alternatively sample a minibatch of N1 training datapoints
for the embedding model, and a minibatch of N2 training datapoints for the
neural synthesizer to compute L1 and L2, respectively. We then compute the
gradient of L w.r.t. both the parameters of the embedding model and those of
the synthesizer. To prevent gradient explosion and to reduce overfitting, we use
gradient clipping [44], and dropout [34]. Both parameter sets are updated using
the Adam [15] optimization algorithm. Note that the embeddings of positive
and negative examples used by the synthesizer—see Section 4.3—come from the
embedding model and are hence dynamically updated during training. This way,
we are able to learn embeddings that are not only finetuned for class expression
learning, but also faithful to the input background knowledge.

4.5 Measuring Performance During Training

In our previous work [18], we introduced two metrics to quantify the performance
of neural synthesizers during training1. We use the same metrics in this work.
The first metric is called “Soft Accuracy” and is equivalent to the Jaccard
index between the set of predicted tokens and the set of true tokens in the
input expression. The second metric is called “Hard Accuracy”, and compares
the tokens in the prediction and target expressions position-wise, i.e., taking
into account their order of appearance. We refer to [18] for the mathematical
expressions of these metrics.

4.6 Class Expression Synthesis

We synthesize class expressions by mapping the output scores s (see Equation 5) to
the vocabulary. Specifically, we select the highest-scoring token in the vocabulary
for each position i along the sequence dimension:

idi = argmax
c∈{1,...,|V|}

sc,i, (9)

synthesized tokeni = V[idi]. (10)

The predicted tokens are concatenated to construct a class expression. Note that
we ignore all tokens appearing after the special token “PAD”.

4.7 Model Ensembling

Several works have highlighted that combining different neural models trained
even on the same dataset usually performs better than each individual model [12,
31]. This technique is known as model ensembling. In this work, we trained three
instances of our approach, NCES2, which all use the Set Transformer architecture

1 These metrics are only used during training. When comparing NCES2 to state-of-
the-art approaches on class expression learning on the test sets, we use metrics based
on the number of covered/ruled-out positive/negative examples for all approaches.

Neural Class Expression Synthesis in ALCHIQ(D) 9

but with different numbers of inducing points: m = 32, m = 64, and m = 128.
We compute ensemble predictions by averaging the predicted scores for each
token post training. Overall, we consider four ensemble models: NCES2m={32,64},
NCES2m={32,128}, NCES2m={64,128}, and NCES2m={32,64,128}. A class expression
is then synthesized as described in Section 4.6 using the average scores.

5 Evaluation

5.1 Experimental Setup

Datasets We used four benchmark datasets in our experiments: Vicodi [26],
Carcinogenesis [38], Mutagenesis [38], and Semantic Bible2. The Carcinogenesis
and Mutagenesis knowledge bases describe chemical compounds and how they
relate to each other. The Semantic Bible knowledge base describes the New
Testament, and the Vicodi knowledge base describes the European history. We
summarize the statistics of each dataset in Table 2.

Training Data Generation Training NCES2 requires numerous class expres-
sions with their sets of positive and negative examples3. To this end, we extend the
refinement operator by Kouagou et al. [17] to the description logic ALCHIQ(D)
so that we can generate all forms of class expressions supported by NCES2 (see
Table 1). Moreover, we improve upon the training data generation method used
in [18]. Since most knowledge bases contain thousands to millions of individuals,
current NCES approaches subsample the initial sets of positive/negative examples
for each learning problem in the training set. This technique is inefficient because
only a few examples are seen during training which results in poor performance
on learning problems where, e.g., a different random seed is used to construct the
sets of examples. To alleviate this issue, we construct multiple copies (2 copies
in our experiments) of a given learning problem and assign different subsets of
examples to each copy. The clear advantage of this new sampling technique is
that it allows each learning problem to be seen from different perspectives and
hence better understood. Note that this sampling technique is only applied to
the training set. The statistics of the generated data are given in Table 2.

Hyper-parameter Search Following [18], we employ a random search [2] to
find the best hyper-parameter values for NCES2. Specifically, we find highly
performing values on one dataset (we used Carcinogenesis for this purpose) and
use them on the rest of the datasets. Note that the total number of examples n is
an exception as it depends on the size of NI , i.e., the total number of individuals in
the given knowledge base. Nonetheless, we used the same formula to compute the

optimal value for n : min
(

|NI |
2 , 1000

)
. The selected values for hyper-parameters

are presented in Table 3.

2 https://www.semanticbible.com/ntn/ntn-overview.html
3 Positive examples are instances of the class expression while negative examples are

the rest of the individuals in NI .

https://www.semanticbible.com/ntn/ntn-overview.html

10 N. J. Kouagou et al.

Table 2. Statistics of the benchmark datasets. In the table, we use the following
notations and abbreviations: Set of individuals (NI), set of atomic classes (NC), object
properties (Obj. Pr.), data properties (D. Pr.), vocabulary (V), and learning problems
in the test set (LPs).

Dataset |NI | |NC | |Obj. Pr.| |D. Pr.| |TBox | |ABox | |V| |Train| |LPs|

Carcinogenesis 22,372 142 4 15 144 74,223 198 19,635 100
Mutagenesis 14,145 86 5 6 82 47,722 133 9,705 100
Semantic Bible 724 48 29 9 56 3,106 125 11,069 100
Vicodi 33,238 194 10 2 204 116,181 242 46,094 100

Table 3. Hyper-parameter settings per dataset. L is the maximum length of expressions
synthesized by NCES2, lr the learning rate, N1 the minibatch size for the embedding
model, N2 the minibatch size for the synthesizer, n the number of (positive and negative)
examples, d the embedding dimension, gc the gradient clipping value.

Dataset epochs optimizer lr d N1 N2 L n gc

Carcinogenesis 200 Adam 0.001 50 1,024 512 48 1,000 5
Mutagenesis 200 Adam 0.001 50 1,024 512 48 1,000 5
Semantic Bible 200 Adam 0.001 50 1,024 512 48 362 5
Vicodi 200 Adam 0.001 50 1,024 512 48 1,000 5

Hardware We trained NCES2 using 24GB RAM, 16 AMD EPYC 7713 CPUs
@3.10GHz, and a single NVIDIA RTX A5000 GPU with 24GB memory. Because
search-based approaches do not support GPU computation, we conduct experi-
ments on class expression learning on the test sets (see Table 4) using a server
with 16 Intel Xeon E5-2695 CPUs @2.30GHz and 128GB RAM. Due to space
constraints, we report the number of parameters and the training time in our
supplementary material.4

5.2 Results and Discussion

Training Curves NCES2 was trained for 200 epochs on each dataset. Training
curves are shown in Figure 1. From the figure, we can observe that NCES2
is able to accurately map instance data (positive/negative examples) to the
corresponding class expressions on the training set. This is witnessed by a
performance of over 95% Hard Accuracy (recall the definition in Section 4.5) on
all datasets. In addition, the convergence rates are higher on the largest datasets
(Carcinogenesis and Vicodi), which suggests that NCES2 learns faster on large
datasets. Similar observations hold for the Soft Accuracy curves which we do not
report due to space constraints; in particular, the Soft Accuracy is over 95% on all
datasets. The training curves for this metric can be found in our supplementary
material. The exact values during training can be found in our repository5.

4 https://github.com/dice-group/NCES2/blob/main/supplement_material.pdf
5 https://github.com/dice-group/NCES2

https://github.com/dice-group/NCES2/blob/main/supplement_material.pdf
https://github.com/dice-group/NCES2

Neural Class Expression Synthesis in ALCHIQ(D) 11

40

60

80

100
H

ar
d

Ac
cu

ra
cy

Carcinogenesis

m=32
m=64
m=128

Mutagenesis

m=32
m=64
m=128

0 50 100 150 200
Epochs

40

60

80

100

H
ar

d
Ac

cu
ra

cy

Semantic Bible

m=32
m=64
m=128

0 50 100 150 200
Epochs

Vicodi

m=32
m=64
m=128

Fig. 1. Training accuracy curves using the ConEx embedding model. m is the number
of inducing points.

Comparison to Baseline Approaches

NCES2 vs. Search-based Approaches We ran extensive experiments comparing
NCES2 to the search-based approaches EvoLearner, CELOE, ELTL, and ECII.
The results are presented in Table 4. As done in [14, 18], we employ a timeout of 5
minutes per approach on each learning problem. ECII and ELTL do not support a
timeout configuration and were therefore executed with their default settings. On
the one side, the results in Table 4 suggest that NCES2 significantly outperforms
search-based approaches in runtime on all datasets as it synthesizes a solution in
less than a second on average. The standard deviation of NCES2’s prediction
runtime is zero because it computes solutions for all learning problems at the
same time as a single forward pass of a batch of inputs. This leads to the same
prediction time for all learning problems and therefore a zero standard deviation.
We employed the Wilcoxon Rank Sum Test to check for performance difference
significance. The significance level is 5% and the null hypothesis that the compared
quantities share the same distribution. We also achieve better performance
in terms of F-measure on large datasets (Carcinogenesis and Vicodi) while
remaining the second best on the Mutagenesis dataset with NCES2m={32,128}
behind EvoLearner. Meanwhile, we observe a poor performance on the Semantic
Bible dataset with an average F-measure of 79.40% (NCES2m={32,64}) compared
to 88.60% for CELOE. We attribute this to the data hunger of deep learning

12 N. J. Kouagou et al.

Table 4. Evaluation results per dataset. The star (*) indicates statistically significant
differences between the best search-based and the best synthesis-based approaches.
Underlined values are the second best. Here, NCES2 uses the embedding model ConEx.

F1 (%)

Carcinogenesis Mutagenesis Semantic Bible Vicodi

CELOE 29.24±39.22 74.46±37.59 88.60*±19.50 22.63±35.21
EvoLearner 89.34±15.80 95.37± 8.02 88.38±12.50 76.99±26.37
ELTL 14.46±28.48 36.33±34.98 35.21±31.74 8.58±22.94
ECII 18.91±31.46 34.33±31.53 32.79±32.18 29.20±30.81

NCES2m=32 83.56±33.11 76.79±38.61 70.77±33.73 82.36±32.05
NCES2m=64 83.92±33.16 78.25±37.18 71.77±34.03 82.64±31.28
NCES2m=128 86.06±32.63 73.21±38.31 69.95±36.13 83.50±30.85
NCES2m={32,64} 92.13±24.61 83.09±34.04 79.40±32.22 90.67±24.07
NCES2m={32,128} 91.01±26.80 86.33±31.54 77.80±34.52 87.68±26.48
NCES2m={64,128} 92.57*±24.08 84.18±32.30 78.92±32.84 86.49±29.33
NCES2m={32,64,128} 91.29±24.96 85.12±32.28 77.00±35.25 91.06*±23.97

Accuracy (%)

Carcinogenesis Mutagenesis Semantic Bible Vicodi

CELOE 62.96±22.56 87.33±17.80 95.85± 8.71 78.59±15.83
EvoLearner 99.68*± 0.81 99.52*± 2.17 97.43± 4.74 97.79*± 6.74
ELTL 19.37±32.31 40.58±35.33 39.40±29.92 41.67±44.29
ECII 27.17±38.40 32.52±33.31 29.06±33.37 71.05±39.43

NCES2m=32 93.86±19.54 88.77±25.13 88.03±20.40 93.87±21.39
NCES2m=64 95.16±17.13 88.95±26.21 85.89±24.03 95.21±18.43
NCES2m=128 92.56±22.01 89.09±24.20 88.99±20.81 96.29±16.11
NCES2m={32,64} 95.64±18.42 90.75±24.83 88.32±24.55 96.04±17.30
NCES2m={32,128} 95.15±16.76 92.22±22.65 91.13±20.23 95.93±17.39
NCES2m={64,128} 95.77±17.03 90.81±23.69 90.45±21.98 95.78±18.67
NCES2m={32,64,128} 95.39±18.33 90.55±24.19 88.99±24.11 96.43±17.01

Runtime (sec.)

Carcinogenesis Mutagenesis Semantic Bible Vicodi

CELOE 268.90±116.04 165.27±145.11 172.04±140.27 334.99±43.87
EvoLearner 62.21±26.11 70.77±47.53 18.44±5.53 236.92±80.90
ELTL 26.15±2.11 15.83±16.56 4.73±0.98 335.90±205.39
ECII 25.62±6.11 20.40±4.00 6.73±1.67 37.12±25.12

NCES2m=32 0.02*±0.00 0.02*±0.00 0.01*±0.00 0.03*±0.00
NCES2m=64 0.03±0.00 0.03±0.00 0.01±0.00 0.03±0.00
NCES2m=128 0.03±0.00 0.03±0.00 0.02±0.00 0.04±0.00
NCES2m={32,64} 0.05±0.00 0.05±0.00 0.03±0.00 0.06±0.00
NCES2m={32,128} 0.06±0.00 0.06±0.00 0.03±0.00 0.06±0.00
NCES2m={64,128} 0.06±0.00 0.06±0.00 0.03±0.00 0.07±0.00
NCES2m={32,64,128} 0.09±0.00 0.09±0.00 0.05±0.00 0.10±0.00

Neural Class Expression Synthesis in ALCHIQ(D) 13

Table 5. Solution per approach for learning problems LP1, LP2, LP3, and LP4 presented
in Section 4.1. We consider the three best approaches NCES2, CELOE, and EvoLearner.

Prediction F1 (%)

CELOE

LP1 Man 99.70
LP2 ¬Bond 0.72
LP3 Bond ⊔ (Atom ⊓ (¬Carbon-25)) 99.79
LP4 Flavour ⊔ (¬War) 1.14

EvoLearner

LP1 Man 99.70
LP2 Sulfur-74 ⊔ (∃ drosophila slrl.{True}) 83.33
LP3 Atom ⊔ (∃ inBond.Atom) 99.78
LP4 Intellectual-Construct 92.59

NCES2

LP1 Man 99.70
LP2 Fluorine-92 ⊔ Sulfur-74 ⊔ (∃ drosophila rt.{False}) 100.00
LP3 (Atom ⊓ (Oxygen-45 ⊔ (¬Oxygen))) ⊔ (∃ inBond.(¬Carbon-10)) 97.10
LP4 Measurable-Trend ⊔ (∃ related.(Idea ⊔ Uprising)) 100.00

models since Semantic Bible is the smallest dataset with only 724 individuals
and 48 atomic classes (cf. Table 2).

On the other side, Table 5 presents the predictive performance of the three
best approaches NCES2, EvoLearner, and CELOE on the learning problems
introduced in Section 4.1. NCES2 outperforms its competitors in F-measure on
LP2 and LP4 as it computes the exact solutions for these learning problems.
CELOE fails to find suitable solutions and achieves 0.72% and 1.14% F-measure
on LP2 and LP4, respectively. EvoLearner computes approximate solutions with
83.33% and 92.59% F-measure for LP2 and LP4, respectively. All three approaches
achieve comparable performance on LP1 and LP3.

The effectiveness of NCES2 is demonstrated by its ability to compute (i.e.
synthesize) expressions it has never seen during training, e.g., LP2 and LP4. We
hence believe that NCES2 should serve as a robust alternative on large knowledge
bases where search-based approaches are prohibitively slow.

NCES2 vs. NCES To quantify the main differences between NCES2 and current
NCES approaches, we compare them on the test sets (the 100 unseen learning
problems on each knowledge base). Some of these learning problems have solutions
in ALC while others can only be solved in ALCHIQ(D). Both approaches use the
ConEx embedding model, and the Set Transformer architecture with 32 inducing
points as the synthesizer. The results given by the two approaches are reported
in Table 6. From the table, we can observe that NCES2 significantly outperforms
NCES on all datasets with an absolute difference of up to 32.08% F-measure on
the Vicodi dataset. These large differences in performance show the superiority of

14 N. J. Kouagou et al.

Table 6. Comparison of NCES2 and NCES on test datasets. NCES2✄ and NCES2ALC

are ablations of NCES2. The first ablation corresponds to NCES2 without the improved
data generator. The second ablation corresponds to NCES2 trained on the same data as
NCES, i.e., data in ALC on which we apply the improved data generator. All approaches
use 32 inducing points and the ConEx embedding model.

F1 (%)

NCES2 NCES2✄ NCES2ALC NCES

Carcinogenesis 83.56* ± 33.11 78.52 ± 36.72 71.24 ± 38.43 67.86 ± 41.47
Mutagenesis 76.79* ± 38.61 52.70 ± 44.07 53.08 ± 43.78 68.20 ± 41.70
Semantic Bible 70.77* ± 33.73 66.33 ± 37.02 64.33 ± 37.15 63.61 ± 35.60
Vicodi 82.36* ± 32.05 75.86 ± 34.50 52.57 ± 40.85 50.28 ± 43.68

NCES2 over NCES; in particular, they reveal the impact of the improved training
data generator and the expressiveness of ALCHIQ(D) as an ablation of any of
these leads to a decrease in performance, see the results achieved by NCES2✄

and NCES2ALC in Table 6. Nevertheless, the two approaches have comparable
prediction time. NCES2 should therefore be preferred over NCES on most class
expression learning tasks.

6 Conclusion and Future Work

We proposed an extension of NCES, a recent and scalable approach for class
expression learning in ALC. Our approach is called NCES2 and it supports the
description logic ALCHIQ(D). NCES2 encodes positive and negative examples
into real-valued vectors via its embedding model component, and uses a Set
Transformer model to synthesize class expressions. This way, we reduce the
expensive task of class expression learning, which is usually regarded as a search
problem in an infinite conceptual space, to additions and multiplications in vector
spaces. Our experiments demonstrated that NCES2 significantly outperforms all
search-based approaches in runtime while synthesizing high-quality solutions for
most learning problems. Moreover, NCES2 outperforms current NCES instances
w.r.t. the F-measure of the computed solutions. NCES2 should therefore serve
as a strong alternative to existing approaches especially when many learning
problems are to be solved on a single knowledge base.

Currently, the training data generator in NCES2 uses an OWL reasoner to
compute instances of the generated expressions. This is impractical for large
knowledge bases such as DBpedia [1]. In the future, we will investigate ways to
replace the reasoner by a SPARQL query-based method, such as the one by Bin
et al. [3], to scale NCES2 to large datasets.

Neural Class Expression Synthesis in ALCHIQ(D) 15

Bibliography

[1] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.:
Dbpedia: A nucleus for a web of open data. In: The semantic web, pp.
722–735, Springer (2007)

[2] Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization.
J. Mach. Learn. Res. 13, 281–305 (2012)

[3] Bin, S., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.C.: Towards
sparql-based induction for large-scale rdf data sets. In: ECAI 2016, pp.
1551–1552, IOS Press (2016)

[4] Bin, S., Westphal, P., Lehmann, J., Ngonga, A.: Implementing scalable
structured machine learning for big data in the sake project. In: 2017 IEEE
International Conference on Big Data (Big Data), pp. 1400–1407, IEEE
(2017)

[5] Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy
function for learning with multi-relational data - application to word-sense
disambiguation. Mach. Learn. 94(2), 233–259 (2014)

[6] Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.:
Translating embeddings for modeling multi-relational data. In: NIPS, pp.
2787–2795 (2013)

[7] Bühmann, L., Lehmann, J., Westphal, P.: Dl-learner—a framework for
inductive learning on the semantic web. Journal of Web Semantics 39,
15–24 (2016)

[8] Chen, M., Zaniolo, C.: Learning multi-faceted knowledge graph embeddings
for natural language processing. In: IJCAI, pp. 5169–5170 (2017)

[9] Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties
of neural machine translation: Encoder-decoder approaches. In:
SSST@EMNLP, pp. 103–111, Association for Computational Linguistics
(2014)

[10] Dai, Y., Wang, S., Xiong, N.N., Guo, W.: A survey on knowledge graph
embedding: Approaches, applications and benchmarks. Electronics 9(5), 750
(2020)

[11] Demir, C., Ngomo, A.N.: Convolutional complex knowledge graph
embeddings. In: ESWC, Lecture Notes in Computer Science, vol. 12731, pp.
409–424, Springer (2021)

[12] Dong, X., Yu, Z., Cao, W., Shi, Y., Ma, Q.: A survey on ensemble learning.
Frontiers of Computer Science 14(2), 241–258 (2020)

[13] Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in
description logics. In: ILP, Lecture Notes in Computer Science, vol. 5194,
pp. 107–121, Springer (2008)

[14] Heindorf, S., Blübaum, L., Düsterhus, N., Werner, T., Golani, V.N., Demir,
C., Ngomo, A.N.: Evolearner: Learning description logics with evolutionary
algorithms. In: WWW, pp. 818–828, ACM (2022)

[15] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014)

16 N. J. Kouagou et al.

[16] Konev, B., Ozaki, A., Wolter, F.: A model for learning description logic
ontologies based on exact learning. In: AAAI, pp. 1008–1015, AAAI Press
(2016)

[17] Kouagou, N.J., Heindorf, S., Demir, C., Ngomo, A.N.: Learning concept
lengths accelerates concept learning in ALC. In: ESWC, Lecture Notes in
Computer Science, vol. 13261, pp. 236–252, Springer (2022)

[18] Kouagou, N.J., Heindorf, S., Demir, C., Ngonga Ngomo, A.C.: Neural class
expression synthesis. In: European Semantic Web Conference, pp. 209–226,
Springer (2023)

[19] Krech, D.: Rdflib: A python library for working with rdf. Online
https://github. com/RDFLib/rdflib (2006)

[20] Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W.: Set transformer:
A framework for attention-based permutation-invariant neural networks. In:
International conference on machine learning, pp. 3744–3753, PMLR (2019)

[21] Lehmann, J.: Dl-learner: learning concepts in description logics. The
Journal of Machine Learning Research (2009)

[22] Lehmann, J.: Learning OWL class expressions, vol. 22. IOS Press (2010)
[23] Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning

for ontology engineering. Journal of Web Semantics (2011)
[24] Lehmann, J., Hitzler, P.: Concept learning in description logics using

refinement operators. Machine Learning 78 (2010)
[25] Lehmann, J., Völker, J.: Perspectives on ontology learning, vol. 18. IOS

Press (2014)
[26] Nagypál, G.: History ontology building: The technical view. Humanities,

Computers and Cultural Heritage p. 207 (2005)
[27] Nardi, D., Brachman, R.J., et al.: An introduction to description logics.

Description logic handbook 1 (2003)
[28] Nickel, M., Tresp, V., Kriegel, H.: Factorizing yago: scalable machine

learning for linked data. In: Proc. of WWW (2012)
[29] Ozaki, A.: Learning description logic ontologies: Five approaches. where do

they stand? KI-Künstliche Intelligenz (2020)
[30] Rizzo, G., Fanizzi, N., d’Amato, C.: Class expression induction as concept

space exploration: From dl-foil to dl-focl. Future Generation Computer
Systems (2020)

[31] Sagi, O., Rokach, L.: Ensemble learning: A survey. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 8(4), e1249 (2018)

[32] Sarker, M.K., Hitzler, P.: Efficient concept induction for description logics.
In: Proc. of AAAI (2019)

[33] Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with
complements. Artificial intelligence pp. 1–26 (1991)

[34] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. The
journal of machine learning research 15(1), 1929–1958 (2014)

[35] Tran, T.L., Ha, Q.T., Hoang, T.L.G., Nguyen, L.A., Nguyen, H.S.:
Bisimulation-based concept learning in description logics. Fundamenta
Informaticae 133(2-3), 287–303 (2014)

Neural Class Expression Synthesis in ALCHIQ(D) 17

[36] Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: A
survey of approaches and applications. IEEE Transactions on Knowledge
and Data Engineering (2017)

[37] Wang, Z., Li, J., LIU, Z., TANG, J.: Text-enhanced representation learning
for knowledge graph. In: Proc. of IJCAI (2016)

[38] Westphal, P., Bühmann, L., Bin, S., Jabeen, H., Lehmann, J.: Sml-bench–a
benchmarking framework for structured machine learning. Semantic Web
10(2), 231–245 (2019)

[39] Wu, Y., Schuster, M., Chen, Z., et al.: Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv
preprint arXiv:1609.08144 (2016)

[40] Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of
knowledge graphs with entity descriptions. In: Proc. of AAAI (2016)

[41] Yang, B., Yih, S.W.t., He, X., Gao, J., Deng, L.: Embedding entities and
relations for learning and inference in knowledge bases. In: Proceedings of
the International Conference on Learning Representations (ICLR) 2015
(May 2015)

[42] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R.,
Smola, A.J.: Deep sets. Advances in neural information processing systems
30 (2017)

[43] Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.Y.: Collaborative
knowledge base embedding for recommender systems. In: Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and
data mining, pp. 353–362 (2016)

[44] Zhang, J., He, T., Sra, S., Jadbabaie, A.: Why gradient clipping accelerates
training: A theoretical justification for adaptivity. arXiv preprint
arXiv:1905.11881 (2019)

	Neural Class Expression Synthesis in ALCHIQ(D)

