Clifford Embeddings — A (Generalized Approach
for Embedding in Normed Algebras

Caglar Demir[0000—-0001-8970-3850] (53 and Axel-Cyrille Ngonga
Ngomo!0000-0001-7112-3516]

Data Science Research Group, Paderborn University, Germany
{caglar.demir@, axel.ngonga®}upb.de

Abstract. A growing number of knowledge graph embedding models
exploit the characteristics of division algebras (e.g., R, C, H, and Q) to
learn embeddings. Yet, recent empirical results suggest that the suitabil-
ity of algebras is contingent upon the knowledge graph being embedded.
In this work, we tackle the challenge of selecting the algebra within which
a given knowledge graph should be embedded by exploiting the fact that
Clifford algebras Cl, 4 generalize over R, C, H, and O. Our embedding
approach, KECI, is the first knowledge graph embedding model that can
parameterize the algebra within which it operates. With KEcI, the se-
lection of an underlying algebra becomes a part of the learning process.
Specifically, KECI starts the training process by learning real-valued em-
beddings for entities and relations in R™ = CI{,. At each mini-batch
update, KECI can steer the training process from CI’, to Cl%; , or
Clyt.41 by processing the training loss. In this way, KECI can decide
the algebra within which it operates in a data-driven fashion. Conse-
quently, KECI is a generalization of previous approaches such as Dist-
Mult, ComplEx, QuatE, and OMult. Our evaluation suggests that KEcI
outperforms state-of-the-art embedding approaches on seven benchmark
datasets. We provide an open-source implementation of KECI, including
pre-trained models, training and evaluation scripts.*
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1 Introduction

A plethora of knowledge graph embedding (KGE) models have been developed
over the last decade [34,7,33]. Most KGE models map entities e € £ and re-
lations r € R found in a knowledge graph (KG) G C £ x R x £ to V, where
V is a d-dimensional vector space and d € N\{0} [17]. This family of models
is currently one of the most popular means to make KGs amenable to vectorial
machine learning [33] and has been used in applications including drug discovery,
community detection, recommendation, question answering [15, 34, 14, 3]. While
early models (e.g., RESCAL [24], DistMult [37]) express embeddings in R? and
perform well once tuned fittingly [28], later results suggest that embedding using

! https://github.com/dice-group/dice-embeddings
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the more complex division algebras C and H can achieve a superior link predic-
tion performance (measured in terms of hits at n, short h@n) [28,42, 8,40]. This
is at least partially due to the characteristics of (hyper)complex algebras (e.g.,
C, H) being used to account for logical properties such as the symmetry, asym-
metry, and compositionality [30] of relations r found in the input data. While
recent works have continued improving the performance of KGE models by in-
cluding ever more complex neural architectures atop division algebras (see, e.g.,
ConvE [12], ConEx [9]), a fundamental assumption remains shared: V is fixed for
each approach. This assumption has the advantages of being conducive to rapid
implementation, execution and interpretation. However, its main disadvantage
is well illustrated by experimental results from recent works [28]: The most ad-
equate algebra for embedding a KG is contingent upon the data to embed. This
finding is corroborated by our experimental results (see Figure 1).

The link between algebras and KGEs can be directly entailed from formal
treatments on embeddings. Consider ComplEx [32] embeddings for example.
When a KG does not contain triples with an anti-symmetric relation (e.g., the
bornIn or hasChild relations), embedding into C instead of R is of no advantage.
On the contrary, the space and time requirements of an approach based on C are
double that of an approach based on R (see Section 4). Similar insights can be
derived for the division algebras H and O (see, e.g., QuatE [42] and ConvO [8]).
Our goal therefore is to find a hypothesis space, i.e., a suitable algebra underlying
V that is rich enough to embed the input knowledge graph, yet simple enough
to ensure reliable generalization over unseen data. We implement this goal by
presenting KECI. Our approach exploits the fact that Clifford Algebras Cl,, , (see
Section 2.1 for an overview) generalize over common division algebras and aims
to find a suitable algebra for a particular dataset in a data-driven fashion. We
conceived of two ways to find a suitable algebra: (1) Consider p and ¢ as two new
hyperparameters to find a suitable Cl, , or (2) scale the imaginary dimensions
of Cl, 4 according to the training loss. While finding a suitable CI, , via (1) is
computationally expensive as it requires multiple training phases, (2) is concep-
tually simpler. KECI is hence based on (2), and uses the cross-entropy training
loss to decide whether it should increase the number of imaginary dimensions
of the division algebra within which it operates. This process can be equated
with starting the learning process in a small hypothesis space (e.g., R = Cly )
and steering the learning process towards a larger hypothesis space as required.
Our experiments on seven benchmark datasets (WN18RR, FB15K-237, YAGO3-
10, NELL-995-h25, NELL-995-h50, NELL-995-h75, UMLS, and KINSHIP) sug-
gest that KECI outperforms DistMult, ComplEx, QMult and OMult across all
datasets and benchmark metrics (MRR, Hit@1,Hit@3, and Hit@10).

2 Preliminaries and Notation

2.1 Clifford Algebras

A Clifford algebra Cl, ,(R) is an associative algebra (i.e., additions and mul-
tiplications are associative) generated by the p + ¢ orthonormal basis elements
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€1,...,€ptq for which the following relations hold:
ef:—i—l for 1<i<p, (1)
e;=—-1 for p<j<p+q, (2)
eie; = —eje; for i#j. (3)

The lowest-dimensional Clifford algebra Clyo(R) is a zero-dimensional al-
gebra with vector space V that is spanned by the basis element {1}. Hence,
Clo,o(R) is algebra-isomorphic to R. Analogously, Cly 1(R) is equivalent to C,
and Cly 2(R) is equivalent to H [16,5]. In fact, the spaces used by a large por-
tion of the state-of-the-art KGE models are (sub-) algebras of some Cl, 4(R)
(see Section 3 and Table 1).

2.2 Knowledge Graphs

A KG represents structured collections of assertions describing the world [17].
Formally, a KG is often defined as a set of triples G := {(h,r,t) € £ x R x £},
where £ and R stand for a set of entities and a set of relations, respectively [12, 2,
1]. Each triple (h,r,t) € G represents an assertion based on two entities h,t € £
and a relation r € R. A relation r is symmetric iff (h,r,t) <= (¢,r, h) holds.
Analogously, r is anti-symmetric iff (h,r,t) € G = (t,r,h) € G for all h # t.
Most publicly available KGs contain missing and erroneous assertions [17]. These
triples can be inferred from an existing set of triples by means of designing
logical rules or learning continuous vector representations via knowledge graph
embedding models [22].

2.3 Knowledge Graph Embeddings

Most KGE models learn continuous vector representations tailored towards link
prediction [6,17]. They are often defined as parameterized scoring functions
po : € X R x E — R, where © denotes parameters and often comprise en-
tity embeddings E € VI€I*de  relation embeddings R € VI®I*dr and additional
parameters (e.g., affine transformations, batch normalizations, convolutions) [1,
8]. Since d. = d, holds for many models including models reported in Table 1,
we will use d to signify the number of real parameters used for the embedding of
an entity or relation Given (h,r,t) € £ x R x &, the prediction § := ¢g(h,r,t)
signals the likelihood of (h,,t) being true [12,33,41]. Since G contains only as-
sertions that are assumed to be true, assertions assumed to be false are often
generated by applying the negative sampling, 1vsAll or Kvsall training strate-
gies [28]. Throughout this paper, we will denote embeddings with bold fonts,
i.e., the embedding of h will be denoted h. Moreover, we use o and - to denote
an element-wise vector multiplication and an inner product in V, respectively.

3 Related Work

In the last decade, a plethora of KGE models have been successfully applied
to tackle various tasks, including link prediction, class expression learning, drug
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discovery among many others [12, 33,28, 11, 38, 25, 39, 3]. Most KGE models are
designed to operate in a pre-determined vector space V based on a normed di-
vision algebra to learn embeddings for entities and relations tailored towards
predicting missing links. Most of these models can be unified under a feature
composition operator followed by an approzimation operator in a respective di-
vision algebra. Given a triple (h,r,t), most KGE models ¢g : E X R x € — R
computes a triple score via linear operations (e.g., element-wise multiplications
or additions) on h, r, and t [4,40, 37,42, 8, 32].

3.1 Inner Product vs Distance

A large portion of the existing KGE approaches can be regarded as instances of
one of two paradigms. RESCAL [24], DistMult [37], ComplEx [32], ComplEx-
N3 [19], QuatE, OctonionE [42], QMult, and OMult [8] can be unified under the
inner product paradigm, where an inner product is used as an approximation
operator in a preselected vector space V. TransE [4], TransH [35], TransR [20],
CTransR [20], TransD [18], TransO [40], and RotatE [29] can be regarded as be-
longing to the distance paradigm, where a distance (e.g., the Euclidean distance)
is used as an approximation operator in a selected vector space V. Given a triple
(h,rt), all aforementioned models apply element-wise multiplication or addi-
tion to obtain a composite representation of the head entity embedding h and
the relation embedding r in V. A scalar real-valued prediction § := ¢g(h,r,t)
is obtained via an inner product or a distance between a resulting composite
representation and the tail entity embedding t.

Table 1. State-of-the-art embedding approaches and algebras used for embeddings

Models Vector Space C Cl, 4(R)
TransE, DistMult, RESCAL R Cloo
ComplEx, RotatE, ConEx C Cloa
QuatE, QMult, DensE H Clo2
OMult, OctonionE (@) Clis

To obtain a more expressive composite representation of h and r, various
KGE models (e.g., HolE [23], ConvE [12], HypER [1], ConvKB [21], ConEx [9],
ConvQ [8], ConvO [8] and AcrE [27]) apply 1D or 2D convolutions followed
by an non-linear affine transformation as a feature composition operator. These
convolution-based models aim to learn a complex composite representation of h
and r that is ideally approximately equal to t, while maintaining a parameter
efficiency.

3.2 Selecting V

The vector space V can encode useful prior knowledge that enable KGE models
to infer missing triples. For instance, given a triple (h,r,t), DistMult computes
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a triple score via (hor)-t, where h,r,t € R%, o denotes the element-wise vector
multiplication, and - stands for the inner product in V = R. This formulation
leads DistMult to enjoy the linear time and space complexity of multiplication
and inner product in R. However, although DistMult can accurately infer missing
triples with symmetric relations, missing triples with anti-symmetric relations
cannot be accurately inferred. To alleviate this shortcoming and retain param-
eter and computational efficiency, ComplEx extends DistMult into C, where o
denotes the element-wise complex vector multiplication and - is a Hermitian inner
product. Since this inner product in C is symmetric in Re() and anti-symmetric
in Im(-), triples with anti-symmetric relations can be accurately predicted [31].

Overall, recent empirical results suggest that the suitability of an algebra is
contingent upon the input KG that is to be embedded. For instance, ComplEx
outperforms DistMult by absolute 0.5 % and 2.2% MRR scores on FB15K-
237 and WN18RR, respectively, provided that the models are well tuned and
d = 256 [28]. On the other hand, a recent work shows that DistMult outperforms
ComplEx by 2.1% absolute MRR on FB15K-237, while ComplEx outperforms
DistMult by 2.4% and 0.5% absolute MRR on WN18RR and YAGO3-10, respec-
tively. Note that in this experiment, DistMult operates on R'° and ComplEx
on C° [9].2 Similarly, another recent work suggests that in a low-dimensional
setting with d = 32, DistMult outperforms ComplEx by 3.5% and 3.2% ab-
solute MRR on FB15K-238 and NELL-995-h100, respectively, while ComplEx
outperforms DistMult by 3.6% absolute MRR score on WN18RR [13]. Another
recent clinical study pertaining to drug discovery with d = 200 shows that the
recall@200 performance of ComplEx is 5.7% higher than the performance of
DistMult [25]. Many other recent works—including [28, 25, 9, 13]-indicate similar
dependencies of the suitability of an algebra on the input KG. On the application
side, studies such as Bonner et al. [3] show that determining the selection criteria
of a particular KGE model over another real datasets is a viable question. They
highlight the importance of understanding the properties of such models w.r.t.
the input dataset to improve drug discovery efforts.

We argue that the selection of the algebra underlying the vector space V
within which a KGE model learns embeddings for a given KGE can be a part of
the learning problem. In Section 4, we introduce the first KGE model that does
not only learn embeddings for entities and relations but also a suitable algebra
for V by means of a dimension scaling technique.

4 Methodology

4.1 Clifford Embeddings

Given a triple (h,7,t) € G, let h,r,t € Cl, ;(R™) denote three multi-vectors
representing embeddings of the head entity h, the relation r and the tail entity

2 Note that the two models have the same complexity w.r.t. the number of real num-
bers necessary to represent the final embeddings as every element of C is encoded
via two real numbers.
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t, respectively. We defined the multivector h as

P p+q
hZho-‘rZhiei-i- Z hjej, (4)
i=1 j=p+1

where by € R™ with m = [d/(p + ¢ 4+ 1)]. The vectors r and t are defined
analogously. Hence, every embedding vector can be represented by at most d
real numbers. The Clifford multiplication of h and r is given by

14 p+q
hor =hgrg + hor;e; + Z horje; (5)
i=1 j=p+1
P P P P ptq
+Zhﬂ"0€i ZZ iTE€Ei €L +Z z hﬂ’jeiej (6)
i=1 i=1 k=1 i=1 j=p+1
pt+q p+q p+q  ptq
+ Z hjroe; + Z Zh rieje;  + Z Z hjriejer.  (7)
Jj=p+1 Jj=p+1i=1 Jj=p+1 k=p+1

Grouping the terms using the bases and applying the Clifford algebra bases
rules (see Section 2.1) simplifies the above expression to

hor=o00+0p,+04+0pp+0gq+0pg, (8)

where o) are defined as

p p+q
oo =horg + Zhﬂ‘i — Z hj?"j, (9)
1=1 j=p+1
P
op = _(hori + hiro)ei, (10)
i=1
p+q
0q = Z (horj 4 hjro)e;, (11)
Jj=p+1
p—1 p
Op,p = Z Z (hiri — hiri)eier, (12)
i=1 k=i+1
p+q—1 p+q
Og.q = Z Z (hjri — hgrj)ejex, (13)
j=1 k=j+1
p ptq

Op,q = Z Z (hiTj — hjri)eiej. (14)

i=1 j=p+1
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4.2 Scoring Function based on Inner Product

Given a triple (h,r,t) and the respective multi-vector embeddings of h,r,t €
Clp.q(R™), KECI's scoring function is given by

Keci(h,r,t)p 4 = (hor) - t, (15)

where - denotes the inner product between two multi-vectors in Cl, 4(R™). Dis-
tributing the components of t simplifies to

P p+q
KECI(h, 7, t)p.q =horoto + Y _(hirite) — Y (h7jto) (16)
=1 j=p+1
P
+ Z(hoﬁti + hiroti)e; (17)
im1
p+q
+ > (horsty +rohjt;)e; (18)
Jj=p+1
+0pp + 0qq+ Opg- (19)

Therefore, KECI can be classified as a knowledge graph embedding model us-
ing element-wise multiplication as a feature composition operator and the in-
ner product as an approximation operator. Hence, KECI is akin to DistMult,
ComplEx, QMult and OMult depending on p and g. More specifically, selecting
p = q = 0 leads KECI(h,r,t)0,0 to generalize to DistMult:

KEec1(h,r,t), ¢ = ho o 1o - tg = (Re(h), Re(r), Re(t)), (20)

where h,r,t € Clyo(R?), hence, hg,79,t0 € R™=%. Similarly, selecting p =
0 A ¢ =1 leads to KECI(h,7,t)0,1, which is equivalent to ComplEx.

KEect(h,r,t), o = hor-t =(Re(h), Re(r), Re(t)) (21)
+ (Re(h), Im(r), Im(t)) (22)
+ (Im(h), Re(r), Im(t)) (23)
— (Im(h), Im(r), Re(t)), (24)

where h,r,t € C%. This clearly shows that the triple score computed by KECI
does not only depend on learned embeddings of h,r, ¢ but also parameterization
of an algebra.

4.3 Learning to scale dimensions in Cl, 4(R)

Remember that we argue that the selection of the vector space within which a
KGE operates should be a part of the learning problem. Hence, instead of fixing
p and ¢ for KECI, we argue that KECI should be endowed with the capability of
selecting a particular subspace of Cl, ; to operate in.
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We propose to learn coefficients o, ...ap4q for for the orthonormal bases
e1,...eptrq Of Cl, 4(R), where o; € R. Entity embeddings and relation embed-
dings are now of the forms

P p+q
h, =ho + Z h;o,e; + Z hjajej, and (25)
i=1 Jj=p+1
P p+q
ro =79+ Z rioge; + Z rioge;, (26)
i=1 j=p+1

where oy, a; € R are trainable coefficients for each base vectors. Initializing
o1,...,0pyrq = 0 leads KECI to start the training process as DistMult in R™,
where m = |d/(p+q+1)]|. Hence, for a given (h,r,t), a triple score is computed
as

haoha'ta:hOOTO'tm (27)

where the valued represented along e, e,4 are scaled down to 0. During train-
ing, aq,...,p44 can be updated iteratively on the basis of the training loss.
More specifically, let £ denote the cross-entropy loss function that is defined as

L(y,9) = —ylog(y) — (1 — y)log(1 — ), (28)

where y denotes a binary label of a given triple (h,r,t) and § = o(do(h,r,t))
denotes a prediction obtained via the logistic sigmoid function (o(x) = 1-&-%)
Moreover, let % denote the derivative of £ w.r.t. a; on a single data point

(h,r,t). Therefore, a coefficient «; is updated on the bases of h; and ;, ﬁhi +

%ri. In the mini-batch training setting, «; is updated with a batch of respec-
tive terms. Consequently, updating «; in the negative direction of the gradients
assists to decrease the loss further. Hence, KECI can learn to select a particular

subspace of Cl, , that is more favorable to decrease the training loss.

5 Experiments

5.1 Datasets

We used the benchmark datasets UMLS, KINSHIP, NELL-995 h25, NELL-995
h50, NELL-995 h100, FB15K-237, and YAGO3-10 for the link prediction prob-
lem. An overview of the datasets is provided in Table 2. UMLS describes relation-
ships between medical entities and their relationships, e.g., immunologic_factor,
disrupts, and cell. KINSHIP describes the 25 different kinship relations of the
Alyawarra tribe and UMLS describes 135 medical entities via 46 relations de-
scribing [30]. FB15K-237 and YAGO3-10 are subsets of Freebase and YAGO [12].
They contain information about a general domain, e.g., Stephen Hawking, and
Copley_Medal. The Never-Ending Language Learning datasets NELL-995 h25,
NELL-995 h50, and NELL-995 h100 are designed to evaluate multi-hop reason-
ing capabilities [36].
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Table 2. An overview of datasets in terms of number of entities, number of relations,
and node degrees in the train split along with the number of triples in each split of the
dataset.

Dataset |€| |R| |gTrain | ‘gValidation | |gTest ‘
UMLS 135 46 5,216 652 661
KINSHIP 104 25 8,544 1,068 1,074

NELL-995 h100 22,411 43 50,314 3,763 3,746
NELL-995 h50 34,667 86 72,767 5440 5,393
NELL-995 h25 70,145 172 122,618 9,194 9,187
FB15K-237 14,541 237 272,115 17,535 20,466
YAGO3-10 123,182 37 1,079,040 5,000 5,000

5.2 Experimental Setup and Optimization

Throughout our experiments, we use the cross-entropy loss function to train
each knowledge graph embedding model. We evaluated the link prediction per-
formance of models with benchmark metrics (filtered MRR, Hits@1,Hits@3, and
Hits@10). We did not used any regularization technique (e.g., dropout technique
or L2 regularization) as we report the training and validation performance of each
model on each dataset. Throughout our experiments, each entity and relation is
represented with 32-dimensional real valued vector across datasets and models
as in [6, 13]. Hence, DistMult, ComplEx, QMult, and OMult learn embeddings
in R32, C'6, H®, and Q% respectively. Consequently, all models have the same
number of parameters. We report the training, validation and test results to
prove a finer-grained overview of performance across datasets and models. We
use the Adam optimizer with 0.1 learning rate and train each model for 256
epochs with the batch size of 1024. The implementation of KECI can be found
in the dice-embedding framework [10]. Therein, we also provided the pre-trained
models?.

6 Results

6.1 Exhaustive Search

The goal of our first series of experiments was to verify that the performance of
KECI is contingent upon different values for p and ¢q. Hence, we did not perform
any dimension scaling and tried all combinations of p < 4 and ¢ < 4. Note
that we only kept one copy of (p,q) pairs for each equivalent class of C1, 4. For
example, Cl; ; is isomorphic to Clg o.

Figure 1 shows the MRR trajectories of KECI with different (p,¢) pairs on
the UMLS and KINSHIP benchmark datasets. At the end of each training epoch,
the MRR performances on the training and validation splits was registered and

3 https://github.com/dice-group/dice-embeddings#pre-trained-models
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is reported. These results corroborate our hypothesis: The link prediction per-
formance substantially vary depending on the selection of algebras. For instance,
KEect performs well with Cly; and Cls 3 on both datasets, whereas KECI per-
forms poorly with Cly o and Cl3 . Figure 1 also shows that Cly o, Cly 1, Cl3 4
greatly suffer from overfitting, whereas this is not observed for Cly 3.

Fig.1. MRR performance of KEcCI with different p and q for Ci, .

UMLS KINSHIP
1.0 1.0
0.8 0.8 1
o«
o
= 0.6 0.6
c
=
= 0.4+ 0.4+
0,0
0.2 0.2 1 — 0,1
— 0,3
0.0 T T T T T 0.0 T T T T T 1,0
0 50 100 150 200 250 0 50 100 150 200 250 — 3,0
— 34
— 4,3
1.0 1.0
0.8
g
< 0.6
s
0.4 4
0.2
0.0 T T T T T 0.0 T T T T T
0 50 100 150 200 250 0 50 100 150 200 250
Epochs Epochs

Depending on the selection of Cl,,, KECI can greatly benefit from the
early stopping technique on UMLS, e.g., terminating the training after observ-
ing consecutive decreases in the validation performance [26]. For instance, al-
though KEcr with Clyp; reaches its peak generalization performance around
50-75 epochs, training longer decreases its generalization performance. Yet, a
possible overfitting is not observed for any configuration on KINSHIP.

6.2 Comparison with other approaches

Tables 3 to 5 report the link prediction results on WN18RR, FB15K-237, YAGO3-
10, NELL-995-h25, NELL-995-h50, and NELL-995-h75, respectively. We report
the link prediction performance of models on the training, validation, and test
splits of the respective dataset to allow for a fine-grained performance analysis,
e.g., by allowing for overfitting/underfitting to be detected. KECI is trained with
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the dimension scaling technique (elucidated in Section 4.3). Overall, our results
corroborates our hypothesis: the suitability of algebras is contingent upon the
dataset that is to be embedded. For instance, although DistMult reaches the
second best performance on FB15K-237, YAGO3-10, and WN18RR, DistMult
performs poorly on NELL-995-h25, UMLS, and KINSHIP. Similarly, although
QMult outperforms DistMult, ComplEx, and OMult on FB15K-237, QMult per-
forms poorly on NELL-995-h25, NELIL-995-h50, and KINSHIP. Note that all
models have the same number of parameters, i.e., DistMult, ComplEx, QMult,
OMult, and KECI operate in R?, C%/2 H/* 94/, and Clp.q(R™). Note that each
baseline model applies an element-wise vector multiplication followed by an in-
ner product in a respectively fixed algebra, whereas KECI begins the search in
R = Clp,o and updates the coefficients of the p+ g base vectors based on the the
training loss further as elucidated in Section 4.3.

Table 3. Link prediction results on FB15K-237, YAGO3-10 and WN18RR. All models
have the same number of parameters. Each entity and relation is represented with 32-
dimensional real valued vector. Each sequence of three rows for a model report the
model performance on the training, validation and test datasets. Bold and underlined
results indicate the best results and second best results.

Models FB15K-237 YAGO3-10 WN18RR
MRR @ @3 @0 MRR @ @3 @10 MRR @ @3 @10

DistMult 0.365 0.259 0.412 0.573 0.644 0.564 0.691 0.794 0.932 0.885 0.978 0.993
0.212 0.140 0.236 0.355 0.252 0.182 0.275 0.385 0.353 0.342 0.357 0.372
0.213 0.141 0.235 0.351 0.247 0.174 0.278 0.382 0.351 0.340 0.353 0.371

ComplEx 0.336 0.237 0.379 0.534 0.623 0.543 0.669 0.773 0.906 0.879 0.927 0.948
0.196 0.128 0.214 0.332 0.227 0.158 0.249 0.364 0.308 0.277 0.326 0.359
0.197 0.129 0.218 0.333 0.230 0.156 0.257 0.373 0.313 0.282 0.331 0.364

QMult  0.338 0.238 0.381 0.537 0.471 0.382 0.516 0.642 0.996 0.996 0.996 0.997
0.210 0.143 0.229 0.343 0.176 0.113 0.195 0.300 0.313 0.278 0.337 0.366
0.207 0.139 0.226 0.341 0.179 0.112 0.202 0.309 0.308 0.274 0.332 0.361

OMult  0.323 0.226 0.362 0.517 0.429 0.334 0.479 0.610 0.977 0.971 0.982 0.988
0.195 0.131 0.210 0.327 0.160 0.099 0.177 0.282 0.298 0.269 0.314 0.353
0.192 0.127 0.206 0.325 0.163 0.100 0.181 0.288 0.295 0.263 0.314 0.353

KEct 0.496 0.390 0.551 0.699 0.664 0.579 0.718 0.821 0.967 0.952 0.982 0.989
0.268 0.191 0.291 0.421 0.260 0.180 0.293 0.414 0.357 0.343 0.365 0.379
0.262 0.185 0.286 0.419 0.265 0.187 0.295 0.414 0.354 0.341 0.359 0.377

Table 3 show that KEcI finds a suitable subspace of Cl,, , that leads to better
training, validation and test performances across datasets. KECI outperforms all
models in all metrics on FB15K-237 and YAGO3-10. Although KECI starts the
training process as DistMult, KEcI finds a subspace of Cl, 4 that fits the train-
ing data better. For instance, KECI outperforms DistMult by 13.1% absolute
difference in MRR on the training split of FB15K-237. Surprisingly, although
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KEct and QMult reach similar performances on the training split of WN18RR,
KEcI generalizes better than QMult on WN18RR. This may indicate that learn-
ing coefficients for each imaginary dimension of Cl, , acts as a regularizer. We
also observe that as the size of the underlying algebras grows, the performance
of a respective model decreases on FB15K-237 and YAGO3-10, e.g., DistMult
and ComplEx outperform QMult and OMult in all metrics on FB15K-237 and
YAGO3-10. Hence, as the size of the algebra grows, increasing the embedding
size d may be beneficial depending on the input dataset Similarly observation is
also reported in [13]. Table 3 also show that all models greatly suffer from over-
fitting on all datasets, particularly, on WN18RR. This highlights the importance
of applying regularization.

Tables 4 and 5 show that KECI generalizes better than all baselines on NELL,
UMLS, and KINSHIP benchmark datasets. KECI outperforms all baselines mod-
els on NELL-005-h25 in all metrics, while baselines reach better training perfor-
mance on the other NELL datasets.

Table 4. Link prediction results on NELL-995-h25, NELL-995-h50, and NELL-995-
h75. All models have the same number of parameters. Each entity and relation is
represented with 32-dimensional real valued vector. Each three rows for a model report
performance on the training, validation and test datasets. Bold and underlined results
indicate the best results and second best results.

Models NELL-995-h25 NELL-995-h50 NELL-995-h75
MRR @1 @3 @10 MRR @ @3 @0 MRR @1 @3 @10

DistMult 0.683 0.614 0.725 0.808 0.890 0.840 0.930 0.972 0.929 0.893 0.958 0.984
0.144 0.101 0.157 0.227 0.170 0.117 0.191 0.275 0.166 0.115 0.180 0.272
0.140 0.097 0.155 0.224 0.178 0.124 0.197 0.282 0.164 0.112 0.179 0.266

ComplEx 0.854 0.804 0.890 0.939 0.968 0.951 0.982 0.992 0.820 0.750 0.877 0.936
0.165 0.113 0.182 0.265 0.142 0.090 0.157 0.246 0.138 0.093 0.153 0.223
0.163 0.112 0.180 0.266 0.150 0.098 0.165 0.252 0.135 0.094 0.146 0.217

QMult  0.518 0.450 0.555 0.641 0.667 0.580 0.729 0.823 0.943 0.914 0.972 0.987
0.113 0.079 0.123 0.179 0.118 0.075 0.134 0.198 0.145 0.094 0.158 0.249
0.113 0.076 0.125 0.181 0.125 0.081 0.140 0.208 0.152 0.103 0.165 0.246

OMult  0.513 0.446 0.548 0.638 0.710 0.630 0.761 0.859 0.663 0.565 0.736 0.832
0.109 0.072 0.119 0.181 0.155 0.102 0.170 0.262 0.109 0.071 0.118 0.179
0.110 0.075 0.121 0.178 0.161 0.107 0.179 0.266 0.110 0.073 0.120 0.177

KEecr 0.882 0.831 0.926 0.963 0.587 0.493 0.648 0.758 0.760 0.674 0.823 0.909
0.207 0.152 0.229 0.314 0.227 0.162 0.256 0.354 0.225 0.158 0.253 0.356
0.205 0.152 0.224 0.310 0.227 0.161 0.254 0.355 0.216 0.152 0.242 0.341

Table 5 shows that KECI outperforms all baselines in all metrics. ComplEx
and QMult outperform KECI on the training split of UMLS in 4 metrics, whereas
KECcT outperform them considerably (up to absolute 15% in MRR). Importantly,
although DistMult and KECI reaches similar performance in the training split
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Table 5. Link prediction results on UMLS and KINSHIP. All models have the same
number of parameters. Each entity and relation is represented with 32-dimensional
real valued vector. Each three rows per model report performance on the training,
validation and test datasets, respectively. Bold and underlined results indicate the best
results and second best results.

Models UMLS KINSHIP
MRR @1 @3 @0 MRR @l @3 @10

DistMult 0.924 0.887 0.950 0.993 0.657 0.525 0.734 0.938
0.607 0.471 0.679 0.883 0.511 0.349 0.589 0.874
0.605 0.469 0.673 0.896 0.520 0.357 0.601 0.888

ComplEx 0.996 0.992 1.000 1.000 0.887 0.818 0.952 0.991
0.686 0.536 0.801 0.941 0.751 0.627 0.851 0.962
0.702 0.557 0.813 0.942 0.738 0.614 0.834 0.964

QMult  0.994 0.990 0.999 1.000 0.854 0.772 0.926 0.985
0.716 0.596 0.807 0.938 0.712 0.575 0.815 0.949
0.722 0.590 0.816 0.952 0.726 0.597 0.823 0.958

OMult  0.988 0.977 0.999 1.000 0.765 0.658 0.846 0.955
0.716 0.587 0.810 0.942 0.626 0.481 0.726 0.917
0.722 0.585 0.836 0.952 0.641 0.497 0.738 0.921

KEecr 0.940 0.900 0.976 0.993 0.887 0.823 0.943 0.988
0.854 0.775 0.919 0.973 0.768 0.648 0.867 0.970
0.850 0.768 0.917 0.976 0.764 0.644 0.855 0.974

in terms of MRR performance (e.g., 2% absolute difference in MRR), KECI gen-
eralizes considerably better than DisMult (e.g., circa 25% absolute difference in
MRR). This is an important result as it implies that although KEgcI starts the
search in R as DistMult does, KECI finds coefficients for base vectors that leads
to an improvement in the generalization. We observe that although ComplEx,
QMult and OMult reach on-par link prediction performance on the training
dataset of UMLS, this observation cannot be made on KINSHIP. OMult per-
forms worse than ComplEx, QMult on the training, validation and test splits of
KINSHIP. This again corroborates our hypothesis that the selection of the alge-
bra within which a knowledge graph embedding model operates has a tangible
impact in the link prediction performance.

7 Conclusion

We introduced the first knowledge graph embedding model-KECI-that can pa-
rameterize the algebra within which embeddings for entities and relation are
learned. With KECI, the selection of an underlying algebra can be performed in
a data-driven fashion. Our extensive experiments on seven benchmark datasets
suggest that this ability leads KECI to outperform state-of-the-art models in all
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metrics. Importantly, our results also show that Learning to scale embedding
dimensions makes KECI more robust against overfitting.
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