
Hardware-agnostic Computation for Large-scale Knowledge Graph Embeddings

Caglar Demir1 and Axel-Cyrille Ngonga Ngomo
Data Science Group, Paderborn University, Germany

Abstract
Knowledge graph embedding research has mainly focused on learning continuous representations of knowledge
graphs towards the link prediction problem. Recently developed frameworks can be effectively applied in
research related applications. Yet, these frameworks do not fulfill many requirements of real-world applications.
As the size of the knowledge graph grows, moving computation from a commodity computer to a cluster of
computers in these frameworks becomes more challenging. Finding suitable hyperparameter settings w.r.t. time
and computational budgets are left to practitioners. In addition, the continual learning aspect in knowledge
graph embedding frameworks is often ignored, although continual learning plays an important role in many
real-world (deep) learning-driven applications. Arguably, these limitations explain the lack of publicly available
knowledge graph embedding models for large knowledge graphs. We developed a framework based on the
frameworks DASK, Pytorch Lightning and Hugging Face to compute embeddings for large-scale knowledge
graphs in a hardware-agnostic manner, which is able to address real-world challenges pertaining to the scale of
real application. We provide an open-source version of our framework along with a hub of pre-trained models
having more than 11.4 B parameters2.

Keywords Knowledge Graph Embeddings, Hardware-agnostic Computation, Continual Training
Code metadata

Nr. Code metadata description Please fill in this column
C1 Current code version v3
C2 Permanent link to code/repository

used for this code version
https://github.com/dice-group/dice-embeddings

C3 Permanent link to Reproducible Cap-
sule

https://codeocean.com/capsule/6862303/tree/v1

C4 Legal Code License AGPL-3.0 license
C5 Code versioning system used git, gitflow
C6 Software code languages, tools, and

services used
Python, Pytorch, Pytorch-Lightning, DASK, Hugging
Face, Pandas, Numpy, and more

C7 Compilation requirements, operating
environments & dependencies

https://github.com/dice-group/dice-embeddings#
installation

C8 If available Link to developer documen-
tation/manual

https://github.com/dice-group/dice-embeddings#
documentation

C9 Support email for questions caglar.demir@upb and caglardemir8@gmail.com

1. Introduction

Knowledge Graphs (KGs) represent structured collections of facts [1] and are being used in many challenging
applications, including web search, question answering, and recommender systems [2]. Despite their usefulness
in many applications, most knowledge graphs are incomplete, i.e., contain missing links. The task of identifying
missing links in knowledge graphs is referred to as link prediction. In the last decade, a plethora of Knowledge
Graph Embedding (KGE) approaches have been successfully applied to tackle various tasks including the link
prediction task [2]. KGE models aim to learn continuous vector representations (embeddings) for entities and
relations tailored towards the link prediction task.

1Corresponding Author
2https://github.com/dice-group/dice-embeddings

1

https://github.com/dice-group/dice-embeddings
https://codeocean.com/capsule/6862303/tree/v1
https://github.com/dice-group/dice-embeddings#installation
https://github.com/dice-group/dice-embeddings#installation
https://github.com/dice-group/dice-embeddings#documentation
https://github.com/dice-group/dice-embeddings#documentation
https://github.com/dice-group/dice-embeddings

Knowledge Graph Embeddings and Challenges: Let E and R represent the sets of entities and
relations. A KG is often formalised as a set of triples G = {(h, r, t)} ⊆ E ×R×E where each triple contains two
entities h, t ∈ E and a relation r ∈ R [3, 2]. Most KGE models are defined as a parametrized scoring function
ϕΘ : E×R×E → R such that ϕΘ(h, r, t) ideally signals the likelihood of (h, r, t) is true [2]. In a simple setting, Θ
contains an entity embedding matrix E ∈ R|E|×d and a relation embedding matrix R ∈ R|R|×d, where d stands for
the embedding vector size. Given the triples (Barack, Married, Michelle) and (Michelle, HasChild, Malia) ∈
G, a good scoring function is expected to return high scores for (Barack, HasChild, Malia) and (Michelle,
Married, Barack), while returning a considerably lower score for (Malia, HasChild, Barack). To compute
a single score, embeddings of entities and relations are retrieved from E, R and trilinear d-dimension vector
multiplication is performed, i.e., ϕ(Barack, HasChild, Malia) = Barack ◦ HasChild · Malia (see [4]).

As |G| increases, the total training time of learning good representations Θ increases. This magnifies the
importance of effective parallelism. This is often realised as data parallelism which stores a copy of a KGE
model in available CPUs or GPUs. Most available frameworks including KGE frameworks rely on this paradigm
(see PyKEEN [5] and libkge [6]. A |G|, |E| and |R| grow, Θ often does not fit in a GPU. This limitation gives
a rise to model parallelism and sharded training. Through FairScale[7] or DeepSpeed techniques [8] provided
within Pytorch Lightning [9], our framework effectively partitions Θ into available CPUs and GPUs, instead of
plain cloning. This allows to train gigantic models (>11 B parameters). PyKEEN [5] and libkge [6] lack of the
model parallelism feature among many other features such as the deployment service.

2. Description

Hardware-agnostic Computation: The core goal of our framework is to facilitate learning large-scale
knowledge graph embeddings in an hardware-agnostic manner. Hence, practitioners can use our framework to
learn embeddings of KG on commodity hardware as well as a cluster of computers without chaining a single
line of code. We based our framework on Pytorch Lightning [9] and DASK [10]. Pytorch Lightning allows our
framework to use multi-CPUs,-GPU and even -TPUs in an hardware-agnostic manner. This implies that many
important decisions at finding a suitable configuration for the learning process can be made automatically,
i.e., finding a batch size that optimally fits in to the memory, scaling to cluster of computers. We observe
that most embedding frameworks rely on a single core while reading and preprocessing the input KG. As the
size of KG grows, this design decision becomes an increasing hindrance to scalability and increases the total
runtime. Moreover, the process of the reading, preprocessing, and indexing an input KG is often intransparent
to practitioners. That means that as the size of KG grows, practitioners are not informed about the current
stage of the total computation. Through a DASK dashboard, our framework shares details about all steps of
computation with users. The DASK dashboard can be used to used to analyse the reading and preprocessing
steps in a fine-grained manner when computation is moved from a commodity computer to cluster of computers.
Finding suitable configuration: Our framework dynamically suggests a suitable configuration setting for a
given dataset and available computational resources. This includes many features, e.g., finding most memory
efficient integer data type for indexing, batch size, embedding vector size as well as learning rate for a given input
configuration. Currently, we are working on forging our framework with Auto-Machine Learning techniques
to facilitate the usage of framework by novice users. By this, we aim to share our expert knowledge with
practitioners to that their computational and time budgets can be effectively utilized. Computational and time
budgets of practitioners play an important role in real-world successful Machine Learning (ML) applications [11].

Continual Learning and Deployment: Our framework continues to assist practitioners after the em-
bedding learning process. In many ML applications, the input data evolves with the time. Hence, continual
learning plays an important role in successful applications of ML models[12]. Yet, most KGE frameworks do
not provide means for continual learning. To alleviate this issue, our framework can be used to train KGE
models on non-static data. Moreover, practitioners can deploy their model in a web-application without writing
a single line of code as in our github repostiory.

Extendability: The software design of our framework allows practitioners to solely focus on their novel
ideas, instead of engineering. For instance, a new model can be implemented in our framework without an
effort. Inheriting from BaseKGE class, a new embedding model can be readily included into our framework.

2

class ComplEx (BaseKGE):
def __init__ (self , args):

super (). __init__ (args)
self.name = ’ComplEx ’

def forward_triples (self , x: torch. Tensor) -> torch. Tensor :
(1) Retrieve Embedding Vectors
head_ent_emb , rel_ent_emb , tail_ent_emb = self. get_triple_representation (x)
(2) Split (1) into real and imaginary parts.
emb_head_real , emb_head_imag = torch. hsplit (head_ent_emb , 2)
emb_rel_real , emb_rel_imag = torch. hsplit (rel_ent_emb , 2)
emb_tail_real , emb_tail_imag = torch. hsplit (tail_ent_emb , 2)
(3) Compute Hermitian inner product .
real_real_real = (emb_head_real * emb_rel_real * emb_tail_real).sum(dim=1)
real_imag_imag = (emb_head_real * emb_rel_imag * emb_tail_imag).sum(dim=1)
imag_real_imag = (emb_head_imag * emb_rel_real * emb_tail_imag).sum(dim=1)
imag_imag_real = (emb_head_imag * emb_rel_imag * emb_tail_real).sum(dim=1)
return real_real_real + real_imag_imag + imag_real_imag - imag_imag_real

Figure 1: Including an implementation of state-of-the-art Embedding model in our framework.

Summary of Initial Experimental Results: We used the most recent DBpedia 2021 benchmark dataset3

to evaluate our framework in depth. Our experiments suggest that a state-of-the-art KGE model with more
than 11.4B parameters can be successfully trained and applied in link prediction, and relation prediction 4. We
refer to the project page for the details and log files about pretrained models.

3. Software Impact

Our framework facilitates the use of KGE models on large KGs without requiring expert knowledge in
software engineering. Hence, it helps practitioners to spend more time on generating value by using embedding
models, instead of investing it into engineering for large-scale experiments.Our framework is now being deployed
in real use cases within the funded research projects mentioned in the acknowledgements.

Limitations and future improvements: We plan to investigate (1) pseudo-labeling to leverage unlabelled
data, (2) Auto-ML for the embedding model design, and (3) state-of-the-art continue learning techniques.

Scholarly Publications: Our framework have been effectively used to learn knowledge graphs embeddings
in several published works [13],[3],[14],[4],[15],[16], and [17].

Acknowledgements: This work has been supported by the German Federal Ministry of Education and
Research (BMBF) within the project DAIKIRI under the grant no 01IS19085B and by the the German Federal
Ministry for Economic Affairs and Energy (BMWi) within the project RAKI under the grant no 01MD19012B.

References

[1] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez, J. E. L. Gayo, S. Kirrane,
S. Neumaier, A. Polleres, et al., Knowledge graphs, arXiv preprint arXiv:2003.02320 (2020).

[2] M. Nickel, K. Murphy, V. Tresp, E. Gabrilovich, A review of relational machine learning for knowledge
graphs, Proceedings of the IEEE 104 (1) (2015) 11–33.

[3] C. Demir, A.-C. N. Ngomo, Convolutional complex knowledge graph embeddings, in: Eighteenth Extended
Semantic Web Conference - Research Track, 2021.

[4] C. Demir, J. Lienen, A.-C. Ngonga Ngomo, Kronecker decomposition for knowledge graph embeddings,
in: Proceedings of the 33rd ACM Conference on Hypertext and Social Media, HT ’22, Association for
Computing Machinery, New York, NY, USA, 2022, p. 1–10.

3https://databus.dbpedia.org/dbpedia/collections/dbpedia-snapshot-2021-06
4https://hobbitdata.informatik.uni-leipzig.de/KGE/DBpediaQMultEmbeddings 03 07/

3

https://databus.dbpedia.org/dbpedia/collections/dbpedia-snapshot-2021-06
https://hobbitdata.informatik.uni-leipzig.de/KGE/DBpediaQMultEmbeddings_03_07/

[5] M. Ali, M. Berrendorf, C. T. Hoyt, L. Vermue, S. Sharifzadeh, V. Tresp, J. Lehmann, PyKEEN 1.0: A
Python Library for Training and Evaluating Knowledge Graph Embeddings, Journal of Machine Learning
Research 22 (82) (2021) 1–6.

[6] S. Broscheit, D. Ruffinelli, A. Kochsiek, P. Betz, R. Gemulla, LibKGE - A knowledge graph embedding
library for reproducible research, in: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, 2020, pp. 165–174.

[7] M. Baines, S. Bhosale, V. Caggiano, N. Goyal, S. Goyal, M. Ott, B. Lefaudeux, V. Liptchinsky, M. Rabbat,
S. Sheiffer, A. Sridhar, M. Xu, Fairscale: A general purpose modular pytorch library for high performance
and large scale training (2021).

[8] J. Rasley, S. Rajbhandari, O. Ruwase, Y. He, Deepspeed: System optimizations enable training deep
learning models with over 100 billion parameters, in: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 3505–3506.

[9] W. Falcon, et al., Pytorch lightning, GitHub. Note: https://github. com/PyTorchLightning/pytorch-
lightning 3 (2019) 6.

[10] M. Rocklin, Dask: Parallel computation with blocked algorithms and task scheduling, in: K. Huff,
J. Bergstra (Eds.), Proceedings of the 14th Python in Science Conference, 2015, pp. 130 – 136.

[11] L. Bottou, O. Bousquet, The tradeoffs of large scale learning, Advances in neural information processing
systems 20 (2007).

[12] T. Diethe, T. Borchert, E. Thereska, B. Balle, N. Lawrence, Continual learning in practice, arXiv preprint
arXiv:1903.05202 (2019).

[13] C. Demir, D. Moussallem, S. Heindorf, A.-C. Ngonga Ngomo, Convolutional hypercomplex embeddings for
link prediction, in: V. N. Balasubramanian, I. Tsang (Eds.), Proceedings of The 13th Asian Conference on
Machine Learning, Vol. 157 of Proceedings of Machine Learning Research, PMLR, 2021, pp. 656–671.

[14] C. Demir, D. Moussallem, A.-C. N. Ngomo, A shallow neural model for relation prediction, in: 2021 IEEE
15th International Conference on Semantic Computing (ICSC), IEEE, 2021, pp. 179–182.

[15] H. M. Zahera, S. Heindorf, S. Balke, J. Haupt, M. Voigt, C. Walter, F. Witter, A.-C. Ngonga Ngomo,
Tab2onto: Unsupervised semantification with knowledge graph embeddings, in: ESWC, 2022.

[16] N. Kouagou, S. Heindorf, C. Demir, A.-C. N. Ngomo, Learning concept lengths accelerates concept learning
in alc, in: Nineteenth Extended Semantic Web Conference - Research Track, Springer, 2022.

[17] S. Heindorf, L. Blubaum, N. Dusterhus, T. Werner, V. Golani Nandkumar, C. Demir, A.-C. Ngonga Ngomo,
Evolearner: Learning description logics with evolutionary algorithms, in: WWW, ACM, 2022, pp. 818–828.

4

	Introduction
	Description
	Software Impact

