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Knowledge graph embedding research has mainly focused on learning continuous representations of entities and relations tailored
towards the link prediction problem. Recent results indicate an ever increasing predictive ability of current approaches on benchmark
datasets. However, this effectiveness often comes with the cost of over-parameterization and increased computationally complexity.
The former induces extensive hyperparameter optimization to mitigate malicious overfitting. The latter magnifies the importance
of winning the hardware lottery. Here, we investigate a remedy for the first problem. We propose a technique based on Kronecker
decomposition to reduce the number of parameters in a knowledge graph embedding model, while retaining its expressiveness.
Through Kronecker decomposition, large embedding matrices are split into smaller embedding matrices during the training process.
Hence, embeddings of knowledge graphs are not plainly retrieved but reconstructed on the fly. The decomposition ensures that
elementwise interactions between three embedding vectors are extended with interactions within each embedding vector. This
implicitly reduces redundancy in embedding vectors and encourages feature reuse. To quantify the impact of applying Kronecker
decomposition on embedding matrices, we conduct a series of experiments on benchmark datasets. Our experiments suggest that
applying Kronecker decomposition on embedding matrices leads to an improved parameter efficiency on all benchmark datasets.
Moreover, empirical evidence suggests that reconstructed embeddings entail robustness against noise in the input knowledge graph.
To foster reproducible research, we provide an open-source implementation of our approach, including training and evaluation scripts
as well as pre-trained models.1
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1 INTRODUCTION

Knowledge Graph Embedding (KGE) models learn continuous vector representations of entities and relations [Demir
and Ngomo 2021a; Dettmers et al. 2018; Nickel et al. 2015; Sun et al. 2019; Trouillon et al. 2016; Wang et al. 2017]. These
representations have been successfully applied in a wide range of applications including question answering, link
prediction, and recommender systems [Cai et al. 2018; Eder 2012; Ji et al. 2020; Nickel et al. 2015].
1https://github.com/dice-group/dice-embeddings
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2 Demir et al.

Most KGE models are designed to retain a linear complexity in the number of trainable parameters and in the number
of triples to scale to large Knowledge Graphs (KGs) [Bordes et al. 2013; Demir and Ngomo 2021a; Sun et al. 2019;
Trouillon et al. 2016; Yang et al. 2015]. Although the number of parameters of most KGE models grows linearly in the
number of unique entities and relations, training on large KGs become a computationally challenging task. For example,
when embedding Freebase with an embedding size of 200, DistMult requires 33 GB of main memory solely to store
its parameters [Dettmers et al. 2018]. Such considerable memory requirement is still a barrier for efficient training
and inference of embedding models [Edalati et al. 2021]. Although there have been numerous attempts to reduce high
memory usage by means of decomposing pre-trained overparameterized language models (see DistilBERT [Sanh et al.
2019], TinyBERT [Jiao et al. 2019], MobileBERT [Sun et al. 2020], ALP-KD[Passban et al. 2020], MATE-KD [Rashid et al.
2021], and KnGPT2 [Edalati et al. 2021]), the decomposition of KGE models have not yet been studied.

In this paper, we investigate the problem of learning compressed KGEs. Our aim is to reduce the number of explicitly
stored parameters, while retaining the expressiveness of KGE models. Trouillon et al. [2016] showed that finding
the best ratio between expressiveness and the number of parameters is a keystone in successful applications of KGE
models. To increase the expressiveness of most KGE models, increasing the embedding vector size is often the only
option [Dettmers et al. 2018]. Yet, solely increasing the parameters of models (a) makes models more prone to overfitting
and (b) increases the hardware demand, i.e., the importance of winning the hardware lottery is magnified [Hooker
2021]. KGE literature shows that considerable amount of effort is often invested into hyperparameter optimization to
find a good ratio between expressiveness and the number of parameters to mitigate overfitting [Ruffinelli et al. 2019; Sun
et al. 2019; Zhang et al. 2019]. With this consideration, we propose a technique based on Kronecker Decomposition (KD).
Applying KD on embedding matrices implicitly reduces redundancy in embedding vectors and encourages feature
reuse (see Section 4). Through the decomposition, embeddings are not merely retrieved but reconstructed on the fly.
This inherently reduces the number of explicitly stored parameters, and hence decreases the memory footprint of the
decomposed models. Importantly, our technique can be readily used in combination with many KGE models.

To evaluate our technique, we conducted a series of experiments on benchmark datasets. On each benchmark dataset,
we applied a fine-grained parameter sweep in the size of embedding vectors. All competing KGE models are trained
via a standard training technique as in the literature (see Section 3.2). We developed a hardware-agnostic embedding
framework to conduct our experiments with an ease (see Section 5.4). To ensure the reproducibility of our experiments,
we fixed the seed for the pseudo-random generator to 1. Overall, our results suggest that learning compressed embeddings
via KD reduces the number of parameters on each dataset with each hyperparameter configuration, while yielding
competitive performance in the link prediction task (see Section 6). First series of our experiments indicated that 59%
parameter reduction can be achieved via applying KD on relation embeddings, while retraining the training and
testing performance. Moreover, applying KD on relation embeddings and entity embeddings results in on average
16.4 times fewer parameters. We also evaluate link prediction performances of models with model calibration and
under noisy input triples, since most predictions in the link prediction task are often uncalibrated and publicly available
datasets involve noisy triples (see Section 3.3). Results of the former experiments suggest that MRR performance of all
models are improved up to absolute 10% provided that they suffer from overfitting. As the degree of overfitting decreases,
model calibration techniques (see Label Smoothing and Label Relaxation in Section 3) do not improve generalization
performances. Results of the latter experiments suggest that learning compressed knowledge graph embeddings makes
models more robust against noise in KGs.
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2 RELATEDWORK

In the last decade, a plethora of KGE approaches have been successfully applied to tackle various tasks [Cai et al. 2018;
Gligorijević et al. 2021; Ji et al. 2020; Nickel et al. 2015]. Here, we give a brief overview of selected KGE approaches.

Nickel et al. [2011] proposed a three-way factorization of a third-order binary tensor representing the input KG.
The proposed approach (RESCAL) is limited in its scalability as it has a quadratic complexity in the factorization
rank [Nickel et al. 2016]. Yang et al. [2015] proposed DistMult that can be seen as an extension of RESCAL with a
diagonal matrix per relation, where the dense core tensor is replaced with diagonal matrices. DistMult does not perform
well on triples with antisymmetric relations (e.g. (Barack, HasChild, Malia)), whereas it performs well on symmetric
relations (e.g. (Barack, Married, Michelle)). To avoid this shortcoming, Trouillon et al. [2016] extended DistMult by
learning representations in a complex vector space. Their approach (ComplEx) is able to infer both symmetric and
antisymmetric relations via a Hermitian inner product of embeddings which involves the conjugate-transpose of one of
the two input vectors. Motivated by learning complex-valued embeddings, Sun et al. [2019] designed RotatE which
employs a rotational model taking predicates as rotations from subjects to objects in complex space via the element-wise
Hadamard product. QuatE extends ComplEx into quaternions through applying the quaternion multiplication followed
by an inner product to compute scores of triples [Zhang et al. 2019].

All aforementioned approaches learn embeddings of entities and relations through capturing multiplicative based
interactions. Although such approaches perform well in terms of predictive accuracy and computational complexity, to
increase their expressiveness the embedding vector size is the only option. Dettmers et al. [2018], Nguyen et al. [2017],
and Balažević et al. [2019a] have shown that convolution operation can be applied to increase the expresiveness of
KGE models without significantly increasing the number of parameters. ConvE applies a 2D convolution operation to
model the interactions between entities and relations [Dettmers et al. 2018]. ConvKB extends ConvE by omitting the
reshaping operation in the encoding of representations in the convolution operation [Nguyen et al. 2017]. Similarly,
HypER extends ConvE by applying relation-specific 1D convolutions as opposed to applying filters from concatenated
subject and relation vectors [Balažević et al. 2019a]. Demir et al. [2021]; Demir and Ngomo [2021a] extended ConvE
through combining 2D convolution operation with Hermitian inner product, Quaternion and Octonion multiplications.

3 BACKGROUND

3.1 Knowledge Graphs & Link Prediction

Let E andR denote a set of entities and relations. A knowledge graph (KG) can be defined as a set of triples G ⊆ E×R×E,
where each triple (h, r, t) ∈ G contains two entities h, t ∈ E and a relation r ∈ R [Demir and Ngomo 2021a]. Hence,
knowledge graphs represent structured collections of facts in the form of typed relationships between entities [Hogan
et al. 2020]. These collections of facts have been used in a wide range of applications, including web search, question
answering, and recommender systems [Nickel et al. 2015]. Yet, most knowledge graphs on the web are far from
complete. The link prediction task on KGs refers to predicting whether a triple is likely to be true [Demir and Ngomo
2021a; Dettmers et al. 2018]. This task is often formulated as the problem of learning a parametrized scoring function
𝜙Θ : E × R × E → R such that 𝜙Θ (h, r, t) ideally signals the likelihood of (h, r, t) is true [Ji et al. 2020]. Here, Θ
contains embeddings of entities and relations along with other trainable parameters. For instance, given the triples
(Barack, Married, Michelle) and (Michelle, HasChild, Malia) ∈ G, a good scoring function is expected to return
high scores for (Barack, HasChild, Malia) and (Michelle, Married, Barack), while returning a considerably lower
score for (Malia, HasChild, Barack).
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4 Demir et al.

3.2 Knowledge Graph Embeddings and Training Strategies

Most knowledge graph embedding (KGE) models are designed to learn continuous vector representations of entities
and relations tailored towards predicting missing triples. In our notation, the embedding vector of the entity 𝑒 ∈ E is
denoted by e ∈ R𝑑𝑒 and the embedding vector for the relation 𝑟 ∈ R is denoted by r ∈ R𝑑𝑟 . Embedding vectors are
learned through minimizing a loss function (see Equation 2) with a first-order optimizer. The resulting models are then
evaluated w.r.t. their ability of predicting missing entity rankings [Ruffinelli et al. 2019].

Three training strategies are commonly used for KGE models. Bordes et al. [2013] designed a negative sampling
technique via perturbing an entity in a randomly sampled triple. In this setting, a triple (h, r, t) ∈ G is considered as a
positive example, whilst {(h, r, x) | ∀𝑥 ∈ E} ∪ {(x, r, t) | ∀𝑥 ∈ E} is considered as a set of possible candidate negative
examples. For each positive triple (h, r, t) ∈ G, a negative triple is sampled from the set of corresponding candidate
negative triples. Kotnis and Nastase [2017] analysed the impact of variations of the negative sampling technique
designed by Bordes et al. [2013] on the link prediction task. Lacroix et al. [2018] discarded the idea of randomly sampling
negative triples and proposed 1vsAll/1vsN the training strategy. For each positive triple (h, r, t) ∈ G, all possible tail
perturbed set of triples are considered as negative triples regardless of whether a perturbed triple exists in the input
knowledge graph KG ({(h, r, x) |∀𝑥 ∈ E : 𝑥 ≠ 𝑡}) as similarly done by Bordes et al. [2013]. Given that this setting does
not involve negative triples via head perturbed entities, a data augmentation technique is applied to add inverse triples
(also known as reciprocal triples [Balažević et al. 2019b]) (t, r−1, h) for each (h, r, t). Their results showed that even
simpler models reached state-of-the-art performance in link prediction task via 1vsAll. This partially stems from the
fact that the ability of modelling antisymmetric relations is not required due to learning inverse relation representations.
In the 1vsAll training strategy, a training data point consists of (h, r) and a binary vector containing a single "1" for the
t and "0"s for other entities. Dettmers et al. [2018] extended 1vsAll into KvsAll2 via constructing multi-label binary
vectors for each (h, r). More specifically, a training data point consists of a pair (h, r) and a binary vector containing
"1" for {𝑥 |𝑥 ∈ E ∧ (h, r, x) ∈ G} and "0"s for other entities. During training, for a given pair (h, r), predicted scores
(logits) for all entities are computed, i.e., ∀𝑥 ∈ E : 𝜙 ((h, r, x))) =: z ∈ R |E | . Through the logistic sigmoid function
𝜎 (z) = 1

1+exp(−z) , scores are normalized to obtain predicted probabilities of entities denoted by ŷ . A loss incurred on a
training data point is then computed as

𝑙 (ŷ, y) = − 1
|E |

|E |∑
𝑖=1

y(𝑖) log(ŷ(𝑖) +
(
1 − y(𝑖)

)
log

(
1 − ŷ(𝑖)

)
, (1)

where y ∈ [0, 1] |E | is the binary sparse label vector. If (h, r, e𝑖 ) ∈ G, then y(𝑖) = 1, otherwise y(𝑖) = 0. Recent works show
that learningΘ by means of minimizing Equation 1 often leads to state-of-the-art link prediction performance [Balažević
et al. 2019a,b; Demir and Ngomo 2021a; Dettmers et al. 2018]. Expectedly, 1vsAll and Kvsall are computationally more
expensive than the negative sampling. As |E | increases, 1vsAll and KvsAll training strategies become less applicable.
Yet, recent KGE models are commonly trained with 1vsAll or KvsAll [Ruffinelli et al. 2019].

3.3 Model Calibration and Robustness

Section 3.2 elucidated that most KGE models are trained to predict missing entities in a fashion akin to multi-class
(1vsAll) and multi-label (KvsAll) classification problems. Tabacof and Costabello [2019] showed that previous state-of-
the-art KGE models generate uncalibrated predictions, i.e., probability estimates assigned to triples are unreliable. In

2We use the terminology introduced by Ruffinelli et al. [2019].
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many recent works, a model calibration technique has been applied to obtain calibrated predictions [Balažević et al.
2019a,b; Demir et al. 2021; Demir and Ngomo 2021a; Dettmers et al. 2018].

A KGE model trained via 1vsAll or Kvsall can be interpreted as a probabilistic mapping 𝑝 : E × R ↦→ P(Y) |E | with
Y = {0, 1} representing the events that the respective entities apply (1) or not (0). Hence, the training information
is in the simplest form rendered as probabilities 𝑝 (t | h, r) := 𝑝 (1(t ∈ r(h)) ∈ Y | h, r) = 1 s.t.∀(h, r, t) ∈ G, e.g., the
probability of the triple (Michelle, HasChild, Malia) ∈ G would be set to 1. Then, Equation 1 can be rewritten as

𝐿 = − 1
|E |

∑
t∈E

𝑝 (t | h, r) log𝑝 (t | h, r) + (1 − 𝑝 (t | h, r)) log(1 − 𝑝 (t | h, r)) . (2)

The calibration of 𝑝 characterizes the convergence between the model confidence and actual accuracy, ideally matching
each other [Guo et al. 2017]. Not only can overconfident but incorrect predictions result into harmful consequences, also
too modest predictions can leave much potential unused. Hence, well-calibration can be seen as a second optimization
goal in knowledge graph embedding learning. Training models with nondegenerate probability distributions —hard
target values 1/0 — provokes overconfidence in predictions as the learner is urged to reproduce extreme probabili-
ties [Tabacof and Costabello 2019]. To weaken this issue, a plethora of calibration means has been proposed, commonly
by leveraging explicit calibration data, such as isotonic regression [Zadrozny and Elkan 2002], Bayesian binning [Naeini
et al. 2015] or temperature scaling [Guo et al. 2017]. Besides calibration, model robustness against label noise further
plays an essential role in making a embedding model applicable to real-world data. Large knowledge graphs observed
in practice typically comprise erroneous relations, misleading the learner when used as training instance [Heindorf
et al. 2017, 2016, 2019]. For instance, Albert Einstein has the type of https://dbpedia.org/ontology/Eukaryote that is
defined a subclass of Fungus or https://dbpedia.org/page/Boo_(dog) has the type of Scientist and Dog.

3.3.1 Label Smoothing. Szegedy et al. [2016] designed the Label Smoothing technique (LS) that combines favorable
properties in both quality respects discussed above. Not only can it be considered as an implicit calibration method
[Müller et al. 2019], it has also shown improved robustness capabilities over the cross-entropy loss [Lukasik et al.
2020]. LS transforms the probability distributions 𝑝 as defined above to less extreme distributions 𝑝𝑠 by distributing
a certain amount of probability mass among all other events, in its simplest formulation uniformly. To this end, let
𝛼 ∈ (0, 1) be the smoothing parameter. Then, the smoothed training distributions are formally given by 𝑝𝑠 (t | h, r) =
1 − 𝛼/2 ∀(h, r, t) ∈ G. These distributions 𝑝𝑠 replace 𝑝 in the cross-entropy loss formulation. Referring to the running
example, label smoothing would assign 𝑝𝑠 (Malia | Michelle, HasChild) = 1 − 𝛼/2 and 𝛼/2 to the complementary
event. By this, the model is no longer urged to reproduce probabilities approaching 1, resulting in less over-confidence.

3.3.2 Label Relaxation. Albeit LS undeniably improves generalization performances, it can be questioned from a
data modelling perspective. The smoothed distribution 𝑝𝑠 , by default determined by a uniform smoothing policy,
is unlikely to match the exact underlying ground-truth probability, introducing a modeling bias that may distort
the learning in a less extreme yet still unrealistic way. Coming back to our previous example, the smoothed target
probability 𝑝𝑠 (1(Malia ∉ HasChild(Michelle)) | Michelle, HasChild) = 𝛼/2 seems to be implausible in case there is
clear evidence for the truthfulness of the triple, and the learner would be incited to assign less probability on purpose.

As a generalization to mitigate such issues, so-called label relaxation (LR) [Lienen and Hüllermeier 2021] models the
target as (credal) set Q𝛼 ⊆ P(Y) of candidate probability distributions “sufficiently close” to the original distribution 𝑝 ,
whereby the exact ground-truth distribution is assumed to be in Q𝛼 . To construct such target sets, LR assigns a certain
amount of plausibility 𝛼 ∈ (0, 1] to other outcomes than the one observed in the training data. Transferred to KGE
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6 Demir et al.

learning, the parameter 𝛼 can be interpreted as an upper probability for the event that the respective entity does not
apply to a pair (h, r). Hence, the credal set Q (h,r,t)

𝛼 of the triple (h, r, t) ∈ G is given by

Q (h,r,t)
𝛼 := {𝑝 ′(· | h, r) ∈ P(Y) | 𝑝 ′(t | h, r) ≥ 1 − 𝛼}.

As a result, instead of committing to a particular distribution, the resulting target set Q𝛼 is less precisely but
more reliably expressing the belief about the ground-truth probability, reducing the risk of entailing an undesir-
able bias in the target modelling. Relating to the ongoing example relation, the target probability 𝑝 is expected to be
𝑝 (Malia | Michelle, HasChild) ∈ [1−𝛼, 1], i.e., it must not necessarily be the smoothed nor the degenerate distribution.
In the following, we will drop the dependence of the target set on (h, r, t), i.e., Q𝛼 := Q (h,r,t)

𝛼 , for the sake of brevity.
To optimize a probabilistic model provided such (weak) supervision, the learner is then trained by comparing 𝑝 to the

most plausible candidate 𝑝 ′ ∈ Q𝛼 among the distributions in the target set in terms of the Kullback-Leibler divergence
𝐷𝐾𝐿 (𝑝 | |𝑝) =

∑
𝑦∈Y 𝑝 (𝑦) log 𝑝 (𝑦) based on the current model belief 𝑝 . Leveraging the framework of optimistic superset

learning [Hüllermeier and Cheng 2015], the LR loss is formally defined as

𝐿∗ (Q𝛼 , 𝑝) = min
𝑝′∈Q𝛼

𝐷𝐾𝐿
(
𝑝 ′ | | 𝑝

)
,

which simplifies to the closed-form

𝐿∗ (𝑄𝛼 , 𝑝) =

0 if 𝑝 ∈ 𝑄𝛼

𝐷𝐾𝐿 (𝑝 ′ | |𝑝) otherwise,

where 𝑝 ′(1(t ∈ r(h)) | h, r) = 1−𝛼 and 𝛼 otherwise. Roughly speaking, the consideration of 𝑝 ′ as closest, and thus most
plausible, distribution to 𝑝 in the target set constitutes a form of optimism in the validity of 𝑝 . This loss instantiation has
been proven to be convex and can be efficiently optimized. Results signal improved model calibration while retaining
the generalization performance as achieved by LS [Lienen and Hüllermeier 2021; Lienen and Hüllermeier 2021].

3.4 Kronecker Product and Decomposition

For any matrix X ∈ R𝑚×𝑛 and Y ∈ R𝑚×𝑛 , the Hadamard product X ◦ Y is defined as

X ◦ Y =


X11Y11 . . . X1𝑛Y1𝑛

.

.

.
. . .

.

.

.

X𝑚1Y𝑚1 . . . X𝑚𝑛Y𝑚𝑛

 ∈ R𝑚×𝑛, (3)

where X𝑖 𝑗 only interacts with Y𝑖 𝑗 . For any matrix Z ∈ R𝑝×𝑞 , the Kronecker Product (KP) X ⊗ Z is a block matrix:

X ⊗ Z =


X11Z . . . X1𝑛Z
.
.
.

. . .
.
.
.

X𝑚1Z . . . X𝑚𝑛Z

 ∈ R𝑚𝑝×𝑛𝑞, (4)

where every element of X interacts with every element of Z. In contrast to the Hadamard product, the Kronecker
product is not commutative, i.e., X ⊗ Z ≠ Z ⊗ X most commonly holds. For more details, we refer to [Graham 2018;
Van Loan 2000]. Numerous works have shown that KP defined in Equation 4 can be effectively applied to decompose
a large matrix into two smaller matrices [Cohen et al. 2019; Greenewald et al. 2013, 2016; Tahaei et al. 2021; Zhang
et al. 2021]. In the Kronecker Decomposition (KD), a large weight matrix of W ∈ 𝑅𝑚𝑝×𝑛𝑞 can be decomposed into any
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X ∈ R𝑚1×𝑛1 and Z ∈ R
𝑚𝑝

𝑚1
×𝑛𝑞

𝑛1 . Different compression factors can be achieved through different shape configurations of
smaller matrices. Tahaei et. al. [Tahaei et al. 2021] have shown that the following formulation can be effectively used to
compute a linear transformation encoded in a weight matrixW via KD:(

X ⊗ Z
)
𝑥 = V

(
Z R 𝑛𝑞

𝑛1
×𝑛1 (𝑥)X

⊤
)
, (5)

where𝑥 ∈ R𝑛𝑞 represent input feature vector,V : R→ R𝑚𝑝 flattens an inputmatrix into a vector,R 𝑛𝑞

𝑛1
×𝑛1 converts x to a

𝑛𝑞
𝑛1

by𝑛1matrix by dividing the vector to columns of size 𝑛𝑞𝑛1 and concatenating the resulting columns together [Lutkepohl
1997; Tahaei et al. 2021]. The computation defined in 5 reduces the number of floating point operations required to
perform KD from (2𝑚1𝑚2 − 1)𝑛1𝑛2 to𝑚𝑖𝑛((2𝑛2 − 1)𝑚2𝑛1 + (2𝑛1 − 1)𝑚2𝑚1, (2𝑛1 − 1)𝑛2𝑚1 + (2𝑛2 − 1)𝑚2𝑚1), where
𝑛1 =

𝑚𝑝
𝑚1 and 𝑛2 =

𝑛𝑞
𝑛1

[Tahaei et al. 2021]. In the next section, we elucidate our methodology on applying KD in KGE.

4 METHODOLOGY

Previous works have shown that pre-trained overparameterized language models can be effectively decomposed into
smaller weight matrices [Jiao et al. 2019; Rashid et al. 2021; Sanh et al. 2019; Sun et al. 2020]. Particularly, the Kronecker
Decomposition (KD) elucidated in Section 3.4 leads a significant reduction in the number of parameters with at most a
mild cost of predictive accuracy [Edalati et al. 2021; Tahaei et al. 2021]. Analogous to the aforementioned two works,
findings of Zhang et al. [2021] and Wu [2016] suggest that training a neural network via KD on weight matrices results
in a significant parameter efficiency. We are interested in learning compressed KGE by applying KD during training. We
aim to design a generic technique that can be applied in existing knowledge graph embedding (KGE) models to reduce
the number of explicitly stored parameters while retaining their expressiveness. Importantly, through KD on embedding
matrices, we aim to capture interactions within an embedding vector without requiring additional parameters. This is
expected to encourage parameter reuse and reduces redundancy in model’s parameters [Huang et al. 2017].

4.1 Kronecker Decompression for Knowledge Graph Embeddings

Most KGE models are designed as a parametrized scoring function (say DistMult [Yang et al. 2015]) 𝜙Θ : E ×R ×E → R
that maps an input triple (h, r, t) ∈ G to a scalar value that is mapped to the unit interval using the sigmoid/logistic
function. This normalized scalar value is interpreted to reflect the likelihood of (h, r, t) is true which is denoted with
𝑝 (t | h, r) in Section 3.3. Θ denotes the parameters of 𝜙 that consists of an entity embedding matrix E ∈ R |E |×𝑑 , a
relation embedding matrix R ∈ R |R |×𝑑 , and other trainable parameters, such as affine transformation over input
embeddings, convolutions, batch normalization or instance normalization. Assume that 𝜙 =: DistMult and Θ := {E,R},
for a given (h, r, t) ∈ G, a score is computed as

DistMult(h, r, t) = h ◦ r · t. (6)

In Equation 6, a triple score is computed thorough elementwise interactions between 3 𝑑-dimensional real-valued
embedding vectors, e.g., given 𝑑 = 2 and, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ R, a triple score is [𝑎 𝑏] ◦ [𝑐 𝑑] · [𝑒 𝑓 ] = 𝑎𝑐𝑒 + 𝑏𝑑 𝑓 .
During training, the gradient of the loss function (see Equation 2) w.r.t. 3 d-dimensional embedding vectors h, r, t is
computed. The gradient of the loss w.r.t. the first item 𝑎 in h is computed in two steps: the gradient of the loss. w.r.t.
the prediction is computed and distributed over the addition operation and the elementwise multiplication via 𝑐𝑒 . Yet,
the interaction between (𝑎, 𝑏) as well as between (𝑎, 𝑎) are ignored, although 𝑎 and 𝑏 constituted h together. This
stems from computing a scalar value via elementwise operations. These ignored interactions can be captured through
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applying KD on embedding vectors as follows

[𝑎𝑎 𝑎𝑏 𝑎𝑏 𝑏𝑏] ◦ [𝑐𝑐 𝑐𝑑 𝑐𝑑 𝑑𝑑] · [𝑒𝑒 𝑒 𝑓 𝑒 𝑓 𝑓 𝑓 ] = 𝑎𝑎𝑐𝑐𝑒

+ 2(𝑎𝑏𝑐𝑑𝑒 𝑓 )

+ 𝑏𝑏𝑑𝑑 𝑓 𝑓 .

(7)

Through the middle term in Equation 7, interactions between (𝑎, 𝑏) and (𝑎, 𝑎) are incorporated without requiring
additional parameters. Hence, we argue that DistMult defined in Equation 6 is less expressive than its KD variation
defined in Equation 7. Consequently, if the both models are trained properly, the latter model is expected to perform at
least as well as the former model in the link prediction problem. Importantly, the number of possible interactions within
an embedding vector grows by (𝑑 + 1)2 when 𝑑 grows by 1. Although these interactions are expected to encourage
feature reuse and reduce redundancy in model’s parameters, the computation of KP on embedding vectors may become a
bottleneck due to high computationally complexity of KD. In this setting, E and R can be seen as compressed embeddings
of entities and relations. Hence, given a triple (h, r, t), their compressed embeddings are retrieved and a triple score is
computed via their decompressed embeddings. Our technique can be readily applied on many multiplicative based
KGE models. For the numerical stability, the batch normalisation or layer normalization can be applied to reduce the
dependence of gradients on the scale of embedding vectors as these normalization techniques have beneficial effect on
the gradient flow through models [Ba et al. 2016; Ioffe and Szegedy 2015].

4.2 Kronecker Decomposition for Relation Embeddings

KD on relation embeddings of DistMult can be applied as

KD-Rel-DistMult(h, r, t) = h ◦ (r ⊗ r) · t, (8)

where h, t ∈ E : E ∈ R𝑑 , and r ∈ R : R ∈ R
√
𝑑 . The parameter gain can be computed as (𝑑 −

√
𝑑) × (|R|). Note that

scores of triples are still computed based on 3 d-dimensional embedding vectors. As the size of the input graph and the
number of relations grow, the parameter gain becomes more tangible.

4.3 Kronecker Decomposition of Embeddings for 1vsAll

Most KGs contain more entities than relations (see Table 1). Hence, the potential parameter gain of applying KD on
entity embeddings is expectedly larger than applying KD on relation embeddings. Yet, applying KD on tail entities
embeddings in 1vsAll or KvsAll increase the runtime and memory requirements as these training strategies require
considering all entities to compute an incurred loss for a single prediction (see Section 3.2). To alleviate this limitation,
KD can be applied as

KD-DistMult(h, r, t) =
𝑑∑
𝑖

𝑅(
(
h ⊗ h) ◦ (r ⊗ r)

)
𝑖 · t, (9)

where 𝑅(·) reshapes a 𝑑2 dimensional vector into 𝑑 by 𝑑 matrix. The matrix vector product of the resulting vector and t
is summed to obtain a score for an input triple (h, r, t).

In Section 4.2 and 4.3, we elucidated applying KD on embedding vectors. Yet, KD can be also applied to decompose
linear transformation weight matrices in feed-forward and convolutional based embedding models during training.
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Table 1. Overview of datasets.

Dataset |E | |R| |GTrain | |GVal. | |GTest |
UMLS 136 93 10,432 1304 1965
KINSHIP 105 51 17,088 2136 3210

5 EXPERIMENTAL SETUP

5.1 Training and Optimization

We trained approaches with the 1vsAll training strategy (see Section 3.2) as commonly done in the literature [Lacroix
et al. 2018; Ruffinelli et al. 2019]. All models are trained with the ADAM optimizer [Kingma and Ba 2014] and min-
imize the cross entropy loss function (see Equation 2). We use the same loss function for all approaches on all
datasets as Mohamed et al. [2019] previously showed that generalization performance of KGE models can be signifi-
cantly influenced by the choice of the loss function. Moreover, we apply the batch normalization [Ioffe and Szegedy
2015] to facilitate numerical stability and accelerate convergence during training. We trained the model for 1000
epochs with a learning rate of .01 and a batch size of 1024. We further optimized the embedding vector sizes in
{4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 289, 324, 361, 400} using a grid search. For label smoothing and label
relaxation, we consider 𝛼 ∈ {.1, .2}. This results in training models with soften target values, i.e., 0 < y(𝑖) < 1. Through
large parameter sweep in the embedding vector size, we aim to obtain a fine-grained performance analysis. As elucidated
in Section 4, we hypothesize that the impact of learning compressed embeddings becomes more tangible as the size
of the embedding vector increases. Importantly, we also share test and train performance of all operations with all
configurations. By doing so, we aim to quantify the impact of applying label smoothing and label relaxation during
training and testing separately. We do not apply an explicit regularization (e.g. L1, L2 regularization or the Dropout
technique [Srivastava et al. 2014]) as regularization techniques may not allow to observe any regularization effect of
label smoothing and label relaxation.

5.2 Datasets

We evaluated our proposedmodels on standard link prediction benchmark datasets (KINSHIP and UMLS datasets) [Trouil-
lon and Nickel 2017]. The Kinships knowledge graph describes the 26 different kinship relations of the Alyawarra
tribe and the unified medical language system (UMLS) knowledge graph describes 135 medical entities via 49 relations
describing [Trouillon and Nickel 2017]. Note that we omitted WN18RR, FB15K-237, and YAGO3-10 from our experi-
ments for two reasons: First, we aim to conduct experiments to quantify the impact of Kronecker Decomposition in a
fine-grained many unique configurations with very large number of epochs (1000). KINSHIP and UMLS datasets are
considerably smaller datasets compared to WN18RR, FB15K-237, and YAGO3-10. Hence, training three models with 21
unique configurations for 1000 epochs (see Section 5.1) on WN18RR, FB15K-237, and YAGO3-10 can take up to a month.
Moreover, two recent works showed that these datasets involve entities on the validation and test data splits that do
not occur in the train split [Broscheit et al. 2020; Demir and Ngomo 2021b].

5.3 Evaluation metrics and Baseline Selection

We use the standard metrics filtered Mean Reciprocal Rank (MRR) and hits at N (H@N) for link prediction [Balažević et al.
2019a,b; Dettmers et al. 2018]. We also evaluate link prediction performances of approaches with respect to number of
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parameters. In 1vsAll or KvsAll, for each test triple (h, r, t), the score of (h, r, x) triples for all 𝑥 ∈ E is computed. Based
on these scores, the filtered ranking 𝑟𝑎𝑛𝑘𝑡 of the triple having 𝑡 is obtained. Then the MRR: 1

|Gtest |
∑

(h,r,t) ∈Gtest 1
𝑟𝑎𝑛𝑘𝑡

is computed. Next, Hi@1, H@3, and H@10 are computed in literature [Balažević et al. 2019b; Dettmers et al. 2018;
Ruffinelli et al. 2019]. The number of parameters consists of |E|, |R|, and all other trainable parameters. Moreover, we
illustrate our methodology with DistMult for three reasons: (1) many recent KGE model can be seen as an effective
extension of DistMult, i.e., the Hadamard product followed by an inner product of input embeddings (see Section 2). (2)
Findings of Ruffinelli et al. [2019] indicate that DistMult perform competitive performance provided that it is properly
trained. (3) DistMult requires less floating point operations than more sophisticated recent models. Hence, it can be
trained in less time [Costabello et al. 2019; Valeriani 2020].

5.4 Implementation Details and Reproducibility

We built a hardware-agnostic knowledge graph embedding framework 3 based on PyTorch Lightning [Falcon et al.
2019] and DASK [Rocklin 2015]. In our experiments, the seed for the pseudo-random generator was fixed to 1. To
alleviate the hardware requirements for the reproducibility of our results, we provide hyperparameter optimization,
training and evaluation scripts along with pretrained models.

6 RESULTS

6.1 Standard Link Prediction

Table 2 reports link prediction results on benchmark datasets. Overall results indicate that applying KD on embeddingma-
trices reduces the number of required parameters, while yielding a competitive performance. KD-DistMult outperforms
DistMult and KD-Rel-DistMult in 9 out of 10 metrics in Table 2 with surprisingly less parameters. Specifically, KD-
DistMult outperforms DistMult and KD-DistMult, while requiring 18.2× and 11.4× fewer number of parameters than
DistMult and KD-Rel-DistMult on UMLS, respectively. Similarly, KD-DistMult requires 14.6× and 14.2× fewer number
of parameters than DistMult and KD-Rel-DistMult on KINSHIP, respectively. After observing these results, we delved
into the details of training process to validate the existence of overfitting. To this end, we evaluated each model on the
training datasets and added the MRR and Hit@N scores in Table 2.

Table 2. Link prediction results on UMLS and KINSHIP. |Θ | denotes the number of parameters. Bold entries denote best results.

UMLS KINSHIP

|Θ | MRR @1 @3 @10 |Θ | MRR @1 @3 @10

DistMult 67,915 .517 .441 .536 .659 46,818 .568 .500 .593 .693
on training set .995 .992 1.00 1.00 .919 .876 .952 .991

KD-Rel-DistMult 42,619 .531 .432 .584 .684 45,420 .562 .493 .588 .694
on training set .996 .993 .999 1.00 .914 .867 .953 .992

KD-DistMult 3,728 .541 .447 .598 .684 3,200 .599 .534 .631 .709
on training set .814 .704 .904 .989 .705 .572 .804 .950

These results suggest that (a) all models seem to suffer from overfitting and (b) increasing embedding vector size
does not proportionally increase the expressiveness of the model. DistMult with a 59% more number of parameters than
3https://github.com/dice-group/dice-embeddings
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KD-Rel-DistMult does not lead to a significant change in MRR and Hit@N scores on the training datasets. These results
also highlight the importance of applying extensive extensive hyperparameter optimization and model calibration to
increase generalization performances.

6.2 Link Prediction with Model Calibration

To observe the impact of model calibration, we retrained models with Label Smoothing and Label Relaxation (see
Section 3.3). Table 3 shows that performances of models are improved with model calibration on UMLS, whereas
performances are not increased and in some circumstances decreased. Importantly, model calibration seem to help
more on those models that suffer greatly from the overfitting. For instance, models seem to perform better without
model calibration on KINSHIP, where the overfitting is less severe.

Table 3. Link prediction results on UMLS and KINSHIP with model calibration. Rows with on training set report the performances on
the training dataset. |Θ |, LS, LR denote the number of parameters, Label Smoothing and Label Relaxation, respectively. Bold entries
denote best results.

UMLS KINSHIP

|Θ| MRR @1 @3 @10 |Θ| MRR @1 @3 @10

DistMult 67,915 .517 .441 .536 .658 46,818 .568 .499 .593 .693
on training set .995 .992 1.00 1.00 .919 .876 .952 .991
with LS 𝛼 = .1 .568 .499 .602 .707 .515 .417 .563 .685
on training set .996 .993 1.00 1.00 .918 .845 .954 .992
with LS 𝛼 = .2 .548 .475 .582 .690 .502 .398 .555 .667
on training set .995 .992 .999 1.00 .916 .871 .952 .992
with LR 𝛼 = .1 .552 .436 .630 .723 .567 .499 .592 .694
on training set .995 .992 1.00 1.00 .919 .875 .952 .992
with LR 𝛼 = .2 .579 .487 .648 .725 .567 .499 .592 .695
on training set .995 .992 1.00 1.00 .917 .873 .952 .992

KD-Rel-DistMult 42,619 .531 .432 .584 .684 32,946 .556 .487 .580 .689
on training set .996 .993 .999 1.00 .913 .865 .951 .992
with LS 𝛼 = .1 .565 .493 .611 .704 .500 .394 .555 .677
on training set .996 .992 .999 1.00 .913 .866 .951 .991
with LS 𝛼 = .2 .592 .531 .617 .704 .504 .403 .556 .671
on training set .994 .990 .999 1.00 .907 .855 .949 .991
with LR 𝛼 = .1 .543 .444 .602 .692 .555 .486 .577 .692
on training set .996 .993 .999 1.00 .912 .864 .952 .992
with LR 𝛼 = .2 .562 .476 .600 .718 .555 .487 .576 .689
on training set .993 .999 1.00 1.00 .912 .863 .952 .992

KD-DistMult 3,728 .541 .447 .598 .684 3,200 .599 .534 .631 .709
on training set .814 .704 .904 .989 .665 .519 .774 .936
with LS 𝛼 = .1 .592 .511 .627 .751 .519 .382 .621 .705
on training set .796 .677 .897 .984 .640 .491 .745 .928
with LS 𝛼 = .2 .572 .475 .623 .754 .486 .326 .605 .704
on training set .781 .655 .888 .980 .629 .476 .730 .930
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6.3 Link Prediction under Noise

We were interested to observe the impact of adding noisy triples into the training dataset in the link prediction task,
since many real-world KGs contains noisy triples. To this end, we add 10% noise in the training splits and evaluate
models. Table 4 suggest that 10% noise in the input data decrease the standard DistMult model by absolute 7% in MRR
on KINSHIP, whereas performance of KD-Rel-DistMult and KD-DistMult are more robust against the input noise.
Surprisingly, KD-Rel-DistMult reaches the highest MRR, Hit@1 and Hit@3 scores throughout our experiments with
10% noisy data. Bishop [Bishop 1995] showed that the addition of noise to the numerical input training data lead to
significant improvements in generalization performance. Our results signal that adding additional noise in the structured
data may have the similar effect.

Table 4. Link prediction results on noisy UMLS and KINSHIP. |Θ | denotes the number of parameters. Bold entries denote best results.

UMLS KINSHIP

|Θ| MRR @1 @3 @10 |Θ| MRR @1 @3 @10

DistMult 23,500 .448 .319 .484 .741 16,200 .523 .452 .538 .665
28,435 .470 .382 .497 .677 19,602 .512 .444 .523 .655
33,840 .423 .335 .411 .621 23,328 .508 .439 .517 .658
39,715 .518 .418 .556 .741 27,378 .510 .440 .524 .658
46,060 .489 .355 .586 .738 31,752 .512 .438 .529 .668
52,875 .465 .339 .500 .677 36,450 .518 .445 .534 .671
60,160 .422 .340 .413 .591 41,472 .520 .447 .536 .679
67,915 .485 .396 .497 .699 46,818 .517 .443 .534 .679
76,140 .532 .436 .562 .746 52,488 .523 .447 .547 .674
84,835 .448 .341 .467 .695 58,482 .529 .453 .551 .684
94,000 .466 .343 .541 .662 64,800 .529 .454 .556 .685

KD-Rel-DistMult 15,130 .521 .428 .534 .730 11,610 .540 .477 .554 .674
18,205 .550 .467 .578 .690 13,992 .516 .449 .528 .655
21,564 .456 .349 .499 .676 16,596 .507 .442 .514 .644
25,207 .469 .338 .591 .718 19,422 .500 .439 .502 .631
29,134 .515 .422 .561 .701 22,470 .503 .437 .511 .645
33,345 .580 .500 .617 .701 25,740 .503 .436 .509 .647
37,840 .526 .432 .544 .718 29,232 .506 .438 .515 .644
42,619 .567 .493 .607 .693 32,946 .505 .431 .519 .655
47,682 .439 .322 .482 .678 36,882 .511 .440 .529 .661
53,029 .554 .490 .574 .671 41,040 .511 .441 .524 .657
58,660 .583 .503 .632 .728 45,420 .514 .442 .531 .666

KD-DistMult 2,330 .461 .339 .527 .651 1,600 .562 .487 .592 .699
2,563 .331 .233 .343 .496 1,760 .573 .501 .609 .703
2,796 .376 .252 .448 .622 1,920 .567 .497 .599 .696
3,029 .346 .254 .370 .506 2,080 .576 .505 .604 .702
3,262 .374 .274 .391 .541 2,240 .567 .498 .589 .703
3,495 .393 .259 .480 .559 2,400 .569 .502 .597 .690
3,728 .452 .329 .529 .626 2,560 .572 .503 .603 .697
3,961 .374 .276 .385 .655 2,720 .566 .501 .590 .694
4,427 .358 .247 .376 .589 2,880 .578 .509 .607 .703
4,194 .545 .438 .596 .744 3,040 .584 .520 .609 .698
4,660 .366 .258 .406 .541 3,200 .586 .521 .612 .612

avg. DistMult 55,225 .470 .364 .501 .691 38,070 .518 .446 .535 .670
avg. KD-Rel-DistMult 34,765 .524 .431 .565 .700 26,850 .510 .443 .521 .653
avg. KD-DistMult 3,495 .398 .287 .441 .594 2,400 .573 .504 .601 .691
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6.4 Parameter Analysis

Table 5 and Table 6 report performances with a wide range of embedding vector sizes. Overall, our results corroborate
our hypothesis, namely, as the size of embedding vectors decreases, benefits of applying KD becomes less tangible.
More specifically, Table 5 suggests that as |Θ| grows KD-Rel-DistMult and KD-DistMult perform quite well compared
to DistMult on the both benchmark datasets.

Table 5. Link prediction results on UMLS and KINSHIP with the highest half of the the parameter sweep in the number of parameters
|Θ |. Bold entries denote best results.

UMLS KINSHIP

|Θ| MRR @1 @3 @10 |Θ| MRR @1 @3 @10

DistMult 28,435 .430 .346 .430 .650 19,602 .556 .487 .585 .687
33,840 .439 .357 .455 .545 23,328 .563 .494 .589 .695
39,715 .425 .344 .435 .596 27,378 .562 .493 .587 .695
46,060 .484 .419 .480 .585 31,752 .563 .494 .588 .699
52,875 .507 .439 .525 .646 36,450 .565 .498 .589 .693
60,160 .459 .363 .487 .646 41,472 .567 .498 .598 .700
67,915 .517 .441 .536 .659 46,818 .568 .500 .593 .693
76,140 .471 .374 .485 .677 52,488 .548 .460 .596 .697
84,835 .454 .354 .496 .632 58,482 .567 .498 .598 .697
94,000 .436 .353 .439 .587 64,800 .563 .493 .591 .697

KD-Rel-DistMult 18,205 .544 .475 .576 .665 13,992 .546 .478 .568 .684
21,564 .532 .426 .576 .735 16,596 .544 .462 .580 .691
25,207 .455 .368 .473 .639 19,422 .546 .476 .567 .687
29,134 .477 .373 .508 .661 22,470 .544 .472 .571 .688
33,345 .525 .452 .548 .642 25,740 .548 .475 .576 .691
37,840 .516 .441 .549 .669 29,232 .553 .484 .578 .689
42,619 .531 .432 .584 .684 32,946 .556 .487 .580 .689
47,682 .483 .397 .519 .640 36,882 .390 .155 .578 .694
53,029 .525 .447 .554 .643 41,040 .559 .488 .587 .693
58,660 .435 .348 .438 .598 45,420 .562 .493 .588 .694

KD-DistMult 2,563 .357 .275 .374 .453 1,760 .556 .487 .581 .686
2,796 .403 .276 .468 .637 1,920 .579 .509 .613 .702
3,029 .354 .271 .375 .492 2,080 .567 .493 .606 .698
3,262 .357 .267 .372 .470 2,240 .577 .511 .605 .701
3,495 .361 .252 .382 .618 2,400 .572 .501 .607 .706
3,728 .541 .447 .598 .684 2,560 .591 .526 .621 .703
3,961 .407 .282 .474 .645 2,720 .587 .521 .619 .701
4,194 .379 .302 .392 .461 2,880 .591 .526 .620 .708
4,427 .382 .285 .390 .605 3,040 .599 .535 .628 .707
4,660 .505 .397 .581 .697 3,200 .599 .534 .631 .709

avg. DistMult 58,397 .462 .379 .477 .622 40,257 .562 .491 .591 .695
avg. KD-Rel-DistMult 36,728 .502 .416 .532 .658 28,374 .535 .447 .577 .690
avg. KD-DistMult 3,611 .405 .305 .441 .576 2,480 .582 .514 .613 .702
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Table 6. Link prediction results on UMLS and KINSHIP with the lowest half of the the parameter sweep in the number of parameters
|Θ |. Bold entries denote best results.

UMLS KINSHIP

|Θ| MRR @1 @3 @10 |Θ| MRR @1 @3 @10

DistMult 940 .475 .378 .501 .669 648 .450 .291 .559 .686
2,115 .550 .472 .579 .668 1,458 .582 .516 .607 .707
3,760 .493 .336 .633 .757 2,592 .607 .554 .634 .712
5,875 .584 .498 .626 .749 4,050 .613 .554 .640 .714
8,460 .488 .363 .567 .681 5,832 .612 .555 .631 .709
11,515 .409 .326 .417 .601 7,938 .597 .533 .625 .710
15,040 .473 .378 .502 .679 10,368 .581 .519 .605 .699
19,035 .548 .476 .590 .709 13,122 .560 .492 .584 .690
23,500 .489 .409 .518 .598 16,200 .549 .480 .570 .683

KD-Rel-DistMult 754 .385 .220 .550 .683 546 .508 .428 .532 .679
1,557 .537 .444 .582 .692 1,152 .382 .137 .581 .694
2,644 .531 .453 .559 .646 1,980 .579 .508 .609 .710
4,015 .547 .466 .579 .694 3,030 .591 .523 .621 .712
5,670 .457 .367 .487 .635 4,302 .599 .536 .620 .709
7,609 .560 .431 .657 .742 5,796 .592 .529 .615 .709
9,832 .555 .477 .576 .716 7,512 .581 .517 .607 .703
12,339 .507 .415 .550 .679 9,450 .575 .512 .593 .698
15,130 .565 .503 .586 .687 11,610 .560 .493 .581 .693

KD-DistMult 466 .354 .266 .384 .539 320 .358 .358 .400 .528
699 .321 .215 .309 .564 480 .428 .380 .421 .508
932 .347 .252 .357 .643 640 .492 .422 .505 .643
1,165 .360 .260 .381 .503 800 .524 .454 .547 .660
1,398 .335 .225 .347 .620 960 .527 .457 .553 .655
1,631 .375 .225 .493 .651 1,120 .550 .483 .573 .676
1,864 .357 .248 .362 .686 1,280 .575 .503 .607 .708
2,097 .355 .244 .373 .648 1,440 .572 .500 .603 .707
2,330 .533 .433 .588 .737 1,600 .557 .488 .587 .689

avg. DistMult 10,026 .501 .404 .548 .679 6,912 .572 .499 .606 .701
avg. KD-Rel-DistMult 6,616 .516 .420 .569 .686 5,042 .552 .465 .595 .701
avg. KD-DistMult 1,398 .371 .263 .399 .621 960 .509 .449 .534 .642

7 DISCUSSION

We conjecture that all KGE models may benefit from an extensive hyperparameter optimization. Yet, here, we were
interested in relative link prediction performances under optimizing solely the embedding vector size. We aimed to
observe possible benefits of learning compressed embeddings in link prediction task. Table 2 and Table 6 suggest that
benefits of learning compressed embeddings becomes more beneficial as the embedding vector size grows. Increasing
the size of embedding vectors in DistMult does not decrease training loss as well as MRR and Hit@N scores on training
datasets. This may stem from the fact that increasing the size of embeddings increases redundancy in the parameters,
hence does not improve training and test performance of DistMult. Yet, Table 3 shows that model calibration consistently
improved generalization performances on UMLS, while performances on KINSHIP are not improved as such. In our
experiments, performance of KD-Rel-DistMult and KD-DistMult suggest that learning compressed knowledge graph
Manuscript submitted to ACM
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embeddings does not only lead to a competitive and sometimes superior performance but also decrease the the need of
overparameterization. We argue that a comprehensive study including many recent state-of-the-art knowledge graph
embedding models on benchmark datasets from different domains is needed to further analyse the benefits of learning
compressed embeddings via KD.

8 CONCLUSION

Most KGE models learn embeddings of entities and relations tailored towards the link prediction problem. Recent results
signal an ever increasing predictive ability with the cost of over-parameterization and computationally complexity.
Here, we designed a generic technique based on the Kronecker Decomposition (KD) to find a remedy for the former
problem. Through KD, interactions within an embedding vector can be incorporated in the learning process without
requiring requiring additional parameters. This encourages feature reuse and reduce redundancy in the embedding
vectors. We showed that our technique can be readily applied in existing embedding models. Our experiments suggest
that applying KD on entity and relation embeddings during training makes models more robust against overfitting and
noise in input knowledge graphs. Benefits of KD becomes more tangible as the size of the input vector grows.
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