
ADAGIO — Automated Data Augmentation of Knowledge Graphs Using
Multi-expression Learning

KEVIN DRESSLER, MOHAMED AHMED SHERIF, and AXEL-CYRILLE NGONGA NGOMO, The

Data Science (DICE) group, Paderborn University, Germany, Germany

The creation of an RDF knowledge graph for a particular application commonly involves a pipeline of tools that transform a set of
input data sources into an RDF knowledge graph in a process called dataset augmentation. The components of such augmentation
pipelines often require extensive configuration to lead to satisfactory results. Thus, non-experts are often unable to use them. We
present an efficient supervised algorithm based on genetic programming for learning knowledge graph augmentation pipelines of
arbitrary length. Our approach uses multi-expression learning to learn augmentation pipelines able to achieve a high F-measure on
the training data. Our evaluation suggests that our approach can efficiently learn a larger class of RDF dataset augmentation tasks
than the state of the art while using only a single training example. Even on the most complex augmentation problem we posed, our
approach consistently achieves an average F1-measure of 99% in under 500 iterations with an average runtime of 16 seconds.

CCS Concepts: • Information systems → Entity resolution; Data cleaning; Extraction, transformation and loading; Data
exchange; Mediators and data integration; Wrappers (data mining); Deduplication; Geographic information systems; • Computing
methodologies→ Ontology engineering; Semantic networks.

Additional Key Words and Phrases: Knowledge graphs, Data augmentation, Data integration, Machine learning, Genetic programming,
Multi expression programming

ACM Reference Format:
Kevin Dreßler, Mohamed Ahmed Sherif, and Axel-Cyrille Ngonga Ngomo. 2022. ADAGIO — Automated Data Augmentation of
Knowledge Graphs Using Multi-expression Learning. In HT’22: 33rd ACM Conference on Hypertext and Social Media, June 28 – July 1,

2022, Barcelona, Spain. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3511095.3531287

1 INTRODUCTION

Knowledge graph augmentation encompasses the steps from an initial set of data sources to the creation of a useful
knowledge graph for a particular application [26]. For example, the generation of DBpedia1 demands the mappings of
infoboxes to Resource Description Framework (RDF) resources and properties. Large bio-medical datasets such as the
Linked Cancer Genome Atlas [24] are often the results of the transformation of relational and textual data into RDF
including the disambiguation of the terms found in the original dataset. While a plethora of solutions exist for addressing
single steps of the knowledge graph augmentation problem (e.g., knowledge extraction [14], link discovery [18], data
fusion [15]), there is still a need to combine these solutions with each other as well as with custom dataset transformations
to generate the intended data set. Despite a substantial amount of efforts to develop dataset augmentation tasks for
specific use cases [1, 5, 10], there are only two frameworks dedicated to facilitating the generation of augmentation
tasks, namely DEER [26] and Linked Data Integration Framework (LDIF) [25]. Both frameworks can be configured
1https://www.dbpedia.org/

Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a
national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so,
for Government purposes only.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

1

HTTPS://ORCID.ORG/0000-0002-4138-6881
HTTPS://ORCID.ORG/0000-0002-9927-2203
HTTPS://ORCID.ORG/0000-0001-7112-3516
https://doi.org/10.1145/3511095.3531287
https://www.dbpedia.org/

HT’22, June 28 – July 1, 2022, Barcelona, Spain Dreßler et al.

manually, which requires expert knowledge. They also provide supervised machine learning algorithms, i.e., they can
also be operated by non-experts. However, DEER can only operate on a single dataset at a time while LDIF only provides
a learning algorithm [3] for its data fusion sub-module SIEVE.

We address these shortcomings by developing an automatic configuration approach (dubbed ADAGIO) for augmen-
tation tasks in the shape of Directed Acyclic Graphs (DAGs) (i.e., with multiple inputs). We implement our approach on
top of our own fork2 of the DEER framework that supports a plugin system. Moreover, we treat the plugins as black
boxes to show the adaptability of our approach in contrast to the state of the art (e.g. LDIF), which has a static pipeline
architecture.

The contributions of this paper are summarized as follows:

• We present a theoretical framework of RDF dataset augmentation and a classification of DAG-shaped augmenta-
tion tasks.
• We derive an efficient genotype representation of DAG-shaped augmentation tasks for Multi Expression Pro-
gramming (MEP).
• We develop various optimizations for our learning algorithm, including a set of semantic genetic operators.
• Finally, we evaluate ADAGIO to answer three research questions. In particular, we study the set of optimal
hyperparameters of our approach, its performance in comparison to the state of the art and its performance
characteristics. Our results show that ADAGIO outperforms the state of the art while being able to learn complex
real-world DAG-shaped augmentation tasks with an average F1-measure of 99% in at most 500 generations.

2 RELATEDWORK

The objective of this work is strongly related to the fields of AutoML [7] and On-The-Fly (OTF) Computing [11]. Another
closely related notion is that of knowledge graph refinement [22], which is concerned with predictive modelling of
certain knowledge graph features.

Genetic Programming (GP) is a subfield of Genetic Algorithm (GA) [17] which originated from the application of a
GA in order to evolve computer programs by John Koza[12]. In GP, programs are usually encoded as trees of operations
and terminals, but other encodings have also been proposed. For example, Graff et al.[9] use DAGs to encode python
programs. Multi Expression Programming (MEP) [6] is a special kind of Genetic Programming [12] that has gained
traction in recent years. In particular, MEP has been successfully applied to TSP [19], data prediction [29], software
effort estimation [2], on-the-fly hyperparameter optimization for Evolutionary Algorithms [20] and digital circuit
design [21]. Semantic genetic operators operate on the semantics of the solution space in contrast to traditional genetic
operators, which operate in the encoding space, unaware of the semantics behind traditional bit-vector representations.
Such semantic genetic operators also have had a lot of attention in recent literature. In particular, [23] uses semantic
genetic operators in an NLP context to match sentences. [4, 8] applied semantic genetic operators to symbolic regression
problems while other works focus more on advantageous mathematical properties in traditional numerical optimization
settings for GP [28].

RDF data augmentation is a problem that greatly differs from use case to use case. For example, [1] considers the
automatic extraction of interests from Twitter posts in order to enrich user profiles on the Social Web. On another use
case, [5] applies a ranking method to the Youtube tag space in order to enrich datasets on the Linked Open Data (LOD)
with links to Youtube videos. To our best knowledge, the only effort directed towards a general framework of RDF

2https://github.com/dice-group/deer

2

https://github.com/dice-group/deer

ADAGIO — Automated Data Augmentation of KGs Using MEL HT’22, June 28 – July 1, 2022, Barcelona, Spain

Fig. 1. Running example augmentation graph.

dataset augmentation together with an automatic learning approach can be found in [26], where the authors propose a
framework and learning algorithm called DEER. We chose to build our approach based on the existing open source
software of DEER, where we replaced the simple sequential pipelining approach with a more sophisticated one, based
on arranging the enrichment functions in a DAG. In order to better distinguish our approach from the former, we will
call atomic enrichment functions which allow for multiple inputs and multiple outputs enrichment operators.

3 APPROACH

We begin by providing a formal definition of augmentation operators and augmentation graphs. We then show
how augmentation tables can be used to evaluate such graphs efficiently. Our learning algorithm then exploits the
representation of graphs as multi-expressive augmentation tables to learn augmentation pipelines based on minimal
examples.

3.1 Formal Model

RDF Dataset. An RDF dataset 𝐷 is a set of triples {(𝑠, 𝑝, 𝑜) ∈ (R ∪ B) × R × (R ∪ B ∪ L)}, where R is the set of all
RDF IRI resources, B is the set of all RDF blank nodes and L is the set of all RDF literals. We denote the set of all RDF
datasets as D.

Dataset Operators. A functionO(𝑛,𝑚) : D𝑛+1 → D𝑚 is called a dataset operator. Intuitively, a dataset operatorO(𝑛,𝑚)
processes 𝑛 input datasets using another dataset𝐶 as configuration to produce𝑚 output datasets. We call 𝑛 the in-degree
and𝑚 the out-degree of O(𝑛,𝑚) and will resort to writing just O when the lack of their specification will incur no loss
of generality. Given integers 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1,𝑚], we call the 𝑖th argument of O(𝑛,𝑚) and the 𝑗th component in the
output of O(𝑛,𝑚) the in-port 𝑖 and out-port 𝑗 , respectively. The set of all dataset operators is denoted as O. We specify
the following naming scheme for dataset operators: O(0,1) is called a dataset emitter, O(1,0) is called a dataset acceptor,
O(𝑛>0,𝑚>0) is called an augmentation operator and O(𝑛,1) is called a confluent augmentation operator.

Augmentation Graphs. An augmentation graph𝐺 = (O, E, L,M) is a directed acyclic labeled multigraph where O ⊆ O
is a set of dataset operators, which act as vertices; E ⊆ O2 is the set of edges, which represent flow of data; L : E→ 2N×N

3

HT’22, June 28 – July 1, 2022, Barcelona, Spain Dreßler et al.

is the edge labeling function, which defines mappings between dataset operator out-ports and in-ports for a given edge;
andM : O→ D is a mapping from vertices to configuration datasets.

We call the subsets of vertices O𝑟 B
{
O(𝑛,𝑚) ∈ O | �

(
O′,O(𝑛,𝑚)

)
∈ E ∧ 𝑛 = 0 ∧𝑚 = 1

}
root vertices,

O𝑙 B
{
O(𝑛,𝑚) ∈ O | �

(
O(𝑛,𝑚) ,O

′
)
∈ E ∧ 𝑛 = 1 ∧𝑚 = 0

}
leaf vertices and O𝑖 B O\(O𝑟 ∪ O𝑙) inner vertices.

Note that, per definition all root vertices of an augmentation graph must be dataset emitters, all leaf vertices must be
dataset acceptors and all inner vertices must be augmentation operators. In our running example augmentation graph
in Figure 1, we coloured all root vertices blue and all leaf vertices red.

The intuition behind L is that, given 𝑒 = (O1,O2), we need to define which of O1’s out-ports map to which of O2’s
in-ports. In other words, an entry of the label multiset 𝑙 ∈ L(𝑒) = (𝑖, 𝑗) establishes a flow of data from O1’s 𝑖th out-port
to O2’s 𝑗th in-port. The label function must not allow multiple mappings to the same in-port of the same dataset
operator, which is formally expressed as:

∀𝑒1 = (O1,O2), 𝑒2 = (O3,O4) ∈ E : O2 = O4
→ ∀𝑙1 = (𝑖1, 𝑗1) ∈ L(𝑒1)�𝑙2 = (𝑖2, 𝑗2) ∈ L(𝑒2) : 𝑙1 ≠ 𝑙2 ∧ 𝑗1 = 𝑗2

For instance, in our running example in Figure 1, the label set on the edge between O4 and O5 indicates that O4’s
first output dataset is the second argument to O5.

To evaluate an augmentation graph, we first obtain the RDF datasets as output of the root vertices in O𝑟 . These
datasets then flow through the graph as specified by the semantics we associated with the edge set E and the label
multiset L. Whenever a dataset operatorO(𝑛,𝑚) ∈ O𝑖 has received all its 𝑛 input datasets, it is evaluated usingM(O(𝑛,𝑚))
as its last argument. The flow through the graph continues until eventually all vertices have been evaluated.

Categorization of Augmentation Graphs. We call an augmentation graph 𝐺 = (O, E, L,M) linear iff |O𝑟 | = |O𝑙 | = 1
and ∀O1,O2 ∈ O : O1 ≠ O2 there exists at most a single path between O1 and O2; semi-linear iff |O𝑟 | = |O𝑙 | = 1 and
there is a pair of vertices𝑢, 𝑣 ∈ O,𝑢 ≠ 𝑣 for which there exist multiple paths from𝑢 to 𝑣 ; confluent iff |O𝑟 | > 1∧|O𝑙 | = 1;
inherently confluent iff it is confluent and it only contains confluent augmentation operators, i.e.,∀O(𝑛,𝑚) ∈ O : 𝑚 = 1;
and general otherwise. Note that inherently confluent augmentation graphs correspond to general augmentation
graphs without loss of generality3.

Augmentation Tables. An augmentation table T is a condensed linear representation for inherently confluent aug-
mentation graphs based on column tables [13]. The idea behind this representation is that each row represents one
dataset operator. We can go through this table from top to bottom and evaluate the dataset operators which correspond
to a row 𝑖 using only the results of rows 1 to 𝑖 − 1. Since dataset acceptors produce no output, they are omitted in this
representation for the sake of simplicity.

Let 𝐺 = (O, E, L,M) be an inherently confluent augmentation graph. Moreover, let 𝑁 (O) B max
{
𝑛 | O(𝑛,𝑚) ∈ 𝑂

}
denote the maximum in-degree in O. An augmentation table is a table with 3 + 𝑁 (O) columns and |O| rows, where
the first column contains dataset operators, the second column contains configuration datasets and the third column
contains the in-degrees of the dataset operators in the first column. The last 𝑁 (O) columns contain the indices of the
rows used as input to the corresponding dataset operator. Given an augmentation table T, we write T𝑖 and T𝑖, 𝑗 to refer
to the 𝑖th row and the 𝑗 th column in the 𝑖th row of T, respectively. Applying this representation to our running example
augmentation graph in Figure 1 gives the augmentation table depicted in Table 1.

3Any 𝑛-ary operator on a set is a finite composition of binary operators [27]

4

ADAGIO — Automated Data Augmentation of KGs Using MEL HT’22, June 28 – July 1, 2022, Barcelona, Spain

Table 1. Running example augmentation table.

T1: O1 𝐶1 0 0 0 0
T2: O2 𝐶2 1 1 0 0
T3: O3 𝐶3 2 1 2 0
T4: O4 𝐶4 1 3 0 0
T5: O5 𝐶5 3 2 4 3

The algorithm for the computation of an augmentation table from a given inherently confluent augmentation graph
is given in [13]. In essence, an augmentation table can be easily obtained from the adjacency matrix of a given Directed
Acyclic Graph (DAG) 𝐺 = (V, E) when a fixed indexing bijection 𝜙 : 𝑉 → {1, . . . , |O|} of its vertices is provided such
that ∀(𝑣, 𝑣 ′) ∈ E : 𝜙 (𝑣) > 𝜙 (𝑣 ′).

To obtain the results of a given augmentation table T, it has to be evaluated from top to bottom. The last result is
considered to be the result of the whole table. The evaluation result of a row T𝑖 is denoted as T𝑖 . For example, the
augmentation graph depicted in Table 1 is evaluated as follows:

T1 = O1 (𝐶1)

T2 = O2 (T1,𝐶2)

T3 = O3 (T1,T2,𝐶3)

T4 = O4 (T3,𝐶4)

T5 = O5 (T2,T4,T3,𝐶5)

We call a row within an augmentation table an output row, if it is not used as input to a subsequent row. Note that
output rows always correspond to dataset acceptors and that our previous definition of augmentation tables allows for
only a single output row, as our augmentation tables must be isomorphic to inherently confluent augmentation graphs.

Multi-Expressive Augmentation Tables. A multi-expressive augmentation table is a generalized augmentation table
that has more than one output row. Note that any row 𝜔 = T𝑖 in a multi-expressive augmentation table can be seen
as an output row by just disregarding all rows below 𝜔 . Given such a reference output row 𝜔 in a multi-expressive
augmentation table T we can derive a normal augmentation table T′ in the following recursive fashion:

(1) We initialize T′ as an empty augmentation table, L as an empty list and 𝜁 : N→ N as a bijective mapping of
index numbers that initially only contains the mapping 1 ↦→ 1.

(2) Given 𝜔 = T𝑖 , we add (𝜔, 𝑖) to the list L
(3) Whenever adding a row T𝑗 toL, we recursively add all the row-index pairs

((
TT𝑗,4 ,T𝑗,4

)
, . . . ,

(
TT𝑗,T𝑗,3 ,T𝑗,3+T𝑗,3

))
to L.

(4) We iterate through L’s entries (T𝑘 , 𝑗𝑘) ∀𝑘 ∈ [1, |L|] in ascending order according to the index 𝑗𝑘 .
(5) For each entry (T𝑘 , 𝑗𝑘) ∈ L, we add T𝑘 to T′ and keep track of the mapping from the old row number to the

new row number by adding the mapping 𝑗𝑘 ↦→ 𝑘 to 𝜁 .
(6) We then apply our index mapping 𝜁 to the input definition column entries as T′𝑥,𝑦 B 𝜁

(
T′𝑥,𝑦

)
∀1 ≤ 𝑥 ∈≤

|T′ |, 𝑦 ∈
[
4, 3 + T′

𝑘,3

]
Consider the multi-expressive augmentation table given in Table 2. When we select the 8th row as output reference

row, we can reconstruct the normal augmentation table in Table 1 by following the algorithm defined above.
5

HT’22, June 28 – July 1, 2022, Barcelona, Spain Dreßler et al.

Table 2. Example of a multi-expressive augmentation table. Output rows appear with a gray background.

T1: O1 𝐶1 0 0 0 0
T2: O2 𝐶2 1 1 0 0
T3: O3 𝐶3 2 1 2 0
T4: O4 𝐶4 1 3 0 0
T5: O6 𝐶6 2 3 1 0
T6: O7 𝐶7 1 5 0 0
T7: O8 𝐶8 2 5 3 0
T8: O5 𝐶5 3 2 4 3
T9: O9 𝐶9 1 7 0 0

3.2 Learning Algorithm

The problem under study to find an adequate enrichment graph for a given training example. Since for this work we do
not wish to consider multi-objective learning, we restrict ourselves to learning the subclass of inherently confluent
enrichment graphs. We will furthermore restrict our study to enrichment graphs where the maximum in-degree of the
involved enrichment operators and the number of involved dataset emitters are at most two.

The core of our learning approach is a population-based (𝜇 + 𝜆) Multi Expression Programming (MEP) algorithm4

that is able to learn the subclass of inherently confluent augmentation graphs. Our population consists of a fixed number
𝜇 + 𝜆 of multi-expressive augmentation tables that we also call genotypes. All genotypes have a fixed number 𝑟 of rows.
Tournament selection [16] with a tournament size of 3 and a selection probability of 0.75 is applied for determining the
mating pool and for selecting the survivors. Additionally, we use 1-elitist selection [17] to avoid a decrease in fitness.
Both the offspring and the survivors are subject to mutation. The offspring fraction 𝜇

𝜆
, mutation probability 𝜎 and

mutation rate 𝜌 are hyperparameters that need to be determined experimentally. The algorithm will stop when either a
perfect solution is found, a maximum number 𝑔 of generations is exceeded or our convergence detection terminates it.

As the results of RDF dataset augmentation are commonly expected to have a regular structure, we can expect
the output dataset to be decomposable into a number of subgraphs that are isomorphic up to a certain error w.r.t.
some structural graph similarity measure. We therefore regard the training examples as a list of source Concise
Bounded Descriptions (CBDs)

(
𝐷𝑠1 , . . . , 𝐷𝑠𝑛

)
∈ D𝑛, 𝑛 ∈ {1, 2} and a single target CBD 𝐷𝑡 ∈ D of sufficient depth to

representatively capture the desired augmentation. This is in accordance with the observation that a single pair of
CBDs often suffices for the training of augmentation pipelines [26]. Note our choice to restrict the number of involved
dataset emitters to at most two. This restriction does induce loss of generality as a larger number of dataset emitters
can be supported by extending some of the formalism and definitions that follow.

In the following, we outline the details of our learning algorithm such as how we compute the initial population, the
fitness function we employ and how we use it to evaluate genotypes, as well as a method to speed up learning called
genotype compaction and the semantic genetic operators that we use for mutation and recombination.

Population Initialization. The population initialization procedure (see Listing 1) receives a set of prespecified dataset
emitters E⊥ and a corresponding set of configuration datasets 𝐶⊥ as well as the number of rows 𝑟 it should generate.
Initially, the configuration dataset for each of the augmentation operators is the empty dataset. We determine the actual
configuration dataset of a given genotype row at evaluation time using heuristic self-configuration.

4𝜇 is the population size and 𝜆 is the recombination pool size.

6

ADAGIO — Automated Data Augmentation of KGs Using MEL HT’22, June 28 – July 1, 2022, Barcelona, Spain

Algorithm 1: Random generation of multi-expressive augmentation tables.
Data: E⊥, ; // set of dataset emitters

Data: 𝐶⊥, ; // set of configurations

Data: r, ; // number of rows to be generated

1 T← ∅;
2 i← 1;
3 while 𝑖 ≤ 𝑟 do
4 if i < |E⊥| then
5 T𝑖 ←(E⊥

𝑖
, 𝐶⊥

𝑖
, 0, 0, 0);

6 else
7 d← rnd(1,max(2, i-1)) ; // rnd(a,b) returns a random integer in [a,b]

8 O(𝑛,𝑚) ← rndop(d) ; // rndop(d) returns a random enrichment operator with a maximum in-degree of d

9 d← n;
10 if d = 1 then
11 T𝑖 ←(O, ∅, d, rnd(1,i-1));
12 else
13 T𝑖 ←(O, ∅, d, rnd(1,i-1), rnd(1,i-1));

14 i← i + 1;
15 return T;

Heuristic Self-Configuration of Augmentation Operators. Due to the generality of our approach, we will not predefine
any augmentation operators. Rather, augmentation operators are black boxes to the learning algorithm, where each
augmentation operator expose a generic interfaces for heuristic self-configuration, i.e., a function that can heuristically
compute the configuration dataset for the augmentation operator. Formally, let T be a genotype. T𝑖 denotes the dataset
resulting from the evaluation of a given genotype row T𝑖 . The input to the self-configuration procedure consists of the
result of all input rows

(
T𝑖,4, . . . ,T𝑖,T𝑖,3

)
of T𝑖 and the target training dataset 𝐷𝑡 .

Fitness Function. Let S(𝐷), P(𝐷), O(𝐷) denote the sets of subjects, predicates and objects5 of a given dataset 𝐷 ,
respectively. We define the fitness function of our learning algorithm as

F : D2 → [0, 1]

(𝐷𝑟 , 𝐷𝑡) ↦→
1
4 (𝐹1 (𝐷𝑟 , 𝐷𝑡) + 𝐹1 (S(𝐷𝑟),S(𝐷𝑡))

+𝐹1 (P(𝐷𝑟),P(𝐷𝑡)) + 𝐹1 (O(𝐷𝑟),O(𝐷𝑡))) ,

where 𝐷𝑟 is the resulted dataset from our algorithm, 𝐷𝑡 is the target dataset from the training data and 𝐹1 is the
F1-measure, F measures similarity in terms of the overlapping IRI resources in subjects, overlapping IRI resources in
predicates and overlapping IRI resources and literals in objects as well as overlapping triples. The design of our fitness
function is motivated by the two simple observations that (1) augmentation operators seldom modify all components
of a given triple at once and (2) generally only the combination of multiple augmentation operators will lead to the
generation of a triple as present in the target training dataset. Therefore, we designed our fitness function to detect any
incremental improvements towards the end result. In contrast, DEER uses just the F1-measure over the set of triples as
fitness function, which completely fails to measure incremental improvements in partial solution quality.

5Note that we exclude blank nodes from S(𝐷) and O(𝐷) .
7

HT’22, June 28 – July 1, 2022, Barcelona, Spain Dreßler et al.

0.10.30.50.70.9
0.1 0.3 0.5 0.7 0.9

22

24

26

28

α = 0.0
α = 0.2

α = 0.4
α = 0.6
α = 0.8
α = 1.0

ρσ

M
ea

n
#

G
en

er
at

io
ns

21

22

23

24

25

26

27

28

St
an

da
rd

D
ev

ia
tio

n

0.1 0.3 0.5 0.7 0.9
0.1

0.3

0.5

0.7

0.9

ρ

σ

20

21

22

23

24

25

M
ea

n
#

G
en

er
at

io
ns

Fig. 2. Hyperparameter Optimization Results. The experiment was repeated one thousand times. We measured the average
generations to termination and the number of perfect runs. On the right hand side we see a more detailed heat map of the best
performing plane on the left.

MEP-based Evaluation of Genotypes. As our genotypes are represented as multi-expressive augmentation table T, they
correspond to multiple phenotypes. i.e., normal augmentation tables. Therefore, we regard each row in T as a potential
output row. The evaluation of T is done row-wise and in a similar way to the evaluation of a normal augmentation
table with the notable exception that we apply self-configuration to obtain the configuration dataset.

We compute the fitness for the result of each row using F . The effective phenotype of a given genotype is the normal
augmentation table obtained by reconstruction where the fittest row is taken as reference output row. Likewise, we
define a genotypes effective fitness as the fitness of its effective phenotype.

Genotype Compaction. The idea of genotype compaction is that we can speedup learning by restructuring genotypes
T in a way such that we move the effective phenotype T𝑝 of T to the front of the compacted genotype T′.

Let |T| denote the number of rows in a given genotype T. Furthermore, let ⊥(T) denote the first one or two rows
corresponding to dataset emitters in a given genotype T.

First, we derive the effective genotype T𝑝 of T. We define ⊤(T) = T\⊥(T). The compacted genotype T′ is then
defined row-wise by Equation 1 where rndrow() means that in this case we generate a new row randomly in a way
that is reflected by lines 12 through 19 of Listing 1.

T′𝑖 B ⊥(T)𝑖 ⇐⇒ 1 ≤ 𝑖 ≤ |⊥(T) |

T′𝑖 B ⊤(T𝑝)𝑖−|⊥(T) | ⇐⇒ |⊥(T) | < 𝑖 ≤ |⊥(T) | + |⊤(T𝑝) |

T′𝑖 B rndrow() ⇐⇒ |⊥(T) | + |⊤(T𝑝) | < 𝑖 ≤ 𝑟

(1)

We apply genotype compaction randomly with a probability of 0.5 to the whole population in the beginning of each
generation.

To further minimize the size of the compacted genotype, we detect and remove no-op rows, i.e., rows for which
the output is identical to one of the inputs. Formally, given a row T𝑖 , its input datasets 𝐼 =

(
TT𝑖,4 , . . . ,TT𝑖,3+T𝑖,3

)
and its

output dataset T𝑖 , we call T𝑖 a no-op row iff ∃𝐷 ∈ 𝐼 : T𝑖 = 𝐷 .
8

ADAGIO — Automated Data Augmentation of KGs Using MEL HT’22, June 28 – July 1, 2022, Barcelona, Spain

Subgraph Merging Crossover. The idea behind our subgraph merging crossover is to combine two genotypes T, T′ in
a way that increases the probability of learning a graph where both T and T′ are part of its effective phenotype. This is
motivated by the observation that two well-performing and sufficiently distinct inherently confluent augmentation
graphs could be merged into one by redirecting the vertices that have edges to their dataset acceptors to a new vertex
with in-degree two.

LetT𝑝 ,T′𝑝 be the effective phenotypes ofT,T′, respectively.We apply this operator only if |⊥(T) |+|⊤(T𝑝) |+|⊤(T′𝑝) | ≤
𝑟 holds, otherwise we default to the single-point crossover.

The subgraph merging crossover needs to return two child genotypes to guarantee that the population size stays
constant. To this end, we first compute both children equally, but then we fill the 𝑟 − |⊥(T) | + |⊤(T𝑝) | + |⊤(T′𝑝) |
remaining rows randomly for each child genotype.

If 𝑟 − |⊥(T) | + |⊤(T𝑝) | + |⊤(T′𝑝) | ≥ 1, we will also insert a row that merges the two subgraphs in T𝑝 and T′𝑝 with a
probability of 0.25. To this end, we will randomly aquire an augmentation operator with an in-degree of two and set the
input columns to the positions of the output rows of T𝑝 and T′𝑝 in the newly created child genotype.

LetOmerge
(2,1) be a randomly chosen augmentation operator with in-degree two. Formally, a child genotype T𝑐 is defined

row-wise as
T𝑐𝑖 B⊥(T)𝑖 ⇐⇒ 1≤𝑖≤ |⊥(T) |

T𝑐𝑖 B⊤(T𝑝)𝑖−|⊥(T) | ⇐⇒ |⊥(T) |<𝑖≤ |⊥(T) | + |⊤(T𝑝) |

T𝑐𝑖 B⊤(T
′
𝑝)𝑖−|⊥(T) |− |⊤(T𝑝) | ⇐⇒ |⊥(T) | + |⊤(T𝑝) |<𝑖≤ |⊥(T) |

+ |⊤(T𝑝) | + |⊤(T′𝑝) |

T𝑐
𝑖
B

(
O
merge
(2,1) ,∅,2,|⊥(T) | + |⊤(T𝑝) |,|⊥(T) | + |⊤(T𝑝) | + |⊤(T

′
𝑝) |

)
⇐⇒ 𝑖= |⊥(T) | + |⊤(T𝑝) | + |⊤(T′𝑝) |

+1≤𝑟 ∧rnd(1,4)=1

T𝑐𝑖 Brndrow() ⇐⇒ 𝑖= |⊥(T) | + |⊤(T𝑝) | + |⊤(T′𝑝) |

+1≤𝑟 ∧rnd(1,4)>1

T𝑐𝑖 Brndrow() ⇐⇒ |⊥(T) | + |⊤(T𝑝) | + |⊤(T′𝑝) |

+1<𝑖≤𝑟

Precondition Broadcasting Mutation. The idea of the precondition broadcasting mutation is to define a context-
sensitive measure of applicability for augmentation operators. To this end, the augmentation operators need to provide
an additional method ⅁, which accepts the same kind of arguments as the self-configuration method. It then returns a
real value between 0 and 1, which expresses the applicability of the augmentation operator, given the input and target
datasets.

The precondition broadcasting mutation works as follows. When a row T𝑖 has been chosen for mutation in a given
genotype T, we evaluate T up to T𝑖 and obtain the evaluation results of its input dataset(s). Subsequently we broadcast
the input dataset(s) together with the target training dataset to the applicability methods⅁ of all available augmentation
operators. After the operators have returned their result, we initialize a roulette wheel selection where the selection
probabilities of the roulette wheel are proportional to the relative applicabilities of the operators. Finally, we set T𝑖,1 to
the winner of the roulette wheel.

9

HT’22, June 28 – July 1, 2022, Barcelona, Spain Dreßler et al.

Fig. 3. Performance Evaluation Results. The graphs show the achieved mean fitness over 50 repetitions (𝑦 axis) vs. the number of
generations on a logarithmic scale (𝑥 axis).

We chose the name precondition broadcasting for this method, as the input datasets to an augmentation operator can
be regarded as its preconditions w.r.t. applicability.

Convergence Detection Mechanism. Our convergence detection mechanism is used to (1) detect convergence of our
population and (2) prohibit convergence into a local optima by temporarily adjusting 𝜎 and 𝜌 . We keep track of the
best fitness value and the standard deviation of fitness values in our generations to detect convergence. We assert
convergence if the best fitness value has not changed and the standard deviation of fitness values has been under a
certain threshold 𝑠min for the last ten generations.

When convergence is detected, we attempt to escape the potential local optima by temporarily setting 𝜎 = 𝜌 = 1. In
the following generations, we lower them again by multiplication with a constant factor until they reach their initial
values. The algorithm finally terminates if, after a fixed number of convergence detections and escape attempts, no
perfect solution is found.

4 EVALUATION

Research Questions. (𝑄1) What is the set of optimal hyperparameters, if any? (𝑄2) How does ADAGIO perform
compared to the only comparable approach DEER? (𝑄3)What are the performance characteristics of ADAGIO when
used for DAG-shaped augmentation tasks?

Hardware. All experiments were carried out on a 64-core 2.3 GHz server running OpenJDK 64-Bit Server 1.8.0_151
on Ubuntu 16.04.3 LTS. Each experiment was assigned 128 GB RAM.

Augmentation Operator Setup. We reimplemented the set of augmentation operators used in DEER [26] for the
purpose of this evaluation with the notable difference that the linking operator is a binary operator in our implementa-
tion6. Additionally, we implemented caching for augmentation operators that rely on external webservices, such as
6This means it is possible to apply instance matching to two input datsets, whereas the linking operator in DEER was unary, requiring another external
configuration.

10

ADAGIO — Automated Data Augmentation of KGs Using MEL HT’22, June 28 – July 1, 2022, Barcelona, Spain

Table 3. DEER Comparison Results. Reproduced experiments from DEER. 𝑡𝑙 is the learning time of one execution in seconds, F1 is
the F1-measure and max𝑔 is the maximum generation after which a perfect solution was found for ADAGIO.

Dataset
ADAGIO DEER

max𝑔 𝑡𝑙 𝐹1 𝑡𝑙 𝐹1

𝑀1
DBpedia 1 0.32 1.00 1.3 1.00

𝑀2
DBpedia 1 0.32 1.00 0.2 0.99

𝑀3
DBpedia 3 0.33 1.00 6.1 0.99

𝑀4
DBpedia 1 0.32 1.00 0.7 0.99

𝑀5
DBpedia 2 0.32 1.00 0.7 1.00

𝑀1
DrugBank 1 0.01 1.00 0.1 0.99

𝑀2
DrugBank 2 0.02 1.00 0.1 0.99

𝑀1
Jamendo 1 0.33 1.00 0.1 1.00

dereferencing or named entity recognition, so that we do not have to unnecessarily query these services a lot of times
within our learning loop7. Finally, we introduced a binary merge operator that accepts two datasets and returns their
union.

4.1 Hyperparameter Optimization

To determine the best set of values for our hyperparameters offspring fraction 𝛼 =
𝜇

𝜆
, mutation probability 𝜎 and

mutation rate 𝜌 , we used an incrementally explorative method. That is, we ran a series of grid searches on augmentation
tasks with increasing difficulty and used our insights from previous runs to fine-tune the next. Due to lack of space, we
only report the final grid search results in Figure 2. These results suggest that the best set of hyperparameters are 𝛼 = 1,
𝜎 = 0.5 and 𝜌 = 0.5. It is notable that for these hyperparameters we achieve 100% perfect results despite enabling our
convergence detection mechanism. Another interpretation of the data worth mentioning is that the average number
of generations to termination is lower for some other settings, but these settings did not achieve a similar number of
perfect results.

4.2 Comparison with State of the Art

For this series of experiments, we emulated the 8 original experiments undertaken in [26], using the three original
datasets, i.e.,DBpedia8,DrugBank9 and Jamendo10. We then faithfully recreated the augmentation pipelines in our system.
All experiments were repeated 50 times. The results of our comparison are shown in Table 3. ADAGIO constructed a
perfect linear augmentation graph in under 4 iterations for all experiments. Moreover, ADAGIO outperformed DEER in
terms of learning time in 7 out of 8 experiments with a mean speedup of 6.99. Note that we cannot explain the missing
7Please note that this does not introduce bias into our comparison with DEER, since DEER also evaluate each operator only once in every iteration due to
its deterministic design based on refinement operators.
8DBpedia is a subset of AdministrativeRegion class instances from the multi-domain knowledge graph DBpedia (https://dbpedia.org).
9DrugBank is the Linked Data version of the DrugBank database, which is a repository of almost 5000 FDA-approved small molecule and biotech drugs,
available at http://datahub.io/dataset/fu-berlin-drugbank.
10Jamendo contains a large collection of music related information about artists and recordings

11

https://dbpedia.org
http://datahub.io/dataset/fu-berlin-drugbank

HT’22, June 28 – July 1, 2022, Barcelona, Spain Dreßler et al.

dbr:Peter_Koper

"Quakenbrück"

"Peter Koper"@en

dbr:Johns_Hopkins_University

(Ds1)

dbr:Island_of_the_Dead_(2000_film)

"Peter Koper (born 1947) is an ..."

"1947-0-0"

dbo:birthPlace

dbo:birthDate

foaf:name

dbo:almaMater

dbo:producerOf

rd
fs

:c
om

me
nt

ex:Quakenbrück

"Quakenbrück"

"52.67722320556640625"

"7.9574999809265136719"

(Ds2)

dbr:Germany

dbo:Town

"49610"

rdfs:label
dbo:postalCode

geo:lat
geo:long

dbo:country

rdf:type

my:Peter_Koper

dbr:Tim_Southam

"Peter Koper"@en

dbr:Paramount_Pictures

dbr:Baltimore

(Dt)

dbr:Island_of_the_Dead_(2000_film)

ex:Quakenbrück

"Quakenbrück"

"52.67722320556640625"

"7.9574999809265136719"

dbr:Germany

dbo:Town

dbo:director

my:name

my:relatedTo

my:relatedTo

dbo:producerOf my:birthPlace
rdfs:label

geo:lat
geo:long

dbo:country

rdf:type

Fig. 4. Performance Evaluation Training Data. (𝐷𝑠1) shows the CBD used as the first source training dataset, (𝐷𝑠2) shows the
CBD used as the second source training dataset and (𝐷𝑡) shows the target training dataset, which we generated from (𝐷𝑠1) and
(𝐷𝑠2) using an augmentation graph with 6 augmentation operators.

1% in some of the F1-measure reported in the original DEER paper and that, given the authors methodology, it is most
likely that this is due to floating point errors in their F1-measure calculations. ADAGIO was able to parallelize the target
augmentation graph for the task 𝑀3

𝐷𝐵𝑝𝑒𝑑𝑖𝑎
, thereby achieving a speedup of 23% compared to the equivalent linear

augmentation graph when applying them to the whole dataset. Altogether, these results suggest that our approach
outperforms the current state of the art for learning augmentation pipelines.

4.3 Performance Evaluation

We ran two sets of experiments (clean and fuzzy) with two real-world datasets extracted from DBpedia11 to measure
performance on DAG-shaped augmentation tasks. We obtained one dataset 𝐷𝑠1 about 2, 230 persons born in Germany
and another dataset 𝐷𝑠2 about 1, 660 towns in Germany. The training data for the experiments was generated using
three manually designed augmentation tasks with 2, 4 and 6 augmentation operators for each series of experiments,
respectively. For the clean experiments, the training data was left untouched, resulting in tasks that ADAGIO is
theoretically able to solve perfectly, i.e., with F = 1. For the fuzzy experiments, we randomly altered the training data
in a way that the augmentation operators in ADAGIO are not able to solve the tasks perfectly.

For each task, we selected a maximal training example as corresponding CBDs from 𝐷𝑠1 , 𝐷𝑠2 and 𝐷𝑡 from the training
data, for which all components of the augmentation graph contributed to the augmentation in 𝐷𝑡 . ADAGIO was then
trained on this maximal example using a genotype size of 𝑟 = 10 and a population size of 30. Figure 4 shows the training

11https://dbpedia.org

12

https://dbpedia.org

ADAGIO — Automated Data Augmentation of KGs Using MEL HT’22, June 28 – July 1, 2022, Barcelona, Spain

data for the the hardest clean task. We measured the performance of ADAGIO by averaging the best fitness found in each
generation over a series of 50 repetitions for each task, terminating each task after at most 2, 000 generations. Moreover,
we measured run times of our algorithm. We computed 95%-confidence intervals using Student’s t-distribution to
account for variance.

The clean results in Figure 3a suggest that our approach solved this task for the two simpler tasks in less than 52 and
7 generations, respectively. Note that this means ADAGIO always found the perfect solution for the simpler tasks. The
hardest tasks fitness also grows rapidly over the first 10 generations, reaching an overall average fitness of over 0.99
within a 95%-confidence interval of ±0.6% in under 500 generations. The average runtime reported was 16 seconds for the
hardest task.

The fuzzy results in Figure 3b show that our convergence detection is indeed working, as all tasks terminate before
the maximum number of 2, 000 generations is reached. Moreover, we see that the solutions of all executions tend to
reach the global maximum before termination as the 95%-confidence interval stays at 0% for all generations starting at
the 40th, 130th and 366th generation for the 2-, 4- and 6-augmentation operator tasks, respectively.

5 CONCLUSION AND FUTUREWORK

In this paper, we present ADAGIO, an efficient algorithm based on genetic programming for learning knowledge graph
augmentation graphs. We experimentally identified the set of optimal hyperparameters for our algorithm: offspring
fraction 𝛼 = 1.0, mutation probability 𝜎 = 0.5 and mutation rate 𝜌 = 0.5, which answers our first research question (𝑄1).
To answer (𝑄2), our experiments show that our approach performs at least as well as the previous state of the art. On
real-world datasets, ADAGIO reported an average execution time of 16 seconds and a mean solution quality of 99%
within a 95%-confidence interval of ±0.6% after 500 generations, thus giving an answer for (𝑄3).

In future work, we will investigate research relating to the automated augmentation of RDF datasets in three
directions. (I) We will develop a sound theory of self-configuration heuristics, where we intend to use graph embedding
techniques and variations of approximate solutions to the subgraph isomorphism problem. (II) We also intend to extend
the class of augmentation graphs for which we investigate learning methods, eventually developing multi-objective
algorithms. Such algorithms could be used to automate the provision of RDF knowledge graphs for different types of
consumers given the same input datasets, thereby exploiting parallelism. (III) Finally, we will research methods for
improving the scalability of our approach in a big data setting.

ACKNOWLEDGMENTS

This work was supported by the German Research Foundation (DFG) within the Collaborative Research Centre “On-
The-Fly Computing“ (GZ: SFB 901/3) under the project number 160364472. This work was also supported by the German
Federal Ministry of Economics and Climate Protection (BMWK) project RAKI (GA no. 01MD19012D) and the EU H2020
project KnowGraphs (GA no. 860801).

REFERENCES
[1] Fabian Abel, Qi Gao, Geert-Jan Houben, and Ke Tao. 2011. Semantic Enrichment of Twitter Posts for User Profile Construction on the Social Web.

In The Semanic Web: Research and Applications, Grigoris Antoniou, Marko Grobelnik, Elena Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter
De Leenheer, and Jeff Pan (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 375–389. https://doi.org/10.1007/978-3-642-21064-8_26

[2] Najla Akram, Al-Saati, and Taghreed Riyadh Alreffaee. 2018. UsingMulti Expression Programming in Software Effort Estimation. CoRR abs/1805.00090
(2018). https://dblp.org/rec/journals/corr/abs-1805-00090

13

https://doi.org/10.1007/978-3-642-21064-8_26
https://dblp.org/rec/journals/corr/abs-1805-00090

HT’22, June 28 – July 1, 2022, Barcelona, Spain Dreßler et al.

[3] Volha Bryl and Christian Bizer. 2014. Learning Conflict Resolution Strategies for Cross-Language Wikipedia Data Fusion. In Proceedings of the 23rd
International Conference on World Wide Web (Seoul, Korea) (WWW ’14 Companion). Association for Computing Machinery, New York, NY, USA,
1129–1134. https://doi.org/10.1145/2567948.2578999

[4] Qi Chen, Bing Xue, Yi Mei, and Mengjie Zhang. 2017. Geometric Semantic Crossover with an Angle-Aware Mating Scheme in Genetic Programming
for Symbolic Regression. In EuroGP (Lecture Notes in Computer Science, Vol. 10196). Springer, 229–245. https://doi.org/10.1007/978-3-319-55696-3_15

[5] Smitashree Choudhury, John G. Breslin, and Alexandre Passant. 2009. Enrichment and Ranking of the YouTube Tag Space and Integration with the
Linked Data Cloud. In The SemanticWeb - ISWC 2009, Abraham Bernstein, David R. Karger, TomHeath, Lee Feigenbaum, DianaMaynard, EnricoMotta,
and Krishnaprasad Thirunarayan (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 747–762. https://doi.org/10.1007/978-3-642-04930-9_47

[6] Cândida Ferreira. 2001. Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Systems 13, 2 (2001). https:
//dblp.org/rec/journals/compsys/Ferreira01

[7] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel Blum, and Frank Hutter. 2019. Auto-sklearn: Efficient and
Robust Automated Machine Learning. Springer International Publishing, Cham, 113–134. https://doi.org/10.1007/978-3-030-05318-5_6

[8] Stefan Forstenlechner, David Fagan, Miguel Nicolau, and Michael O’Neill. 2017. Semantics-Based Crossover for Program Synthesis in Genetic
Programming. In Artificial Evolution (Lecture Notes in Computer Science, Vol. 10764). Springer, 58–71. https://doi.org/10.1007/978-3-319-78133-4_5

[9] M. Graff, E. S. Tellez, S. Miranda-Jiménez, and H. J. Escalante. 2016. EvoDAG: A semantic Genetic Programming Python library. In 2016 IEEE
International Autumn Meeting on Power, Electronics and Computing (ROPEC). 1–6. https://doi.org/10.1109/ROPEC.2016.7830633

[10] Souleiman Hasan, Edward Curry, Mauricio Banduk, and Sean O’Riain. 2011. Toward situation awareness for the semantic sensor web: Complex
event processing with dynamic linked data enrichment, In Proceedings of the 4th International Conference on Semantic Sensor Networks-Volume
839. Semantic Sensor Networks, 69–82.

[11] Holger Karl, Dennis Kundisch, Friedhelm Meyer auf der Heide, and Heike Wehrheim. 2019. A Case for a New IT Ecosystem: On-The-Fly Computing.
Business & Information Systems Engineering 62, 6 (Dec 2019), 467–481. https://doi.org/10.1007/s12599-019-00627-x

[12] John R Koza. 1990. Genetic programming: A paradigm for genetically breeding populations of computer programs to solve problems. Vol. 34. Stanford
University, Department of Computer Science Stanford, CA.

[13] Vladimír Kvasnièka and Jiøí Pospíchal. 1998. Simple Implementation of Genetic Programming by Column Tables. In Soft Computing in Engineering
Design and Manufacturing, P. K. Chawdhry, R. Roy, and R. K. Pant (Eds.). Springer London, London, 48–56. https://doi.org/10.1007/978-1-4471-
0427-8_6

[14] Jose Lazaro Martinez-Rodriguez, Aidan Hogan, and Ivan López-Arévalo. 2020. Information extraction meets the Semantic Web: A survey. Semantic
Web 11 (2020), 255–335. https://doi.org/10.3233/sw-180333

[15] Pablo N. Mendes, Hannes Mühleisen, and Christian Bizer. 2012. Sieve: Linked Data Quality Assessment and Fusion. In Proceedings of the
2012 Joint EDBT/ICDT Workshops (Berlin, Germany) (EDBT-ICDT ’12). Association for Computing Machinery, New York, NY, USA, 116–123.
https://doi.org/10.1145/2320765.2320803

[16] Brad L. Miller and David E. Goldberg. 1995. Genetic Algorithms, Tournament Selection, and the Effects of Noise. Complex Systems 9, 3 (1995).
https://dblp.org/rec/journals/compsys/MillerG95

[17] Melanie Mitchell. 1998. An introduction to genetic algorithms. MIT Press. https://dblp.org/rec/books/daglib/0019083
[18] Markus Nentwig, Michael Hartung, Axel-Cyrille Ngonga Ngomo, and Erhard Rahm. 2017. A survey of current Link Discovery frameworks. Semantic

Web 8, 3 (2017), 419–436. https://doi.org/10.3233/SW-150210
[19] Mihai Oltean and Dumitru Dumitrescu. 2015. Evolving TSP heuristics using Multi Expression Programming. CoRR abs/1509.02459 (2015).

https://dblp.org/rec/journals/corr/OlteanD15
[20] Mihai Oltean and Crina Groşan. 2003. Evolving Evolutionary Algorithms Using Multi Expression Programming. In Advances in Artificial Life,

Wolfgang Banzhaf, Jens Ziegler, Thomas Christaller, Peter Dittrich, and Jan T. Kim (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 651–658.
[21] Mihai Oltean and Crina Grosan. 2004. Evolving Digital Circuits using Multi Expression Programming. In Evolvable Hardware. IEEE, IEEE Computer

Society, 87–90. https://doi.org/10.1109/EH.2004.1310814
[22] Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic Web 8, 3 (2017), 489–508.

https://doi.org/10.3233/SW-160218
[23] Dunlu Peng, Shaohong Wu, and Cong Liu. 2019. MPSC: A Multiple-Perspective Semantics-Crossover Model for Matching Sentences. IEEE Access 7

(2019), 61320–61330. https://doi.org/10.1109/ACCESS.2019.2915937
[24] Muhammad Saleem, Maulik R Kamdar, Aftab Iqbal, Shanmukha Sampath, Helena F Deus, and Axel-Cyrille Ngonga Ngomo. 2014. Big linked

cancer data: Integrating linked tcga and pubmed. Web Semantics: Science, Services and Agents on the World Wide Web 27 (2014), 34–41. https:
//doi.org/10.1016/j.websem.2014.07.004

[25] Andreas Schultz, Andrea Matteini, Robert Isele, Christian Bizer, and Christian Becker. 2011. LDIF -Linked Data Integration Framework. In Proceedings
of the Second International Conference on Consuming Linked Data - Volume 782 (Bonn, Germany) (COLD’11). CEUR-WS.org, Aachen, DEU, 125–130.

[26] Mohamed Ahmed Sherif, Axel-Cyrille Ngonga Ngomo, and Jens Lehmann. 2015. Automating RDF Dataset Transformation and Enrichment. In
The Semantic Web. Latest Advances and New Domains, Fabien Gandon, Marta Sabou, Harald Sack, Claudia d’Amato, Philippe Cudré-Mauroux, and
Antoine Zimmermann (Eds.). Springer International Publishing, Cham, 371–387.

[27] Wacław Sierpiński. 1945. Sur les fonctions de plusieurs variables. Fundamenta Mathematicae 33, 1 (1945), 169–173. http://eudml.org/doc/213088

14

https://doi.org/10.1145/2567948.2578999
https://doi.org/10.1007/978-3-319-55696-3_15
https://doi.org/10.1007/978-3-642-04930-9_47
https://dblp.org/rec/journals/compsys/Ferreira01
https://dblp.org/rec/journals/compsys/Ferreira01
https://doi.org/10.1007/978-3-030-05318-5_6
https://doi.org/10.1007/978-3-319-78133-4_5
https://doi.org/10.1109/ROPEC.2016.7830633
https://doi.org/10.1007/s12599-019-00627-x
https://doi.org/10.1007/978-1-4471-0427-8_6
https://doi.org/10.1007/978-1-4471-0427-8_6
https://doi.org/10.3233/sw-180333
https://doi.org/10.1145/2320765.2320803
https://dblp.org/rec/journals/compsys/MillerG95
https://dblp.org/rec/books/daglib/0019083
https://doi.org/10.3233/SW-150210
https://dblp.org/rec/journals/corr/OlteanD15
https://doi.org/10.1109/EH.2004.1310814
https://doi.org/10.3233/SW-160218
https://doi.org/10.1109/ACCESS.2019.2915937
https://doi.org/10.1016/j.websem.2014.07.004
https://doi.org/10.1016/j.websem.2014.07.004
http://eudml.org/doc/213088

ADAGIO — Automated Data Augmentation of KGs Using MEL HT’22, June 28 – July 1, 2022, Barcelona, Spain

[28] Ranyart Rodrigo Suárez, Mario Graff, and Juan J. Flores. 2015. Semantic Crossover Operator for GP based on the Second Partial Derivative of the
Error Function. Research in Computing Science 94 (2015), 87–96. https://dblp.org/rec/journals/rcs/SuarezGF15

[29] Qingke Zhang, Bo Yang, Lin Wang, and Jianzhang Jiang. 2013. An improved multi-expression programming algorithm applied in function discovery
and data prediction. IJICT 5, 3/4 (2013), 218–233. https://doi.org/10.1504/IJICT.2013.054952

15

https://dblp.org/rec/journals/rcs/SuarezGF15
https://doi.org/10.1504/IJICT.2013.054952

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Formal Model
	3.2 Learning Algorithm

	4 Evaluation
	4.1 Hyperparameter Optimization
	4.2 Comparison with State of the Art
	4.3 Performance Evaluation

	5 Conclusion and Future Work
	Acknowledgments
	References

