
January 2020

When is the Peak Performance Reached?
An Analysis of RDF Triple Stores

Hashim KHAN a,1 Manzoor ALI a,2 Axel-Cyrille NGONGA NGOMO a,3 and
Muhammad SALEEM b,4

a DICE Group, Department of Computer Science, Paderborn University
b AKSW, University of Leipzig, Germany

Abstract. With significant growth in RDF datasets, application developers demand
online availability of these datasets to meet the end users’ expectations. Various in-
terfaces are available for querying RDF data using SPARQL query language. Stud-
ies show that SPARQL endpoints may provide high query runtime performance at
the cost of low availability. For example, it has been observed that only 32.2% of
public endpoints have a monthly uptime of 99–100%. One possible reason for this
low availability is the high workload experienced by these SPARQL endpoints. As
complete query execution is performed at server side (i.e., SPARQL endpoint), this
high query processing workload may result in performance degradation or even a
service shutdown. We performed extensive experiments to show the query process-
ing capabilities of well-known triple stores by using their SPARQL endpoints. In
particular, we stressed these triple stores with multiple parallel requests from differ-
ent querying agents. Our experiments revealed the maximum query processing ca-
pabilities of these triple stores after which point they lead to service shutdowns. We
hope this analysis will help triple store developers to design workload-aware RDF
engines to improve the availability of their public endpoints with high throughput.

Keywords. Triple Store, Throughput, Queries-per-Second, Availability

1. Introduction

One of the basic requirements of many semantic web applications is the ability to access
and query live linked data. The term “live queryable” linked data demands that the data
should be queryable via online SPARQL interfaces (without first downloading the entire
knowledge graph) and processed locally to retrieve the desired information [1]. It is one
of the most important demands for the successful deployment of many linked data-based
applications. Various interfaces such as SPARQL endpoints and Triple Pattern Fragments
(TPF) provide live SPARQL querying [1].

SPARQL endpoints offer a public interface to execute SPARQL queries over the un-
derlying RDF datasets. In this interface, the client sends a complete SPARQL query to
the server (i.e., SPARQL endpoint). The server executes the query and returns the final

1E-mail: hashim.khan@uni-paderborn.de
2E-mail: manzoor@campus.uni-paderborn.de
3E-mail: axel.ngonga@upb.de
4E-mail: saleem@informatik.uni-leipzig.de



January 2020

results. The server is responsible for the execution of a complete query while the client
is idle most of the time [2]. This model of query processing generally leads to better
runtime performance due to the optimization techniques used in the server. Furthermore,
the network overhead is low, as the complete query processing task is performed at one
end. However, many of the SPARQL endpoints suffer from low availability rates [1,3].
According to the SPARQLES [4]5 current statistics,6 only 176 (i.e. 20.71%) were found
available out of a total 557 public endpoints. One potential reason for this low availabil-
ity could be service shutdowns due to the high workload experienced by these SPARQL
endpoints and the complex and expressive nature of SPARQL queries, which may re-
quire large processing time and resources. For example, the well-known public endpoints
such as DBpedia7 and Wikidata8 receive more than 100K queries per day [5]. The RDF
data storage and SPARQL query execution is performed by the backend triple store. For
example, the DBpedia SPARQL endpoint is powered by the Virtuoso [6] triple store.
The Wikidata endpoint works on top of the BlazeGraph9 triple store. Every RDF query
processing engine has a certain peak performance point when exposed to multiple paral-
lel querying users. Exceeding the user workload beyond the maximum query processing
capability of an engine would generally lead to performance degradation or even a ser-
vice shutdown. The peak performance points of RDF triple stores depend upon multiple
factors, including parallel query processing capabilities, the type of hardware resources
being allocated, the efficiency of the underlying query planner, and the type of work-
load experienced. Multiple studies [7,8,9,10,11,12] have compared the performance of
different triple stores; however, little attention has been paid to assessing parallel query
processing capabilities of these triple stores [13]. To the best of our knowledge, no stud-
ies have reported the peak performance points under parallel loads of the state-of-the-art
triple stores. We fill this gap by conducting extensive experiments and report the peak
performance points of the triple stores with varying multiple parallel querying clients.

Our contributions are as follows:

• We performed experiments to show the maximum query processing capabilities of
some well-known triple stores, with respect to the number of querying agents they
can support, by using their SPARQL endpoints. In particular, we stressed these
triple stores with multiple parallel requests from different numbers of querying
agents.

• Beyond their peak performance points, we further stressed the selected triple
stores towards launching a DoS attack.

The rest of the paper is organised as follows: In section 2, we provide a sum-
mary of the different evaluations related to RDF triple stores. Section 3 explains the
evaluation setup and the evaluation results are presented in Section 4. Section 5 ex-
plains the availability of resources and their reusability and section 6 concludes this
work. The complete data to reproduce the presented results is available from https:
//github.com/dice-group/RDF-Triplestores-Evaluation.

5SPARQLES Monitoring: https://sparqles.ai.wu.ac.at/availability
6Data taken on 31st of March, 2021 at 11:30 (CET)
7http://dbpedia.org/sparql
8https://query.wikidata.org/
9https://blazegraph.com/

https://github.com/dice-group/RDF-Triplestores-Evaluation
https://github.com/dice-group/RDF-Triplestores-Evaluation
https://sparqles.ai.wu.ac.at/availability


January 2020

2. Related Work

The focus of this section is to show the details of the experiments performed to evaluate
the state-of-the-art triple stores. The main aim is to highlight the lack of research into the
stress tolerance of different triple stores for their peak performance capabilities.

The importance of linked data and knowledge graphs has motivated the develop-
ment of several RDF triple stores. Ali et al. [14] categorized a total of 116 triple stores:
each employs different data storage and querying processing mechanisms. Consequently,
various triple store benchmarks also have been developed. Saleem et al. [15] provide
an analysis of 10 triple store benchmarks, each employing a different evaluation setup
and experiments. Table 1 shows the list of the triple stores evaluated and details of the
experiments conducted in these state-of-the-art triple stores benchmarks.

The performance metrics used by state-of-the-art triple store benchmarks to compare
triple stores can be divided into four main categories.

• Processing Related Metrics. The metrics included in this category are related to
the query processing capabilities of the triple stores. In this category, the Queries
per Second (QpS), Queries Mix per Hour (QMpH), and Processing Overhead (PO)
are the key metrics used in the state-of-the-art benchmarks.

• Storage Related Metrics. The metrics included in this category are related to the
data storage and indexing techniques used in the triple stores. In this category, the
data Loading Time (LT), the Storage Space (SS) required, and the Size of gener-
ated Indexes (IS) are the key metrics used in the state-of-the-art benchmarks.

• Result Set Related Metrics. The metrics included in this category are related to
the result sets of the query execution over underlying triple stores. In this category,
Result Set Completeness (RCm) and Correctness (RCr) are the key metrics used
in the state-of-the-art benchmarks.

• Additional Metrics. This category includes additional metrics pertaining to the
use of Multiple parallel Clients (MC) to assess the parallel querying capabilities
of the triple store, and the Dataset Updates (DU).

The MC is the central metric related to our study, which is clearly missing in the ma-
jority of benchmark evaluations. Some basic evaluation is shown in BSBM and BioBench
by multiple parallel querying clients. However, they did not report the peak performance
points of tested triple stores.

Apart from the evaluations conducted in triple store benchmarks, additional per-
formance evaluations can be found in the literature as well. Voigt et al. [20] evaluated
triple stores for data loading time, query runtimes, and result set completeness. They
aimed to test the systems for some specific type of queries like SELECT (with or with-
out UNION, REGEX, FILTER or sub-queries). For the multi-client scenario, they mea-
sured the avg. query performance, as well as how many queries could be executed within
a 10-minute time slot. In addition, some experiments related to memory requirements
were conducted. Conrads et al. [13] presented a generic framework for benchmarking the
read/write performance of triple stores in the presence of multiple querying agents. They
evaluated three triple stores (Virtuoso, Fuseki and Blazegraph) for QpH and QMpH for



January 2020

Table 1. Details of Benchmarks and type of experiments performed

Benchmarks Triple Stores Experimental Details

DBPSB[16] Virtuoso
Sesame
Jena-TDB
BigOWLIM

QpS and QMpH of all mentioned triple stores were
evaluated. These triple stores were loaded with real-
world DBpedia dataset and one querying agent (user)
at a time was used.

FEASIBLE[7] Virtuoso
OWLIM-SE
Jena-TDB (Fuseki)
Sesame

QpS, QmpH and performance metrics relating to result
set correctness and completeness were evaluated. Two
datasets, i.e., real-world DBpedia and synthetic Wat-
Div, were used. Only one querying agent was used at a
time.

WatDiv[8] 4Store
RDF-3X
MonetDB
Virtuoso

Query execution time for synthetic datasets of differ-
ent sizes was measured for only one querying user at a
time. The experiments aim to compare triple stores by
using synthetically generated data.

FishMark[17] Virtuoso
Quest

QpS for all the selected triple stores was evaluated
against one querying user at a time. A synthetic dataset
was used in this benchmark.

Bowlogna[18] RDF-3X
4Store
Virtuoso
Diplodocus

Performance metrics relating to storage, i.e., RDF data
loading time and the index size of all triple stores were
evaluated. A synthetic dataset relating to the university
data was used.

TrainBench[19] RDF4J
Jena-TDB

All mentioned triple stores were loaded with synthetic
datasets of different sizes. After that, they were evalu-
ated for result size completeness and correctness.

BioBench [12] OWLIM-SE
Virtuoso
Bigdata
Mulgara
4Store

Performance metrics relating to load time, storage
space, and result sets were evaluated for single and
multi users. However, the triple stores were not evalu-
ated for query processing.

BSBM [11] Sesame
Jena-TDB
Jena-SDB
Virtuoso

The mentioned triple stores were loaded with synthetic
datasets of different sizes and were evaluated for QpS,
QMpH, and some other metrics related to data storage
and result sets.

SP2Bench[10] Sesame
Virtuoso
ARQ
Redland

The selected triple stores were evaluated for process-
ing overhead, storage and result set related performance
metrics. Synthetic datasets were used and only one
querying user was used.

different dataset sizes (DBpedia and SWDF10). Rohloff et al. [21] evaluated some triple
store technologies, such as MySQL,11 DAML DB12 and BigOWLIM13 (currently called
GraphDB), in combination with RDF4J14 and Jena,15 as query frameworks for data load-
ing time and query response time, by changing the dataset sizes. Stegmaier et al. [21]
performed an evaluation on some of the RDF database technologies, including RDF4J,16

10Semantic Web Dog Food
11http://www.mysql.com/
12http://www.daml.org/2001/09/damldb/
13https://www.ontotext.com/products/graphdb/
14http://www.openrdf.org/
15https://jena.apache.org/
16http://www.openrdf.org/

http://www.mysql.com/
http://www.daml.org/2001/09/damldb/
https://www.ontotext.com/products/graphdb/
http://www.openrdf.org/
https://jena.apache.org/
http://www.openrdf.org/


January 2020

AllegroGraph [22], and Jena-SDB17 for their query execution time by using the SP2 [10]
benchmark. Cudré-Mauroux et al. [23] empirically evaluated the NoSQL databases for
RDF. Their evaluation is based on a comparison of several NoSQL stores, along with a
native triple store, i.e., 4Store [24] for RDF processing. Furthermore, Verborgh et al. [25]
evaluate their query engine named Triple Pattern Fragments (TPF) based on per-
formance metrics Number of Timeouts, Query Execution Time, and Network Usage. Sim-
ilarly, Minier et al. in SAGE [26] perform evaluations based on avg. workload completion
time for 50 clients and compare their system with brTPF [27], TPF [25] and Virtuoso [6].
Finally, Azzam et al. [28] compare SMART-KG with TPF, Virtuoso and SAGE by using
performance metrics Number of Timeouts, Execution Time and Resource Consumption.

However, to the best of our knowledge, none of these additional evaluations tested
the performance of triple stores for their maximum throughput during parallel querying
workload.

3. Evaluation Setup

In this section, we explain the evaluation setup used in the experiments. In general, any
evaluation related to RDF systems comprises an RDF dataset, a collection of SPARQL
queries, and a set of performance metrics. Here, we present key features of each of these
components that are important to consider for fair evaluation. Many of these features
come from state-of-the-art research contributions mentioned in [7,15,8].

Benchmarks. Benchmarks for the evaluation of triple stores can either be synthetic or
real-data [15]. The synthetic-data benchmarks make use of a data generator to generate
synthetic data. Queries can be generated by using query templates on the underlying
data. Synthetic-data benchmarks are useful in testing the scalability of triple stores with
varying dataset sizes. However, they often fail to reflect characteristics of the real-world
queries posted by users of the datasets in practice [15,5,29]. On the other hand, real-
data benchmarks contain both data and queries, selected from real-world RDF datasets
and their corresponding query logs. Such benchmarks more closely reflect the real-world
deployment of triple stores. However, analysis of real-world queries [5,29] show that they
are quite simple in terms of the structural features (number of triple patterns, types of
joins, projections, etc.) and data-driven features (result sizes, selectivity, etc.) of SPARQL
queries [15,8]. Keeping in mind the pros and cons of both types of benchmarks, we
consider both real-world as well as synthetic benchmarks in our evaluation:

• FEASIBLE[7]: is a real-data benchmark generator, which generates benchmarks
by using the real-world query logs of RDF datasets. We used the same benchmark
(analyzed in [15]) that was generated by the FEASIBLE framework. This bench-
mark is based on the DBpedia3.5.1 dataset.18 The dataset contains a total of 232M
(English version) triples, 18,425k distinct subjects, 39,672 predicates, and 65,184k
objects. The benchmark includes a total of 50 real queries selected from the DB-
pedia3.5.1 SPARQL endpoint log. These queries cover most of the required struc-
tural and data-driven features of the SPARQL queries [15]. Furthermore, it is the

17https://jena.apache.org/documentation/sdb/
18DBpedia3.5.1: dbpedia.org

https://jena.apache.org/documentation/sdb/
dbpedia.org


January 2020

Figure 1. Diversity scores across different SPARQL query features of the benchmarks.

Table 2. Coverage of SPARQL clauses and join vertex types used in the benchmarks in percentages. SPARQL
clauses: DIST[INCT], FILT[ER], REG[EX], OPT[IONAL], UN[ION], LIM[IT], ORD[ER BY]. Join vertex
types: Star, Path, Sink, Hyb[rid], N[o] J[oin].

Distributions of SPARQL Clauses Distr. of Join Vertex Type

Benchmark DIST FILT REG OPT UN LIM ORD Star Path Sink Hyb. N.J.

Watdiv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.0 64.0 26.0 20.0 0.0
FEASIBLE 56.0 58.0 22.0 28.0 40.0 42.0 32.0 58.0 18.0 36.0 16.0 30.0

most diverse benchmark in comparison to other triple store benchmarks included
in [15].

• WatDiv[8]: is a synthetic benchmark generator. Again, we used the same bench-
mark analyzed in [15] that was generated by WatDiv generators having 108M
triples, usually called 100M WatDiv dataset. Similarly, for more diverse evalua-
tion and to test the scalability of the triple stores w.r.t. varying dataset sizes, we
considered two more datasets generated by the same benchmark having 10M and
one billion triples. The total number of query templates used in benchmarks is 50,
including 20 basic testing query templates and 30 extensions to basic testing. The
basic testing consists of queries in four categories, namely, linear queries (L), star
queries (S), snowflake-shaped queries (F) and complex queries (C) [8].

The coefficient of variation, which shows diversity scores [15] across different SPARQL
query features, is shown in Fig. 1. The coverage of different SPARQL clauses and join
vertex types is shown in Table 2. Further detailed analysis of the datasets as well as
queries about the selected benchmarks can be found in [15]. Please note that these are the
two most diverse benchmarks according to the benchmarks analysis conducted in [15].

Performance Metric. Since we are measuring the throughput of triple stores, we use
Queries per Second (QpS) as the main performance indicator.



January 2020

Triple Stores. We selected triple stores to be included in the evaluation based on the fol-
lowing criteria: (1) the triple stores should be available for free, therefore we excluded
commercial triple stores, (2) they should be able to load and process both the selected
datasets and the corresponding queries, (3) they should offer SPARQL HTTP endpoints,
(4) they should support the SPARQL features included in the FEASIBLE benchmark,
therefore triple stores which only support BGP19 queries are excluded, and (5) they
should have no benchmarking restrictions, e.g., the maintainers had to approve the inclu-
sion of their system results in the publication to the public.

Based on the above criteria we have considered the following triple stores in our
evaluation20:

1. Virtuoso21 is flexible enough to configure most of its parameters through con-
fig file. We used Virtuoso version 7.2.6 with NumberOfBuffers=680000 and
MaxDirtyBufferes=500000, which is recommended settings for 8 GB of free
system memory. The parameter MaxClientConnections in the HTTP Server
section, is set according to the number of querying users (i.e., one connection per
querying user) for all the individual experiments.
The ThreadsPerQuery = 32 is set according to the number of CPU cores.

2. Jena TDB22 Version 3.13.1 with Fuseki as HTTP interface with Java heap size set
to 8g. The documentation23 about parallelism shows that Jena’s query mechanism
is itself multi-threaded, and it supports parallel querying by default.

3. Blazegraph24 Version 2.1.4, with Jetty as HTTP interface and Java heap size set
to 8g. Through its configuration file, we changed the
QueryThreadPoolSize=32 and ReadOnly=True. All other parameters were
kept default.

4. Ontotext GraphDB25 with Java heap=8g.

5. Parliament [30] with MIN MEM=1g and MAX MEM=8g of Java heap and jetty as
HTTP interface.

In some cases, we also contacted the maintainers of the systems to get the recom-
mended and comparable settings.

Benchmark Execution. All the experiments were performed using the benchmark ex-
ecution framework Iguana V2.1.2 [13], which is particularly developed to measure the
read/write performance of RDF triple stores in the presence of multiple querying agents.
As recommended by the maintainer, we set the query time-out to 10 minutes per query,
and each experiment was performed in a stress test with 60 minutes run time. All the

19https://www.w3.org/TR/rdf-sparql-query/#BasicGraphPatterns
20We tried our best to test the selected triple stores with matching configuration settings.
21Virtuoso:https://virtuoso.openlinksw.com/
22Jena TDB: https://jena.apache.org/documentation/tdb/
23https://jena.apache.org/documentation/notes/concurrency-howto.html
24Blazegraph: https://blazegraph.com/
25GraphDB: http://graphdb.ontotext.com/

https://virtuoso.openlinksw.com/
https://jena.apache.org/documentation/tdb/
https://blazegraph.com/
http://graphdb.ontotext.com/


January 2020

experiments were performed for 1, 2, 4, 8, 16, 32, 64 and 128 concurrently executing
clients. Before starting the evaluation, we bulk loaded each of the datasets into the triple
stores. During each run of the experiment, the triple stores contained only the dataset
upon which the benchmarking was being carried out. Moreover, we tested the selected
triple stores up to 128 concurrent clients to ensure the service unavailability.

Hardware. All experiments were performed on a machine with two Intel Xeon E5-2620
v4 CPUs having each 8 physical cores and 16 logical cores, 256GB RAM, 11TB HDD
and running Ubuntu 20.04.2 LTS.

4. Results and Discussion

Fig. 2d shows the results when all the triple stores are loaded with the DBpedia3.5.1
dataset and FEASIBLE [7] benchmark queries were executed on them. Similarly,
Fig. 2a, 2b, and 2c show the WatDiv benchmarking results when the triple stores are
tested with 10 million, 100 million and one billion triples datasets, respectively. From
these graphs, we want to look for the key findings pertaining to the following research
questions: (1) Which triple store achieved the highest throughput in terms of QpS? (2) On
avg., which triple store is performing the best? (3) What is the peak performance point
of each of the selected triple stores and when is it achieved? (4) How do the triple stores
scale to the increasing number of parallel querying agents? (5) At which point does the
DoS occur? and (6) How do systems scale with the increasing dataset sizes? In the fol-
lowing, we discuss each of these key questions.26

Highest Throughput: Fig. 4a shows that GraphDB achieves the highest peak perfor-
mance point, i.e., 231 on avg., as well as in the case of all the individual benchmarks (ref.
Figure 2). Followed by GraphDB, Virtuoso achieves the second position by achieving
maximum avg. throughput of 88 QpS, and in the case of WatDiv-10-Million benchmark,
it has the highest individual QpS value as shown in Fig. 3. Then Fuseki-TDB, Blazegraph
and Parliament achieve the 3rd, 4th and 5th position, respectively. Finally, Blazegraph
achieves almost the same maximum QpS in all WatDiv benchmarks.

Average Throughput: The avg. throughput of the selected triple stores can be mea-
sured by calculating the area under the curve in the corresponding throughput graphs.
The higher the area covered, the higher the avg. throughput. Fig. 4b shows that Virtuoso
achieves the maximum avg. throughput of 3621. It is followed by Parliament having
3101, then Fuseki-TDB having 2727, followed by GraphDB with 2364 and then Blaze-
graph with 1775. From the Fig. 3 and 4b, it can be observed that the maximum peak per-
formance in terms of QpS, does not necessarily mean that the same system will perform
well in terms of avg. throughput.

Peak Performance Points: The results in Fig. 2 show that there is a peak performance
point for each triple store. This peak point of any triple store differs for all the bench-
marks, but is reached during the same number of querying agents. Once that point is

26Please note that the aim of this paper is to report the triple stores performances with different stress testing.
The reason why one triple store performs better than others is out of the scope of this paper.



January 2020

1 2 4 8 16 32 64 128

No. of querying users

A
v
g
. 
Q

p
S

 p
e
r 

u
s
e
r

0

50

100

150

200

250 Fuseki−TDB

Virtuso

Blazegraph

Parliament

GraphDB

(a) WatDiv-10M

1 2 4 8 16 32 64 128

No. of querying users

A
v
g
. 
Q

p
S

 p
e
r 

u
s
e
r

0

50

100

150

200
Fuseki−TDB

Virtuso

Blazegraph

Parliament

GraphDB

(b) WatDiv-100M

No. of querying users

A
v
g
. 
Q

p
S

 p
e
r 

u
s
e
r

1 2 4 8 16 32 64 128

0

50

100

150

200 Fuseki−TDB

Virtuso

Blazegraph

Parliament

GraphDB

(c) WatDiv-1B

No. of querying users

A
v
g
. 
Q

p
S

 p
e
r 

u
s
e
r

1 2 4 8 16 32 64 128

0

50

100

150

200

Fuseki−TDB

Virtuso

Blazegraph

Parliament

GraphDB

(d) FEASIBLE (DBpedia)

Figure 2. Benchmark results on (a), (b), (c) and (d) for all the triple stores - For each benchmark, the x-axis
shows the No. of querying users while y-axis shows the average Queries-per-Second per one user.

reached, further increase in the querying workload leads to gradual decrease in perfor-
mance.

Parallel Scalability: It refers to how triple stores react to the increasing querying agents.
A highly parallel scalable triple store’s throughput would gradually increase with the
increasing number of multiple querying agents. We can see from Fig. 5f, that this is not
the case for the majority of selected triple stores, i.e., the peak performance point of these
triple stores is reached quite early. In this regard, the parallel scalable triple store rank-
ing is: Fuseki-TDB and Parliament are scalable up to eight querying agents, followed
by Virtuoso with four, Blazegraph with two, and GraphDB with only one. It is worth
mentioning here that Parliament achieve the least avg. peak performance but is scalable
in terms of the maximum number of querying agents it supports.

Denial of Service (DoS): Our results show that the throughput of the selected triple
stores almost reaches zero when exposed to 128 querying agents. This is the point at
which triple stores almost stop responding.

Scalability with Increasing Dataset: Finally, we want to measure the scalability of the
selected triple stores in terms of varying datasets sizes as well as increasing querying
agents. Fig. 5a, 5b, 5c, 5d and 5e show the corresponding results for each of the selected
triple stores. We can clearly see that, in general, performance is decreased with the in-
crease in the number of agents as well as the size of dataset. These results are as expected
because increasing the workload or the dataset size will lead to more processing work to
be performed by the triple stores to get the desired query results. However, a sub ques-



January 2020

Virtuoso Blazegraph GraphDB Parliament Fuseki

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

154

62
70

64 63 63 64
50

265

218
205

236

44
32

40

71
80

41
55

91

A
v
g

. 
Q

p
S

 p
e

r 
u

s
e

r

WatDiv−10M

WatDiv−100M

WatDiv−1000M

FEASIBLE

Figure 3. Peak throughput in terms of avg. Queries-per-Second per user of all given triple stores with different
benchmarks.

Virtuoso Blazegraph GraphDB Parliament Fuseki

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

88

60

231

67
47

A
v
g
. 
Q

p
S

 p
e
r 

u
s
e
r

(a) Peak performance point

Virtuoso Blazegraph GraphDB Parliament Fuseki

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

3621

1775

2364

3101

2727

T
o
ta

l 
Q

p
S

 o
b
s
e
rv

e
d

(b) Total throughput

Figure 4. (a) shows the peak performance point in terms of the avg. QpS per user of all the benchmarks, while
(b) shows the total throughput of the systems (triple stores) in terms of the area covered under the curve of avg.
QpS of all benchmarks.

tion to be investigated is that which triple store scale better with increasing dataset size?
Fig 5b shows that the throughput of Blazegraph is not much affected by increasing the
size of the dataset. It is followed by GraphDB (ref. Figure 5e) with little effect on the
varying dataset sizes. On the other hand, we can clearly see a short performance drop on
the other three selected triple stores. In particular, the performance of Virtuoso is greatly
affected by the dataset sizes. In conclusion, the results suggest that Blazegraph is the
most scalable triple store to handle big data with smaller effect on the throughput.

In summary, our results reveal the parallel query processing capabilities of selected
triple stores. In particular, there exists a peak performance point for each of these triple
stores which is generally reached with only a small number of multiple querying agents,
as shown in Fig. 5f. Hence, these triple stores can easily lead to performance degradation
or even a service shutdown when they are exposed to multiple querying users.



January 2020

1 2 4 8 16 32 64 128

No. of querying users

A
v
g
. 
Q

p
S

 p
e
r 

u
s
e
r

0

20

40

60

80
WatDiv−1000M

WatDiv−100M

WatDiv−10M

(a) Fuseki-TDB

1 2 4 8 16 32 64 128

No. of querying users

A
v
g
. 
Q

p
S

 p
e
r 

u
s
e
r

0

10

20

30

40

50

60
WatDiv−1000M

WatDiv−100M

WatDiv−10M

(b) Blazegraph

No. of querying users

A
v
g
. 
Q

p
S

 p
e
r 

u
s
e
r

1 2 4 8 16 32 64 128

0

10

20

30

40
WatDiv−1000M

WatDiv−100M

WatDiv−10M

(c) Parliament

1 2 4 8 16 32 64 128

No. of querying users

A
v
g
. 
Q

p
S

 p
e
r 

u
s
e
r

0

50

100

150 WatDiv−1000M

WatDiv−100M

WatDiv−10M

(d) Virtuoso

1 2 4 8 16 32 64 128

No. of querying users

A
v
g
. 
Q

p
S

 p
e
r 

u
s
e
r

0

50

100

150

200

250 WatDiv−1000M

WatDiv−100M

WatDiv−10M

(e) GraphDB

Virtuoso Blazegraph GraphDB Fuseki Parliament

0
2

4
6

8
1
0

N
o
. 
o
f 
c
o
n
c
u
rr

e
n
t 
u
s
e
rs

 s
u
p
p
o
rt

4

2

1

8 8

(f) Users support

Figure 5. Benchmark results on WatDiv-10-Million (a), WatDiv-100-Million (b), WatDiv-One-Billion (c) and
DBpedia (d); For each benchmark, x-axis shows the No. of querying users while y-axis shows the avg. QpS
per user. (f) shows the No. of users that triple stores support concurrently with highest throughput.

5. Resource Availability and Reusability

The datasets and queries used in this work are based on state-of-the-art benchmarks [7,8].
The query execution was performed by using the IGUANA [13] benchmark execution
framework. All data required to reproduce these experiments or conduct a new set of
experiments are available from the aforementioned repository homepage. Since we used
standard state-of-the-art benchmarks and a standard benchmark execution framework,
new triple store developers can use the same setup to test their own triple stores and com-
pare with the state of the art. Finally, we also provide the complete evaluation results to
enable a more fine-grained analysis. The current queries used in the FEASIBLE-DBpedia
benchmark were selected from the query log of the DBpedia version 3.5.1. However, new
queries for other versions of DBpedia are now available from the LSQ [5] dataset, which
can be directly consumed by the FEASIBLE benchmark generation framework. In the



January 2020

future, we will provide more FEASIBLE-DBpedia benchmarks for the newer versions
of DBpedia from the same resource home page. This will ensure triple store testing for
their scalability with respect to varying sizes of DBpedia.

6. Conclusion

State-of-the-art linked data querying interfaces face the problem of finding a reason-
able solution for the trade-off between performance and availability of RDF triple stores.
Serving requests with high efficiency, and at the same time ensuring high availability
of the endpoints, is crucial for the success of the Semantic Web. We conducted exper-
iments with the aim of facilitating the design of smart query processing interfaces that
ensure both high performance and availability. In particular, we showed the peak per-
formance points and the parallel query processing capabilities of selected triple stores.
Furthermore, we showed the extreme workloads that lead to potential service shutdowns
on these triple stores. Finally, we measured the effect of varying dataset sizes on the
query runtime performances of the selected triple stores. In the future, we want to include
more triple stores and measure the effect of the resources (allocated RAM memory in
particular) on the performance.

Acknowledgments

This work has been supported by the project 3DFed (Grant no. 01QE2114B), Know-
Graphs (no. 860801), and DAIKIRI (no. 01IS19085B). In addition, the Higher Educa-
tion Commission (HEC) of Pakistan.

References

[1] R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht, B. De Meester, G. Hae-
sendonck and P. Colpaert, Triple pattern fragments: a low-cost knowledge graph interface for the web,
JOURNAL OF WEB SEMANTICS 37-38 (2016), 184–206. http://dx.doi.org/10.1016/j.websem.2016.03.
003.

[2] H. Khan, Towards More Intelligent SPARQL Querying Interfaces, in: International Semantic Web Con-
ference, 2019. http://ceur-ws.org/Vol-2548/paper-12.pdf.

[3] C. Buil-Aranda, A. Hogan, J. Umbrich and P.-Y. Vandenbussche, SPARQL Web-Querying Infrastruc-
ture: Ready for Action?, in: The Semantic Web – ISWC 2013, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2013, pp. 277–293. ISBN ISBN 978-3-642-41338-4.

[4] P.-Y. Vandenbussche, J. Umbrich, L. Matteis, A. Hogan and C. Buil-Aranda, SPARQLES: Monitoring
public SPARQL endpoints, Semantic Web 8 (2017), 1–17. doi:10.3233/SW-170254.

[5] M. Saleem, M.I. Ali, A. Hogan, Q. Mehmood and A.N. Ngomo, LSQ: The Linked SPARQL Queries
Dataset, in: ISWC, Springer, 2015, pp. 261–269.

[6] O. Erling and I. Mikhailov, Virtuoso: RDF Support in a Native RDBMS, in: Semantic Web Informa-
tion Management: A Model-Based Perspective, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010,
pp. 501–519.

[7] M. Saleem, Q. Mehmood and A.N. Ngomo, FEASIBLE: A Feature-Based SPARQL Benchmark Gen-
eration Framework, in: ISWC, Springer, 2015, pp. 52–69.

[8] G. Aluç, O. Hartig, M.T. Özsu and K. Daudjee, Diversified Stress Testing of RDF Data Manage-
ment Systems, in: The Semantic Web – ISWC 2014, P. Mika, T. Tudorache, A. Bernstein, C. Welty,
C. Knoblock, D. Vrandečić, P. Groth, N. Noy, K. Janowicz and C. Goble, eds, 2014, pp. 197–212. ISBN
ISBN 978-3-319-11964-9.

http://dx.doi.org/10.1016/j.websem.2016.03.003
http://dx.doi.org/10.1016/j.websem.2016.03.003
http://ceur-ws.org/Vol-2548/paper-12.pdf


January 2020

[9] Y. Guo, Z. Pan and J. Heflin, LUBM: A benchmark for OWL knowledge base systems, J. Web Sem.
3(2–3) (2005), 158–182. doi:10.1016/j.websem.2005.06.005.

[10] M. Schmidt, T. Hornung, M. Meier, C. Pinkel and G. Lausen, SP2Bench: A SPARQL Performance
Benchmark, in: Semantic Web Information Management: A Model-Based Perspective, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010, pp. 371–393.

[11] C. Bizer and A. Schultz, The Berlin SPARQL Benchmark, Int. J. Semantic Web Inf. Syst. 5(2) (2009),
1–24. doi:10.4018/jswis.2009040101.

[12] H. Wu et al., BioBenchmark Toyama 2012: An evaluation of the performance of triple stores on biolog-
ical data, J. Biomedical Semantics 5 (2014), 32. doi:10.1186/2041-1480-5-32.

[13] F. Conrads, J. Lehmann, M. Saleem, M. Morsey and A.N. Ngomo, IGUANA: A Generic Framework for
Benchmarking the Read-Write Performance of Triple Stores, in: ISWC, Springer, 2017, pp. 48–65.

[14] W. Ali, M. Saleem, B. Yao, A. Hogan and A.-C.N. Ngomo, A Survey of RDF Stores & SPARQL Engines
for Querying Knowledge Graphs, 2021.

[15] M. Saleem, G. Szárnyas, F. Conrads, S.A.C. Bukhari, Q. Mehmood and A.-C. Ngonga Ngomo, How
Representative Is a SPARQL Benchmark? An Analysis of RDF Triplestore Benchmarks, in: The World
Wide Web Conference, WWW ’19, ACM, New York, NY, USA, 2019, pp. 1623–1633. ISBN ISBN
978-1-4503-6674-8. doi:10.1145/3308558.3313556.

[16] M. Morsey, J. Lehmann, S. Auer and A.N. Ngomo, DBpedia SPARQL Benchmark - Performance As-
sessment with Real Queries on Real Data, in: ISWC, 2011, pp. 454–469.

[17] S. Bail, S. Alkiviadous, B. Parsia, D. Workman, M. van Harmelen, R.S. Gonçalves and C. Gari-
lao, FishMark: A Linked Data Application Benchmark, in: Proceedings of the Joint Workshop on
Scalable and High-Performance Semantic Web Systems, 2012, pp. 1–15. http://ceur-ws.org/Vol-943/
SSWS HPCSW2012 paper1.pdf.

[18] G. Demartini, I. Enchev, M. Wylot, J. Gapany and P. Cudré-Mauroux, BowlognaBench - Benchmarking
RDF Analytics, in: Data-Driven Process Discovery and Analysis SIMPDA, Springer, 2011, pp. 82–102.

[19] G. Szárnyas, B. Izsó, I. Ráth and D. Varró, The Train Benchmark: cross-technology performance
evaluation of continuous model queries, Software and systems modeling 17(4) (2018), 1365—1393–.
doi:10.1007/s10270-016-0571-8. https://europepmc.org/articles/PMC6132656.

[20] M. Voigt, A. Mitschick and J. Schulz, Yet Another Triple Store Benchmark? Practical Experiences with
Real-World Data, in: SDA, 2012.

[21] F. Stegmaier, U. Gröbner, M. Döller and H. Kosch, Evaluation of Current RDF Database Solutions.
[22] P. Tajabor and T. Raafat, Challenges Over Two Semantic Repositories - OWLIM and Alle-

groGraph, Indonesian Journal of Electrical Engineering and Computer Science 2 (2016), 194.
doi:10.11591/ijeecs.v2.i1.pp194-204.

[23] P. Cudré-Mauroux, I. Enchev, S. Fundatureanu, P. Groth, A. Haque, A. Harth, F.L. Keppmann, D. Mi-
ranker, J.F. Sequeda and M. Wylot, NoSQL Databases for RDF: An Empirical Evaluation, in: The Se-
mantic Web – ISWC 2013, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 310–325.

[24] S. Harris, N. Lamb, N. Shadbolt and G. Ltd, 4store: The design and implementation of a clustered RDF
store, Proc. SSWS (2009).

[25] R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht, B. De Meester, G. Hae-
sendonck and P. Colpaert, Triple Pattern Fragments: A low-cost knowledge graph interface for the Web,
Journal of Web Semantics 37-38 (2016), 184–206. doi:https://doi.org/10.1016/j.websem.2016.03.003.
https://www.sciencedirect.com/science/article/pii/S1570826816000214.

[26] T. Minier, H. Skaf-Molli and P. Molli, SaGe: Web Preemption for Public SPARQL Query Services, in:
The World Wide Web Conference, WWW ’19, ACM, New York, NY, USA, 2019, pp. 1268–1278. ISBN
ISBN 978-1-4503-6674-8. doi:10.1145/3308558.3313652.

[27] O. Hartig and C.B. Aranda, brTPF: Bindings-Restricted Triple Pattern Fragments (Extended Preprint),
CoRR (2016). http://arxiv.org/abs/1608.08148.

[28] A. Azzam, J.D. Fernandez, M. Acosta, M. Beno and A. Polleres, SMART-KG: Hybrid Shipping for
SPARQL Querying on the Web, in: Proceedings of The 2020 World Wide Web Conference, WWW 2020.
(To appear), 2020.

[29] M. Arias, J.D. Fernández, M.A. Martı́nez-Prieto and P. de la Fuente, An Empirical Study of Real-World
SPARQL Queries, CoRR abs/1103.5043 (2011). http://arxiv.org/abs/1103.5043.

[30] D. Kolas, I. Emmons and M. Dean, Efficient Linked-List RDF Indexing in Parliament.

http://ceur-ws.org/Vol-943/SSWS_HPCSW2012_paper1.pdf
http://ceur-ws.org/Vol-943/SSWS_HPCSW2012_paper1.pdf
https://europepmc.org/articles/PMC6132656
https://www.sciencedirect.com/science/article/pii/S1570826816000214
http://arxiv.org/abs/1608.08148
http://arxiv.org/abs/1103.5043

