
Efficient RDF Knowledge Graph Partitioning UsingQuerying
Workload

Adnan Akhter
akhter@informatik.uni-leipzig.de

Data Science Group, Department of Computer Science,
Paderborn University, Germany

Muhammad Saleem
saleem@informatik.uni-leipzig.de

AKSW Research Group, University of Leipzig
Liepzig, Germany

Alexander Bigerl
alexander.bigerl@uni-paderborn.de

Data Science Group, Department of Computer Science,
Paderborn University, Germany

Axel-Cyrille Ngonga Ngomo
axel.ngonga@upb.de

Data Science Group, Department of Computer Science,
Paderborn University, Germany

ABSTRACT
Data partitioning is an effective way to manage large datasets.
While a broad range of RDF graph partitioning techniques has
been proposed in previous works, little attention has been given to
workload-aware RDF graph partitioning. In this paper, we propose
two techniques that make use of the querying workload to detect
the portions of RDF graphs that are often queried concurrently. Our
techniques leverage predicate co-occurrences in SPARQL queries.
By detecting highly co-occurring predicates, our techniques can
keep data pertaining to these predicates in the same data parti-
tion. We evaluate the proposed partitioning techniques using vari-
ous real-data and query benchmarks generated by the FEASIBLE
SPARQL benchmark generation framework. Our evaluation results
show the superiority of the proposed techniques in comparison to
previous techniques in terms of better query runtime performances.

CCS CONCEPTS
• Information systems→ Distributed storage.

KEYWORDS
RDF knowledge graph partitioning; querying workload; predicate
co-occurrence; PCG; PCM
ACM Reference Format:
Adnan Akhter, Muhammad Saleem, Alexander Bigerl, and Axel-Cyrille
Ngonga Ngomo. 2021. Efficient RDF Knowledge Graph Partitioning Using
QueryingWorkload. In Proceedings of the 11th Knowledge Capture Conference
(K-CAP ’21), December 2–3, 2021, Virtual Event, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3460210.3493577

1 INTRODUCTION
Partitioning large amounts of data among multiple data nodes
helps improve the scalability, availability, ease of maintenance, and
overall query processing performance of storage systems. Current

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
K-CAP ’21, December 2–3, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8457-5/21/12. . . $15.00
https://doi.org/10.1145/3460210.3493577

distributed triple stores employ various RDF graph partitioning
techniques [19]. A recent performance evaluation of various RDF
graph partitioning techniques shows that there is no clear winner
in terms of overall query runtime performance improvement in dif-
ferent partitioning environments [2]. This is because the evaluated
RDF partitioning techniques are mostly generic and can be applied
on any data graphs and hence the specific properties of RDF graphs
are not taken into account. Akhter et al. [2] suggest that data (here
we mean a portion of a large dataset) that is queried (i.e., accessed)
together in user queries should be kept in their same partitions.
The partitioning technique that take data locality into account min-
imize the inter-communication between partitions, thus potentially
leading to better query runtimes.

The majority of the state-of-the-art RDF graph partitioning tech-
niques only consider the underlying RDF data [19]. Consequently,
they fail to leverage the querying history, i.e., they do not make use
of information pertaining to the likelihood of particular portions of
the data being queried concurrently to answer user queries. Only a
few approaches address workload-based RDF partitioning, in par-
ticular [6, 13]. Both approaches leverage the joins between triple
patterns in the querying workload. On the other hand, we propose
a novel workload-based RDF partitioning technique that leverages
the predicates co-occurrences in the querying workload. The idea is
that all RDF triples with predicates that are most commonly queried
together should be stored in the same partition. Ideally, this should
lead to one partition being consulted by the distributed RDF engine
to execute SPARQL triple patterns with the most commonly co-
occurred predicates. This would decrease the inter-communication
cost between multiple worker nodes of the distributed RDF en-
gines and hence, lead to better query runtime performance. The
predicate-based partition has inherent advantages, such as its ease
of managing index updates as well as dynamic data redistribution
and replication [19]. In addition, the number of distinct predicates
in the RDF datasets is usually much smaller than the number of
subjects or objects, thus it is faster to group them in clusters and
create the required partitions.

We propose two RDF graph partitioning techniques: 1. predicates
co-occurrence-based partitioning using a greedy algorithm (PCG),
and 2. predicates co-occurrence-based partitioning using extended
markov clustering (PCM). Both of these techniques make use of clus-
tering algorithms to first cluster all the predicates used in the input
querying workload. The partitions are then created according to the

Session: Languages, Querying K-CAP ’21, December 2–3, 2021, Virtual Event, USA

169

https://doi.org/10.1145/3460210.3493577
https://doi.org/10.1145/3460210.3493577

clusters such that all triples pertaining to predicates in a given clus-
ter are distributed into the same partition. Our overall contributions
are as follows: (1) We propose two novel RDF graph partitioning
techniques by using different clustering techniques that make use
of the predicates co-occurrences in the querying workload. (2) We
evaluate our proposed techniques by using different performance
measures by using real-data benchmarks. We show the superior-
ity of proposed techniques in comparison to the state-of-the-art
RDF graph partitioning techniques. The source codes, datasets, and
instructions for reproducing the complete results can be found at
https://github.com/dice-group/workload-aware-rdf-partitioning.

The rest of the paper is organized as follows: we introduce the
state of the art in RDF graph partitioning, followed by the descrip-
tion of the proposed partitioning techniques and the evaluation
results with our key findings and conclusions.

2 STATE-OF-THE-ART RDF GRAPH
PARTITIONING TECHNIQUES

State-of-the-art RDF graph partitioning techniques can be divided
into various categories [19]:
• Hash-BasedPartitioning.This type of partitioning is based
on applying hash functions on the individual elements of
the triples (i.e., subject , predicate, object), followed by the
modulo operation: the distribution of triples to required 𝑛
number of partitions is carried out by using hash(triple
element) mod n. The subject-hash-based, predicate-hash-
based, and hierarchical-hash-based partitioning are common
examples of partitioning from this category [2, 11, 19]. There
are many distributed RDF engines1 that use hash-based par-
titioning including Virtuoso [5] and TriAD [8].
• Graph-Based Partitioning. This type of partitioning is
based on clustering/distributing vertices or edges of the RDF
graph. METIS2 library provides several graph-based parti-
tioning techniques [10, 11]. Graph-based partitioning has
been used in many distributed RDF engines [19] including
Koral [11] and H-RDF-3X [10].
• Workload-Aware Partitioning. This type of partition-
ing makes use of the query workload to distribute RDF
triples among required partitions. Worq [13] and Partout
[6] are examples of workload-aware RDF graph partitioning
[6, 13].Other examples are [3, 4, 14].
• Range Partitioning. In this type of partitioning, RDF triples
are distributed based on certain range values of the parti-
tioning key. For example, it creates a separate partition of all
RDF triples with Predicate age and object values between
30 and 40. Range partitioning has been used in Yars2 [9] and
in [20].
• Vertical Partitioning. Rather than distributing RDF triples,
vertical partitioning distributes individual elements of triples
into different partitions or tables. Therefore, rather than
storing the complete triples, it generally stores two out of
the three elements of the triples. For example, SPARQLGX
[7] divides triples by their predicates and only stores the
subject and object parts of the triples in 𝑛 (equals number

1A complete list is provided at [19].
2METIS: http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

of distinct predicates in the RDF) predicate tables. Other
examples are [1, 12, 17?].

We refer readers to [19] for a more exhaustive overview of
state-of-the-art RDF graph partitioning techniques used in state-
of-the-art distributed RDF engines. An empirical evaluation of the
state-of-the-art RDF graph partitioning techniques is presented in
[2, 11], in which seven RDF graph partitioning techniques are evalu-
ated. For better understanding of the proposed and state-of-the-art
techniques, we use a motivating example which we will carry out
throughout this paper.
Motivating Example. Consider the set of RDF triples given in
figure 1a. Suppose we want to create three partitions of this graph
and represent them in different colors (i.e., red, blue and green).
Figure 1b shows the resulting partitions created by the different
techniques and is explained in the subsequent paragraph.

Let 𝑇 be the set of all RDF triples in a dataset and 𝑛 be the re-
quired number of partitions. The Horizontal partitioning technique
assigns the first |𝑇 |/𝑛 triples in partition 1, the next |𝑇 |/𝑛 triples
in partition 2 and so on. Using this technique, our example dataset
is split such that triples 1-4 are assigned into the green partition,
triples 5-8 into are assigned into the red partition, and triples 9-11
are assigned into the blue partition. The subject-Based partitioning
technique assigns all triples with the same subject into the same
partition. Using this technique, our example dataset is split such
that triples 3,10 and 11 are assigned into the red partition, triple
7 is assigned into the blue partition, and the remaining triples are
assigned into the green partition. The Predicate-Based partitioning
technique assigns all the triples with the same predicate into same
partition. Using this technique, our example dataset is split such
that triples 1, 7, 8, 9 and 10 are assigned into the red partition, triples
2, 3, 5, and 11 are assigned into the green partition, and remain-
ing triples are assigned into the blue partition. The Hierarchical
Partitioning technique assigns all IRIs with a common hierarchy
prefix into the same partition. Using this technique, our example
dataset is split such that triples 3, 7, 10 and 11 are assigned into
the red partition, triples 1, 2, 4 and 8 are assigned into the green
partition, and the remaining triples are assigned into the blue par-
tition. The Recursive-Bisection partitioning technique splits the
graph in two, and repeatedly applies this strategy until the desired
number of partitions are generated. Using this technique, our ex-
ample dataset is split such that triples 1, 2, 4, 7, and 8 are assigned
into the green partition, triples 3, 5, 6, 9 and 10 are assigned into the
red partition, and triple 11 is assigned into the blue partition. The
TCV-Min partitioning technique makes partitions by minimizing
the communication costs of connected nodes. Using this technique,
our example dataset is split such that triples 1, 2, 4, 5, 6, 8 and 9 are
assigned into the green partition, triples 3, 7 and 10 are assigned
into the red partition, and triple 11 is assigned into the blue par-
tition. The Min-Edgecut partitioning technique distributes nodes
by minimizing the number of edges connected to them. Using this
technique, our example dataset is split such that triples 1, 2, 4, 7 and
8 are assigned into the green partition, triples 3, 5, 6, 9 and 10 are
assigned into the red partition, and only triple 11 is assigned into
the blue partition. In the next section, we explain our techniques in
detail and show how they partition our example dataset by using a
querying workload.

Session: Languages, Querying K-CAP ’21, December 2–3, 2021, Virtual Event, USA

170

https://github.com/dice-group/workload-aware-rdf-partitioning
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

@prefix hierarchy1: <http://first/r/> . @prefix hierarchy2: <http://second/r/> .
@prefix hierarchy3: <http://third/r/> . @prefix schema: <http://schema/> .

#Triple1) hierarchy1:s1 schema:p1 hierarchy2:s11 .
#Triple2) hierarchy1:s1 schema:p2 hierarchy2:s2 . #Triple7) hierarchy2:s13 schema:p1 hierarchy2:s8 .
#Triple3) hierarchy2:s2 schema:p2 hierarchy2:s4 . #Triple8) hierarchy1:s1 schema:p4 hierarchy3:s9 .
#Triple4) hierarchy1:s1 schema:p3 hierarchy3:s3 . #Triple9) hierarchy3:s9 schema:p1 hierarchy2:s4 .
#Triple5) hierarchy3:s3 schema:p2 hierarchy1:s5 . #Triple10) hierarchy2:s4 schema:p4 hierarchy2:s13 .
#Triple6) hierarchy3:s3 schema:p3 hierarchy2:s13 . #Triple11) hierarchy2:s11 schema:p2 hierarchy1:s10 .

(a) An example of RDF triples

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

13

3

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

Basic RDF Graph Horizontal Subject-Based Predicate-Based

Hierarchical Recursive-Bisection TCV-Min Min-Edgecut

(b) Graph representation and partitioning. Only node numbers are shown for simplicity.

Figure 1: Partitioning an example RDF into three partitions using different partitioning techniques. Partitions are highlighted
in different colors.

SELECT * WHERE SELECT * WHERE SELECT * WHERE SELECT * WHERE SELECT * WHERE SELECT * WHERE SELECT * WHERE SELECT * WHERE
{ { { { { { { {
?S :P1 ?O1. ?S :P1 ?O. ?S :P1 ?O1. ?S :P1 ?O. ?S1 :P1 ?O. ?O :P1 ?S. ?S1 :P1 ?O. ?S :P1 ?O.
?S :P2 ?O2 ?O :P2 ?O2 ?S :P3 ?O3 ?O :P3 ?O3 ?S3 :P3 ?O ?S :P3 ?S3 ?S2 :P2 ?O. ?S :P2 ?O.

} } } } } } } ?S :P3 ?O.
?S :P4 ?O

}

Listing 1: Query examples

3 PROPOSED TECHNIQUES
Both of our techniques comprise three main steps: (i) extract a
list of predicate co-occurrences from a querying workload and
model them as a weighted graph (Section 3.1), (ii) use this weighted
graph as an input to generate clusters of predicates (Section 3.2),
and (iii) allocate the obtained clusters to partitions (Section 3.3). In
the following, we suppose we have a workload of eight queries as
shown in listing 1.

3.1 Graph Modeling
Since both techniques are based on query workload, we assume
that we are given a query workload 𝑄 = {𝑞1, . . . , 𝑞𝑛} of SPARQL
queries. Ideally, the query workload 𝑄 contains real-world queries
posted by the users of the RDF dataset, which can be collected from
the query log of the running system. However, real user queries

might not be available. In this case the query workload can be either
estimated from queries in applications accessing the RDF data or
synthetically generated with the help of the domain experts of the
given RDF dataset that needs to be partitioned.

For a given work load 𝑄 = {𝑞1, . . . , 𝑞𝑛}, we create a predicates
co-occurrence list 𝐿 = {𝑒1, . . . , 𝑒𝑚} where each entry is a tuple
𝑒 =< 𝑝1, 𝑝2, 𝑐 >, with 𝑝1, 𝑝2 two different predicates used in the
triple patterns of SPARQL queries in the given workload, and 𝑐

is the co-occurrence count, i.e. the number of queries in which
both 𝑝1 and 𝑝2 are co-occurred. By looking at our query examples
given in listing 1, the predicates 𝑝1, and 𝑝2 co-occurred in a total
of 4 queries, thus one entry of the 𝐿 will be < 𝑝1, 𝑝2, 4 >. For
the sake of simplicity, the corresponding predicate-to-predicate
co-occurrence list for our query examples is shown in Figure 2a.
Finally, we model the list 𝐿 as a weighted graph, such that for a
given list entry 𝑒 =< 𝑝1, 𝑝2, 𝑐 >, we create two nodes (one each

Session: Languages, Querying K-CAP ’21, December 2–3, 2021, Virtual Event, USA

171

P1 P2 Co-occurrences
p1 p2 4
p1 p3 5
p1 p4 1
p2 p3 1
p2 p4 1
p3 p4 1

(a) Predicate co-occurrences

e1

e2 4

e3

e5

e4
e6 1

5

1

1

1

p1

p2 p4

p3

(b) Weighted graph of the predicate co-
occurrences

Figure 2: The predicate co-occurrences table and correspond-
ing weighted graph for the example queries given in Listing
1.

Algorithm 1: Adapted Markov Clustering
1 MCL(𝐺 ,𝑚𝑎𝑥𝑅 𝑒 ,𝑚𝑎𝑥𝑍𝑒𝑟𝑜 ,𝑛) /* Input: Weighted

predicates graph 𝐺, maximum residual
𝑚𝑎𝑥𝑅 = 0.001, inflation exponent for
Gamma operator 𝑒 = 2, maximum value
considered zero for pruning operations
𝑚𝑎𝑥𝑍𝑒𝑟𝑜 = 0.001, and 𝑛 number of required
clusters */

2 𝑇 ∈ R𝑝×𝑝 := 𝐺𝑒𝑡𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 (𝐺) ;
3 𝑇 ∈ R𝑝×𝑝 := 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑇) ;
4 𝑑𝑜𝑢𝑏𝑙𝑒𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 := 1.0 ;
5 while residual > maxR do
6 𝑇 := (𝑇)𝑒 // Expend

7 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑖𝑛𝑓 𝑙𝑎𝑡𝑒 (𝑇, 𝑒,𝑚𝑎𝑥𝑍𝑒𝑟𝑜);
8 end
9 return 𝑔𝑒𝑡𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 (𝑇, 𝑛) /* get 𝑛 clusters from

matrix */

for 𝑝1 and 𝑝2) that are connected by a link with weight equalling 𝑐 .
The corresponding weighted graph is shown in figure 2b.

3.2 Graph Clustering
We propose two clustering algorithms to generate clusters of predi-
cates from the weighted predicates graph generated in the previous
section.
PCM Clustering. Algorithm 1 shows the predicate clustering
using a modified version of the well-known Markov3 clustering.
For the input weighted predicates graph 𝐺 , a transition matrix 𝑇
is created which is then normalized (Lines 2-3 of algorithm 1). A
transition matrix is basically a matrix representation of a weighted
graph. Since our weighted graph shown in Figure 2b has four nodes,
a 4×4 (one row and column for each predicate vertex) matrix will be
created. The corresponding transition matrix is shown in Figure 3.
The normalization of the matrix is done by dividing each element
of a particular row by the sum of all the elements in that row. The
normalized matrix is show in Figure 3.

3Markov clustering: https://micans.org/mcl/

P1 P2 P3 P4

P1
P2
P3
P4

0 4/10 5/10 1/10
4/6 0 1/6 1/6
5/7 1/7 0 1/7
1/3 1/3 1/3 0

Normalized Matrix

P1 P2 P3 P4

P1
P2
P3
P4

0 4 5 1
4 0 1 1
5 1 0 1
1 1 1 0

Transition Matrix

P1 P2 P3 P4

P1
P2
P3
P4

1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.99
1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.99

Final Matrix

Figure 3: Creation of amatrix during PCMusing ourweighted
graph

The next two steps are the standard expansion and inflation
of the Markov clustering, applied on the normalized transition
matrix. These steps are continued until residual value is greater
than maximum residual (Lines 4-8 of algorithm 1). The expansion
is a simple self-multiplication of the matrix, raise to power of input
parameter 𝑒 . The inflate part is according to the inflate stochastic
matrix by Hadamard (elementwise) exponentiation4.

The last step is to interpret the resulting transition matrix to
discover𝑛 clusters. This is achieved by sequentially adding non-zero
row-wise values of matrix 𝑇 to a cluster. For example, in our final
matrix shown in Figure 3, the first non-zero row-wise value is 0.66
at position 𝑇1,2. Thus, the corresponding predicates, i.e. 𝑝1, 𝑝2, will
be added into a single cluster. The next non-zero row-wise value
is at position 𝑇2,4, which corresponds to predicates 𝑝1, 𝑝4. Since 𝑝1
already exists, only 𝑝4 will be added into the cluster. Finally, 𝑝3 will
be added. Now our cluster contains a sequential list of predicates
{𝑝1, 𝑝2, 𝑝4, 𝑝3}. Since we need 𝑛 partitions, we simply divide the
total elements from the cluster by 𝑛 number of required partitions
to get the number of elements from the sequential list of elements
to be combined into a single partition. In our case, the number of
elements is 4 while desired partitions are 3. Thus, we divide 4/3
and assign the first two elements (i.e., 𝑝1, 𝑝2) to partition 1 and the
next element (i.e., 𝑝4) into partition 2 and the final element 𝑝3 into
partition 3. The final cluster of predicates is shown in figure 4a.
Please note that it is possible that there exist many predicates in
the RDF dataset that are not used in the query workload. In that
case we assign a single separate partition for all unused predicates.
PCGClustering. Algorithm 2 shows the predicate clustering using
the proposed greedy clustering method. The first step is to calculate
the expected size (in terms of the number of triples) of each partition.
The next step is to obtain all edges between predicates according to
their increasing order of weights. For the graph given in Figure 2b,
our sorted list of edges will be 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6}. The next
step is to loop through each edge 𝑒 𝑗 ∈ 𝐸 and get the corresponding
predicates that are connected by the given edge 𝑒 𝑗 (Lines 6-7 of
algorithm 2). We then get the combined count of the triples for
predicates 𝑝𝑘 and 𝑝𝑙 from input dataset 𝐷 . If the current size of
the cluster 𝑐𝑖 is less than the threshold 𝑡 , both predicates are added
into the same cluster 𝑐𝑖 . However, if the size of the current cluster
exceeds the threshold, a new cluster is created for the upcoming
predicates (Lines 8-14 of algorithm 2). The final three clusters of
predicates are shown in figure 4b. Please note that, as with PCM, it
is possible that there exist many predicates in the RDF dataset that
are not used in the query workload. In that case, we assign a single
separate partition for all unused predicates.

4Inflate: http://java-ml.sourceforge.net/api/0.1.1/net/sf/javaml/clustering/mcl/
MarkovClustering.html

Session: Languages, Querying K-CAP ’21, December 2–3, 2021, Virtual Event, USA

172

https://micans.org/mcl/
http://java-ml.sourceforge.net/api/0.1.1/net/sf/javaml/clustering/mcl/MarkovClustering.html
http://java-ml.sourceforge.net/api/0.1.1/net/sf/javaml/clustering/mcl/MarkovClustering.html

Algorithm 2: Greedy Clustering
1 PCG(𝐺 , 𝐷 , 𝑛) /* Input: Weighted predicates

graph 𝐺, Dataset 𝐷 to be partitioned,
𝑛 number of required clusters */

2 𝑡 = |𝐷 |/𝑛 − 1 ; // Size of a partition

3 𝐸 = getSortedEdges(𝐺) ; /* Obtain all edges
between the predicates according to
their weight */

4 𝐶 = {𝑐1 . . . 𝑐𝑛} ; // Required clusters

5 𝑖 = 1 ;
6 forall 𝑒 𝑗 ∈ 𝐸 do
7 𝑃 (𝑝𝑘 , 𝑝𝑙) = getNodesPair(𝐺 , 𝑒 𝑗) /* Obtain both

nodes (predicates) that are
connected by the edge 𝑒𝑖 */

8 𝑇 = getTriplesCount(𝐷 , 𝑃 (𝑝𝑘 , 𝑝𝑙)) /* get the
combined count of the triples for
predicates 𝑝𝑘 and 𝑝𝑙 from dataset 𝐷

*/
9 if |𝑐𝑖 | < 𝑡 /* if size of triples in

cluster 𝑐𝑖 is less than the
threshold 𝑡 */

10 then
11 𝑐𝑖 ← {𝑝𝑘 , 𝑝𝑙 } ; // assign both predicates

to cluster

12 else
13 𝑖 = 𝑖 + 1 ; // move to next cluster

14 end
15 end
16 return 𝐶 ; // Clusters

p1 p3

p4p2

(a) PCM

p1 p3

p4p2

(b) PCG

Figure 4: Predicate clusters created by the proposed tech-
niques for the example RDF dataset given in Figure 1a. Clus-
ters are highlighted in different colors)

3.3 Assigning Clusters to Partitions
The clustering algorithms explained in the previous steps give 𝑛
clusters of predicates. In the last step, triples from a given RDF
dataset 𝐷 are distributed into partitions according to the aforemen-
tioned predicate-based partitions: for each predicate 𝑝 in a specific
cluster 𝑐𝑖 , assign all the triples with predicate 𝑝 ∈ 𝐷 into the same
partition. Figure 5a and 5b show the final partitions created by both
of the proposed techniques. Please note that these partitions are
different from all the techniques shown in Figure 1b.

MCL Results are
Partition1 = P1 P2
Partition2 = P3
Partition3 = P4

PCo Results are
Partition1 = P1 P3

Partition2 = 2
Partition3 = P4

PCG

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

PCM

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

(a) PCM

MCL Results are
Partition1 = P1 P2
Partition2 = P3
Partition3 = P4

PCo Results are
Partition1 = P1 P3

Partition2 = 2
Partition3 = P4

PCG

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

PCM

p3

p1

p4

p2

p3

p2

p2

p1

p4

p2

p1

8

5

13

3

2

4

10

11

9

1

(b) PCG

Figure 5: Final three partitions created by the proposed tech-
niques for the example RDF dataset given in Figure 1a. Parti-
tions are highlighted in different colors)

4 EVALUATION
4.1 Evaluation Setup
We have exactly reused the evaluation setup discussed in [2]. The
reasons for choosing this evaluation setup are two-fold: (1) since
our proposed techniques require query workloads, we wanted to
use real-world query workloads (i.e., collected from public SPARQL
endpoints of real-world RDF datasets), and real-world RDF bench-
marks, (2) we wanted our results to be comparable with the results
presented in [2].
Datasets. As in [2], we used two real-world datasets DBpedia 3.5.1
and the Semantic Web Dog Food (SWDF) for partitioning.
Benchmark Queries (test queries). As in [2], we used four sets of
real-world SPARQL benchmark queries (300 queries each): (1) SWDF
BGP-only is the SWDF benchmark containing only single BGP
queries; the other SPARQL features such as OPTIONAL, UNION
etc. are not used, (2) SWDF fully-featured is the SWDF benchmark
containing fully-featured (multiple BGPs, aggregates, functions etc.)
SPARQL queries, (3) DBpedia BGP-only is the DBpedia benchmark
only containing single BGP queries, and (4) DBpedia fully-featured
benchmark queries contain not only single BGPs but may also
include additional constructs. These benchmarks are generated by
using FEASIBLE [15], a real benchmark generation framework, out
of query logs.
Workloads (train queries). We used a query workload of 3000
queries each for DBpedia and SWDF, which are selected from real-
world query logs of these datasets. The reason for choosing 3000was
according to the 10-fold cross validation5, which suggests choosing
10% test queries and 90% training queries.
Partitioning Environments. As in [2], we used two distinct parti-
tioning environments to evaluate our techniques: (1) a clustered or
distributed RDF storage environment, where the given dataset is dis-
tributed among 𝑛 data nodes of a clustered triple store, (2) a purely
federated environment, in which the dataset is distributed among
multiple SPARQL endpoints that are physically separated from each
other and a federation engine is used to perform the query process-
ing task. We used Koral [11] distributed RDF engines for the first
type of partitioning environment. We chose Koral due to its flexibil-
ity in choosing different partitioning methods for data distribution

5https://machinelearningmastery.com/k-fold-cross-validation/

Session: Languages, Querying K-CAP ’21, December 2–3, 2021, Virtual Event, USA

173

among data nodes. In addition, it was previously used in [2]. We
used FedX [18] and SemaGrow for the second type of partitioning
environment. The reason for choosing these two engines was be-
cause of their different query planning strategies: FedX implements
an index-free and heuristic-based query planner, while SemaGrow
implements an index-assisted and cost-based query planner. Both
were also used in [2]. It is important to note that Koral does not
support many of the SPARQL features used in the fully-featured
SPARQL benchmarks. Therefore, we used BGP-only queries in our
Koral-based evaluation.
Number of Partitions. Inspired by [2] and [16], we generated
10 partitions of the selected datasets. Therefore, 10 slaves were
created in Koral, each one responsible for one partition. Similarly,
we used 10 Linux-based Virtuoso7.1 SPARQL endpoints and each of
these endpoints store one partition. The selected federation engines
physically federate the given SPARQL query over these endpoints.
Selected RDF Graph Partitioning Techniques. We selected
state-of-the-art RDF graph partitioning techniques based on the
following criteria: (1) open source and configurable, (2) working
for RDF data, (3) scaleable to medium-large datasets, such as DBpe-
dia in our case, (4) take the RDF dataset and/or workload as input
and give the required number of RDF chunks as output, and (5)
do not require online services such as cloud or configuring on-
line datasets. Based on this criteria, we selected ten – Horizontal,
Subject-Based, Predicate-Based, Hierarchical, Recursive-Bisection,
TCV-Min, Min-Edgecut, Partout, PCG, PCM – RDF graph partition-
ing techniques to consider in the evaluation results. Please note
that the workload-aware technique Partout only worked for SWDF
datasets; for DBpedia, it was unable to partition the dataset in 3
days6.
Performance Measures. As in [2], we used five performance
measures: partitions generation time, Queries per Second (QpS)
[2, 15], overall rank score, partitioning imbalance, and the total
number of sources selected for the complete benchmark execution
in a purely federated environment.We used a three minutes timeout
for query execution [2, 15] of each query.

The rank score of the partitioning technique is defined as follows
[2]:

Definition 4.1 (Rank Score). Let 𝑡 be the total number of partition-
ing techniques and 𝑏 be the total number of benchmark executions
that are used in the evaluation. Let 1 ≤ 𝑟 ≤ 𝑡 denote the rank num-
ber and 𝑂𝑝 (𝑟) denote the occurrence of a partitioning technique 𝑝
placed at rank 𝑟 . The rank score of the partitioning technique 𝑝 is
defined as follows:

𝑠 :=
𝑡∑︁

𝑟=1

𝑂𝑝 (𝑟) × (𝑡 − 𝑟)
𝑏 (𝑡 − 1) , 0 ≤ 𝑠 ≤ 1

In our evaluation, we have a total of ten partitioning techniques
(i.e., t = 10 for SWDF, and 9 for DBepdia) and total benchmarks
executions b = 10 (i.e., 4 benchmarks by FedX + 4 benchmarks by
SemaGrow + 2 benchmarks by Koral). The partitioning imbalance
in the size of the generated partitions is defined as follows [2]:

Definition 4.2 (Partitioning Imbalance). Let n be the total number
of partitions generated by a partitioning technique and 𝑃1, 𝑃2, . . . 𝑃𝑛
6We have discussed this issue with the authors of the Partout system

4
0

4
0

4
0 4
5 5
0 5
5

5
0

8
6

5
0 5
5

PB SB HI HO TC ME RB PT PCMPCG

(a) SWDF partitioning time

3
5
1
1
2

3
4
9
9
4

3
6
1
1
8

2
1
1
8
3

7
0
2
1
0

7
0
2
8
9

7
0
2
6
6

4
6
9
6
1

7
1
5
8
6

PB SB HI HO TC ME RB PCM PCG

(b) DBpedia partitioning time

Figure 6: Time taken for the creation of 10 partitions in sec-
onds. (PB = Predicate-Based, SB= Subject-Based, HI= Hierar-
chical, HO = Horizontal, TC = TCV-Min, ME Min-Edgecut,
RB = Recursive Bisection, PT = Partout)

be the set of these partitions, ordered according to the increasing
size of the number of triples. The imbalance in partitions is defined
as a Gini coefficient:

𝑏 :=
2

𝑛∑
𝑖=1
(𝑖 × |𝑃𝑖 |))

(𝑛 − 1) ×
𝑛∑
𝑗=1
|𝑃 𝑗 |
− 𝑛 + 1
𝑛 − 1 , 0 ≤ 𝑏 ≤ 1

Hardware and Software Specifications. The hardware and soft-
ware configuration for our techniques is the same as [2], i.e., all
our experiments are executed on a Ubuntu-based machine with
intel Xeon 2.10 GHz, 64 cores and 512GB of RAM. We conducted
our experiments on local copies of Virtuoso (version 7.1) SPARQL
endpoints. We used default configurations for FedX, SemaGrow
and Koral (except the slaves were changed from 2 to 10 in Koral).

4.2 Evaluation Results
Please note that the PartOut (PT) results are only shown for SWDF
as it was unable to partition DBpedia dataset.
Partition Generation Time. Figure 6 shows a comparison of the
total time taken to generate the required 10 partitions for both
datasets used in our evaluation. PT took the highest amount of
time followed by PCG, Min-Edgecut, Recursive-Bisection, TCV-Min,
PCM, Hierarchical, Predicate-Based, Subject-Based and Horizontal,
respectively. The remainder of the discussion is focused on PCG,
as this the best performing method proposed in this paper.
Query per Second (QpS). Query per Second (QpS) is important to
measure the query runtime performances pertaining to different
partitioning techniques. The idea is to find out how many queries
are executed by a technique in one second. The higher the QpS, the
better the query runtime performance. Figure 7 shows a comparison
of the QpS values of the selected partitioning techniques for each of
the four benchmarks and three different query execution engines.
Since Koral only supports BGP-only queries, we used SWDF-BGP
and DBpedia-BGP benchmarks. For every timeout query, we added
an extra 180 seconds to the total benchmark execution time. The
results suggest that the proposed PCG method clearly outperforms
the other partitioning methods in the majority of benchmark execu-
tions. In particular, PCG ranked first or second in 7/10 benchmark
executions.
Rank Scores. From the QpS results, it is rather hard to determine
the overall winner in terms of the query runtime performance. The

Session: Languages, Querying K-CAP ’21, December 2–3, 2021, Virtual Event, USA

174

2
6

.3
9

1
4

.9
5

1
4

.4
1

1
7

.5
1

1
4

.9
6

1
4

.7
0

1
4

.9
0

4
0

.2
1

1
8

.8
0

9
5

.6
0

SWDF - BGP

PB SB Hi Ho TC ME RB PT PCM PCG

(a) QpS FedX SWDF-BGP

0
.0

4
0

0
.0

5
4

0
.0

4
8

0
.0

8
9

0
.0

5
4

0
.0

4
5

0
.0

6
3

0
.4

5
7

0
.0

6
1

1
.2

2
6

SWDF - FF

PB SB Hi Ho TC ME RB PT PCM PCG

(b) QpS FedX SWDF-FF

0
.0

2
5

0
.0

2
0

8
2

0
.0

3
8

0
.0

1
9

8
6

0
.0

3
8

0
.0

2
0

4
0

0
.0

3
6

0
.0

2
0

1
8

0
.0

3
5

0
.0

2
0

5
6

0
.0

3
5

0
.0

1
9

7
6

0
.0

3
8

0
.0

2
1

1
2

0
.0

3
4

0
.0

2
1

1
0

0
.0

2
7

0
.0

1
9

7
3

DBPEDIA - BGP DBPEDIA - FF

PB SB Hi Ho TC ME RB PCM PCG

(c) QpS FedX DBpedia

0
.0

4
1

0
.0

1
9

0
.0

3
6

0
.0

1
7

0
.0

3
8

0
.0

1
8

0
.0

3
6

0
.0

1
6

0
.0

3
9

0
.0

1
8

0
.0

3
5

0
.0

1
7

0
.0

3
6

0
.0

1
7

0
.0

4
5

0
.0

2
4

0
.0

4
6

0
.0

2
6

DBPEDIA - BGP DBPEDIA - FF

PB SB Hi Ho TC ME RB PCM PCG

(d) QpS SemaGrow DBpedia

3
.6

6
8

5
.9

1
9

5
.8

9
4

2
.0

3
1

6
.1

4
3

6
.0

1
2

5
.8

2
1

0
.4

4
5 1

.7
2

0 2
.6

0
3

SWDF - BGP

PB SB Hi Ho TC ME RB PT PCM PCG

(e) QpS SemaGrow SWDF-BGP

0
.0

4
0

0
.0

5
4

0
.0

4
8

0
.0

8
9

0
.0

5
4

0
.0

4
5

0
.0

6
3

0
.4

5
7

0
.0

6
1

1
.2

2
6

SWDF - FF

PB SB Hi Ho TC ME RB PT PCM PCG

(f) QpS SemaGrow SWDF-FF

0
.2

7
3 0

.2
8

4

0
.2

8
5

0
.2

8
8

0
.2

8
5

0
.2

8
5

0
.2

8
5

0
.2

8
6

0
.2

6
2

0
.3

0
4

SWDF - BGP

PB SB Hi Ho TC ME RB PT PCM PCG

(g) QpS Koral SWDF-BGP

0
.0

0
7

0
.0

0
9

0
.0

0
6

0
.0

0
7

0
.0

0
8

0
.0

1
9

0
.0

0
5

0
.0

0
8

0
.0

1
9

DBPEDIA - BGP

PB SB Hi Ho TC ME RB PCM PCG

(h) QpS Koral DBpedia-BGP

Figure 7: QpS (for all four benchmarks) including timeouts. (SW = Semantic web dog food, DB = DBpedia, BGP = Basic Graph
Pattern, FF = Fully Featured, PB = Predicate-Based, SB= Subject-Based, Hi= Hierarchical, Ho = Horizontal, TC = TCV-Min, ME
Min-Edgecut, RB = Recursive Bisection, PT = Partout)

rank score shows the overall ranking of a particular method with
respect to other selected methods across the completed benchmark
executions. The rank score is a value between 0 and 1, where 1
represents the highest ranking. Figure 8a represents the computed
rank scores pertaining to each partitioning technique according
to Theorem 4.1. The overall results show that that PCG has the
highest ranked score, followed by PT, PCM, TCV-Min, Predicate-
Based, Horizontal, Recursive-Bisection, Subject-Based, Hierarchical,
and Min-Edgecut, respectively.

Partitioning Imbalance. Figure 8b shows the partitioning imbal-
ance values (defined in Theorem 4.2) of the partitions generated by
the selected partitioning techniques. Horizontal portioning results
in the smallest partitioning imbalance, followed by Hierarchical,
Subject-Based, PCM, PCG, Min-Edgecut, Recursive-Bisection, TCV-
Min, Partout, and Predicate-Based, respectively.
Number of Sources Selected. The number of sources selected
(SPARQL endpoints in our case) by the federation engine to execute
a given SPARQL query is a key performance metric for federated

Session: Languages, Querying K-CAP ’21, December 2–3, 2021, Virtual Event, USA

175

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
B SB H
i

H
o TC M
E

R
B

P
C

M

P
C

G P
T

P
B SB H
i

H
o TC M
E

R
B

P
C

M

P
C

G

SWDF DBpedia

R
an

k
Sc

o
re

(a) Rank scores

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

P
B SB H
i

H
o TC M
E

R
B

P
C

M

P
C

G P
T

P
B SB H
i

H
o TC M
E

R
B

P
C

M

P
C

G

SWDF DBpedia

Im
b

al
an

ce
 in

 p
ar

ti
ti

o
n

 s
iz

e
s

(l
o

g
sc

al
e

)

(b) Partitioning imbalance

Figure 8: Rank scores and partitioning imbalance of the parti-
tioning techniques. (PB = Predicate-Based, SB= Subject-Based,
Hi= Hierarchical, Ho = Horizontal, TC = TCV-Min, ME Min-
Edgecut, RB = Recursive Bisection, PT = Partout)

SPARQL querying engines [16]. The smaller the number of sources
selected, the smaller the communication cost, and hence the better
the query runtime performance [2, 16]. Figure 9 shows the total
number of distinct sources selected by FedX and SemaGrow. For
SWDF, PT selects the smallest sources followed by PCG and PCM.
As an overall (1200 queries) source selection evaluation, PCG selects
the least number of sources, followed by PCM, Predicate-Based,
Min-Edgecut, TCV-Min, Recursive-Bisection, Subject-Based, Hier-
archical and Horizontal, respectively.

1
5
4
1

2
4
3
6

9
6
4 1
8
1
5

6
7
5
6

3
5
4

2
5
7
8

2
2
3
4

2
8
3
0

7
9
9
6

3
5
4

2
5
7
7

2
2
3
5

2
8
3
2

7
9
9
8

1
7
5
2

2
6
8
5

2
3
5
2

2
8
7
3

9
6
6
2

3
5
4

2
5
7
6

2
2
3
0

2
8
2
5

7
9
8
5

3
5
4

2
5
7
4

2
2
3
0

2
8
2
4

7
9
8
2

3
5
4

2
5
7
7

2
2
3
0

2
8
2
7

7
9
8
8

1
6
0
4

2
4
5
3

9
2
5 1
7
6
8

6
7
5
0

1
0
5
3 2
3
7
4

9
4
1 1
7
6
7

6
1
3
5

2
2
8

2
3
3
4

BGP-ONLY FULLY FEATURED BGP-ONLY FULLY FEATURED OVERALL RESULT

SWDF DBPEDIA 1200 QUERIES

Predicate-Based Subject-Based Hierarchical

Horizontal TCV-Min Min-Edgecut

Recursive-Bisection PCM PCG

Partout

Figure 9: Total distinct sources selected

Key observation. The results show that PCG significantly outper-
formed the other selected techniques for SWDF benchmarks (ref.
Figure 7a, Figure 7b, Figure 7e, Figure 7f, Figure 7g) in comparison
to to DBpedia benchmarks (ref. Figure 7c, Figure 7d, Figure 7h). The
average QpS of PCG is 20.07 for SWDF benchmarks, which is 3.30
times faster than the second-best performing partitioning method.
On the other hand, the average QpS of PCG is 0.028 for DBpedia
benchmarks which is only 1.06 times faster than the second-best
performing partitioning method. A detailed investigation of query
workload and RDF datasets reveals that the query workload used
for our SWDF evaluation already covered 63.7% of the total 185
predicates used in the SWDF dataset. Thus, more predicates were
correctly grouped into the desired partitions. On the other hand,
the DBpedia dataset contains a total of 39672 distinct predicates
and only 0.55% were covered by the used workload. As a result, a
majority of the predicates were grouped into a separate partition of
unused predicates. Consequently, only a small portion of the predi-
cates were correctly mapped into correct partitions. In conclusion,
the complexity of dataset and workload’s quality and size can have
a significant impact on the quality of partitioning achieved via the
proposed methods in this paper.

5 CONCLUSION AND FUTUREWORK
In this paper, we presented two RDF graph partitioning techniques
based on queryingworkloads that leverage the predicate co-occurrences
in these workloads. Our overall results suggest the superiority of
our proposed techniques compared to the previous techniques, in
terms of better query runtime performances, number of timeout
queries, overall rank score, and number of distinct sources selected.
It has been observed that the quality and size of the workload is
key to achieving better results via the proposed methods. The par-
titioning techniques that take the data locality (i.e., data chunks
that are queried together by users are kept in same partition) into
account can lead to significant performance improvements. Our
proposed techniques naturally lead to predicate-based indexing
used in existing state-of-the-art RDF engines. Furthermore, the
created partitions are easy to manage in terms of index updates
or dynamic shuffling of data among multiple data nodes of a clus-
tered triplestore. In the future, we want to measure the effect of
querying workloads on the accuracy of data distribution. In ad-
dition, it is highly possible that the initial distribution of data is
sub-optimal and thus dynamic shuffling of data is necessary. To this
end, we want to propose a self updating, dynamic data distribution
mechanism based on experienced work-load.

6 ACKNOWLEDGEMENTS
This work has been supported by the projects 3DFed(Grant no.
01QE2114B) and KnowGraphs(Grant no. 860801).

REFERENCES
[1] Abadi et al. 2007. Scalable Semantic Web Data Management Using Vertical

Partitioning. (2007).
[2] Akhter et al. 2018. An empirical evaluation of RDF graph partitioning techniques.

In European Knowledge Acquisition Workshop.
[3] Al-Ghezi et al. 2018. Adaptive workload-based partitioning and replication

for RDF graphs. In International Conference on Database and Expert Systems
Applications.

[4] Aluç et al. 2013. chameleon-db: a workload-aware robust RDF data management
system. University of Waterloo, Tech. Rep. CS-2013-10 (2013).

[5] Erling et al. 2009. RDF Support in the Virtuoso DBMS. In Networked Knowledge-
Networked Media.

[6] Galárraga et al. 2014. Partout: A Distributed Engine for Efficient RDF Processing.
[7] Graux et al. 2016. Sparqlgx: Efficient distributed evaluation of sparql with apache

spark.
[8] Gurajada et al. 2014. TriAD: A Distributed Shared-Nothing RDF Engine Based

on Asynchronous Message Passing.
[9] Harth et al. 2007. YARS2: A Federated Repository for Querying Graph Structured

Data from the Web. In The Semantic Web.
[10] Huang et al. 2011. Scalable SPARQL querying of large RDF graphs. (2011).
[11] Janke et al. 2017. Koral: A Glass Box Profiling System for Individual Components

of Distributed RDF Stores.
[12] Lehmann et al. 2017. Distributed Semantic Analytics using the SANSA Stack. In

Proceedings of 16th International Semantic Web Conference-Resources Track.
[13] Madkour et al. 2018. WORQ: Workload-driven RDF Query Processing.
[14] Padiya et al. 2017. DWAHP: workload aware hybrid partitioning and distribution

of RDF data.
[15] Saleem et al. 2015. Feasible: A feature-based sparql benchmark generation frame-

work. In International Semantic Web Conference.
[16] Saleem et al. 2016. A fine-grained evaluation of SPARQL endpoint federation

systems. (2016).
[17] Schätzle et al. 2016. S2RDF: RDF Querying with SPARQL on Spark. (2016).
[18] Schwarte et al. 2011. Fedx: Optimization techniques for federated query process-

ing on linked data.
[19] Waqas et al. 2020. Storage, Indexing, Query Processing, and Benchmarking in

Centralized and Distributed RDF Engines: A Survey. (2020).
[20] Whitman et al. 2019. Distributed Spatial and Spatio-Temporal Join on Apache

Spark. (2019).

Session: Languages, Querying K-CAP ’21, December 2–3, 2021, Virtual Event, USA

176

	Abstract
	1 Introduction
	2 State-of-the-art RDF Graph Partitioning Techniques
	3 Proposed Techniques
	3.1 Graph Modeling
	3.2 Graph Clustering
	3.3 Assigning Clusters to Partitions

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Evaluation Results

	5 Conclusion and Future Work
	6 Acknowledgements
	References

