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ABSTRACT
The sheer size of modern knowledge graphs has led to increased
attention being paid to the entity summarization task. Given a
knowledge graph 𝑇 and an entity 𝑒 found therein, solutions to
entity summarization select a subset of the triples from 𝑇 which
summarize 𝑒’s concise bound description. Presently, the best per-
forming approaches rely on sequence-to-sequence models to gen-
erate entity summaries and use little to none of the structure in-
formation of 𝑇 during the summarization process. We hypothesize
that this structure information can be exploited to compute better
summaries. To verify our hypothesis, we propose GATES, a new
entity summarization approach that combines topological infor-
mation and knowledge graph embeddings to encode triples. The
topological information is encoded by means of a Graph Attention
Network. Furthermore, ensemble learning is applied to boost the
performance of triple scoring. We evaluate GATES on the DBpedia
and LMDB datasets from ESBM (version 1.2), as well as on the
FACES datasets. Our results show that GATES outperforms the
state-of-the-art approaches on 4 of 6 configuration settings and
reaches up to 0.574 F-measure. Pertaining to resulted summaries
quality, GATES still underperforms the state of the arts as it obtains
the highest score only on 1 of 6 configuration settings at 0.697
NDCG score. An open-source implementation of our approach and
of the code necessary to rerun our experiments are available at
https://github.com/dice-group/GATES.

CCS CONCEPTS
• Information systems → Content ranking; • Computing
methodologies → Semantic networks.

KEYWORDS
Entity Summarization, GraphAttentionNetwork, KnowledgeGraph
Embeddings, Text Embeddings.
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1 INTRODUCTION
Entity summarization (ES) approaches aim to generate size-constrai-
ned summaries of entities 𝑒 described in an input knowledge graph
𝑇 by selecting a subset of the assertions (i.e., subject-predicate-
object triples) associated with 𝑒 from𝑇 [18]. ES approaches are used
in an increasing number of applications (e.g., the Google Knowledge
Panels, RDF browsers such as Genesis [7]) to provide succinct rep-
resentations of entities. Most recent works in this field rely on deep
learning [15, 18, 30, 31]—especially on bidirectional Long Short-
Term Memory (BiLSTM) networks [8]—to achieve general-purpose
entity summarization. These recent works applying deep learning
substantially outperform previous research based on unsupervised
learning [5, 9, 10, 23, 29].

Still, the intuition behind the input representation from triples
that represent an entity used in most current approaches goes back
to MPSUM [29], which assumes the uniqueness of predicates and
the importance of objects to be key factors while selecting the
triples that are to be part of an entity’s summary. For example,
the approaches presented in [30] and [31] encode the predicates
and objects of triples using a combination of text embeddings and
knowledge graph embeddings (e.g., word2vec [3] and TransE [28],
respectively). The authors of DeepLENS [18] and [15] exploit the
idea of distributional semantics by encoding triples with fastText
[12].

The core observation behind this paper is that none of the current
approaches exploits adjacency information in 𝑇 explicitly. For ex-
ample, the premise behind the state-of-the-art approach DeepLENS
is that textual information is “more important than graph struc-
ture” [18, p. 2]. While the occurrence of entities across triples pro-
vides some local information on adjacency, global information on
the structure of 𝑇 has not been exploited for entity summarization.
We hypothesize that including more structure information into the
entity summarization process can lead to better entity summaries by
providing hints pertaining to the amount of information in a given
triple at the scale of 𝑇 .

https://github.com/dice-group/GATES
https://doi.org/10.1145/3460210.3493574
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To validate our hypothesis, we developed GATES. Our approach
is inspired by [33], which uses Graph Convolutional Networks
(GCN) [13] to generate multi-document summarizations. The au-
thors exploit deep neural networks to encode the sentences in docu-
ments and combine them with a graph representation of document
clusters to produce multi-document summaries. GATES applies
Graph Attention Networks (GAT) [26] to rank triples while taking
the structure of the input graph𝑇 into consideration. To our knowl-
edge, we are the first to implement deep learning for graphs on
the ES task. In addition to leveraging the adjacency matrix of 𝑇 to
collect structure information, we combine knowledge graph embed-
dings and text embeddings to represent triples. By these means, we
capture the information in triples (like previous works) and benefit
from the topology of𝑇 . In contrast to recent works [18, 30], GATES
applies knowledge graph embeddings and text embeddings on triple
encoding to encode triples’ predicates and objects, respectively.

We evaluated GATES on the DBpedia and LMDB datasets from
ESBM (version 1.2) [16] as well as the FACES datasets [9]. Our re-
sults suggest that we outperform the current state of the art on both
datasets and reach up to 0.574 F-measure. The main contributions
of this paper can be summarized as follows:

• We present a new approach for entity summarization dubbed
GATES. Our approach is able to exploit the structure of
knowledge graphs via a graph attention network.

• GATES combines graph structure information with knowl-
edge graph embeddings and text embeddings to encode
triples quality of entity summarization.

• Our ablation study suggests that the use of weighted adja-
cency matrix, the combination of ComplEx graph embedding
andGloVe text embedding in triple encoding, and single-head
attention in GAT are central for GATES outperforming the
state of the art.

2 RELATEDWORK
The research on entity summarizationwas dominated by approaches
based on unsupervised learning up to and including 2016. RELIN [5]
applies a centrality-basedmethod based on the random surfermodel
[20] to compute relatedness and informativeness features that are
used to compute a triple ranking. FACES [9] combines three di-
mensions: diversity, uniqueness, and popularity to produce the
summaries. It uses the incremental hierarchical conceptual cluster-
ing algorithm [19] to identify these three dimensions. A lightweight
link-based approach for the relevance-oriented summarization of
knowledge graph entities is described by LINKSUM [24]. The ap-
proach MPSUM [29] utilizes the Latent Dirichlet allocation (LDA)
model for entity summarization and proposedMP (match up objects
and RDF triples on predicates) that considers predicate uniqueness
and object importance in RDF triple to generate triple ranking.

More recent approaches generate summaries within a supervised
setting. At the time of writing, published approaches have solely
used BiLSTM networks as the core of their entity summarizer mod-
els. To the best of our knowledge, ESA [30] is the first model that
implements a neural network method in this research area lever-
aging a BiLSTM network. Inspired by MPSUM [29], the authors
used predicates and objects of RDF triples (facts) as key factors

to consider when computing summaries. By combining text em-
beddings [3] and knowledge graph embeddings [4], they encoded
entity descriptions consisting of predicate-object pairs for each
triple in the input entity’s concise bound description into vectors as
embeddings. Afterward, the embeddings are used as inputs to the
BiLSTM network with an attention mechanism to calculate triple
scoring. ESA outperforms unsupervised methods that are evaluated
on ESBM (version 1.1)1 [16]. Inspired by ESA, DeepLENS [18] also
leverages a BiLSTM to encode the entity description and leverages
multilayer perceptron (MLP) to compute triple scoring. Unlike ESA,
DeepLENS considers applying textual semantics rather than using
knowledge graph embeddings to carry the entity summarization
tasks. DeepLENS implements fastText [12] as triple encoding to cap-
ture information meaning in entity descriptions and feed it into the
BiLSTM network. The authors evaluated DeepLENS using ESBM
(version 1.2)2 [16]. Their model outperforms ESA on both datasets
from ESBM, i.e., DBpedia and LinkedMDB (LMDB). AutoSUM [31]
extends ESA and consists of two modules: an extractor and a sim-
ulator. The first module extracts features from input, which are
represented in triples, using a BiLSTM. The simulator takes the
extracted features to simulate multi-user preferences. AutoSUM is
able to achieve ESA on all datasets on ESBM (version 1.1). Similarly,
DRESSED, an extension of DeepLENS, leverages user feedback as
input to perform triple scoring. Moreover, to calculate the triple
scoring, it applies deep reinforcement learning to combine results
from entity summarizer and user actions. DRESSED is evaluated
on modified ESBM (version 1.2) datasets and FED dataset [15].

3 THE GATES APPROACH
3.1 Overview
3.1.1 Definitions. Let 𝐸 be a set of entities, 𝑅 be a set of relations,
and 𝐶 and 𝐿 be sets of classes and literals, respectively. We call
𝑇 ⊆ 𝐸 × 𝑅 × (𝐶 ∪ 𝐿 ∪ 𝐸) a knowledge graph. Given the triple
(𝑠, 𝑝, 𝑜) ∈ 𝑇 , we call 𝑠 the subject, 𝑝 the predicate and 𝑜 the object of
the triple. We define the set 𝑉 (𝑇 ) of entities found in 𝑇 as follows:
𝑉 (𝑇 ) = {𝑒 ∈ 𝐸 : ∃𝑒′ ∈ 𝐸 ∃𝑟 ∈ 𝑅 with (𝑒, 𝑟, 𝑒′) ∈ 𝑇 ∨ (𝑒′, 𝑟 , 𝑒) ∈ 𝑇 }.
We write 𝐷𝑒𝑠𝑐 (𝑒,𝑇 ) to mean the concise bound description of the
entity 𝑒 in 𝑇 . Note that 𝐷𝑒𝑠𝑐 (𝑒,𝑇 ) ⊆ 𝑇 . For the sake of brevity, we
write 𝐷𝑒𝑠𝑐 (𝑒) instead of 𝐷𝑒𝑠𝑐 (𝑒,𝑇 ) when 𝑇 is unambiguous.

3.1.2 Problem Statement. Given a knowledge graph 𝑇 , a size con-
straint 𝑘 ∈ N+ and an entity 𝑒 ∈ 𝑉 (𝑇 ), the goal of GATES is to
generate an optimal summary 𝐸𝑆 (𝑒) ⊆ 𝐷𝑒𝑠𝑐 (𝑒) with |𝐸𝑆 (𝑒) | ≤ 𝑘 .
To compute 𝐸𝑆 (𝑒), GATES transforms𝑇 into a graph representation
and employs a triple encoding mechanism (detailed in Section 3.4.2).
Subsequently, it uses the triple encoding and the graph structure of
𝑇 in a GAT to compute high-level features of triples as well as to
rank triples. 𝐸𝑆 (𝑒) are the top-𝑘 triples based on the output of the
GAT.

3.2 Background
3.2.1 Graph Attention Network. We apply a Graph Attention Net-
work (GAT) [26] to generate high-level features for triple scoring.
In this subsection, we explain the implementation of the GAT in

1https://github.com/nju-websoft/ESBM/tree/master/v1.1
2https://github.com/nju-websoft/ESBM/tree/master/v1.2



our model, and how this GAT produces scores for the triples in
the description of entities. Like Graph Convolutional Networks
(GCN) [13, 33], GATs require two inputs: an adjacency matrix and
node features. An entry 𝑎𝑖 𝑗 of the adjacency matrix𝐴 ∈ R𝑁×𝑁 of a
graph G (where 𝑁 stands for the number of nodes in G) describes
how often the node 𝑣𝑖 of G is the source of an edge whose end is
𝑣 𝑗 .

We denote the feature vector of the node 𝑣𝑖 byℎ𝑖 ∈ R𝐹 where 𝐹 is
the number of features used to encode a node. The input layer for a
GAT is henceℎ = {ℎ1, ℎ2, ..., ℎ𝑁 }. The GAT computes a setℎ′ of new
node features as its outputℎ

′
= {ℎ′

1, ℎ
′
2, ..., ℎ

′
𝑁
}, whereℎ′

𝑖
∈ R𝐹

′
and

𝐹
′ ∈ N is a number of new node features. Initially, a shared linear

transformation, parameterized by a weight matrix𝑊 ∈ R𝐹
′×𝐹 is

applied to every node. We then perform self-attention on the nodes
while relying on a shared attention mechanism 𝑎 : R𝐹

′
× R𝐹

′
→ R.

We set
𝑒𝑖 𝑗 = 𝑎(𝑊ℎ𝑖 ,𝑊ℎ 𝑗 ), (1)

where 𝑎(., .) refers to the attention mechanism and 𝑒𝑖 𝑗 is the cal-
culated attention coefficient. Node’s attention coefficient and its
first-hop neighbors are computed in order to preserve topological
information of graphs [14]. A softmax function is applied to normal-
ize the attention coefficients by converting them into probabilities
to make them comparable. Another function, called Leaky ReLU
activation, is implemented to acquire the final normalized attention
coefficient 𝛼𝑖 𝑗 .

𝛼𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑒𝑖 𝑗 )) (2)

Afterward, the normalized attention coefficients are used to
compute a linear combination of node features. We also apply multi-
head attention on implementing GAT in our model to discover its
contribution. Therefore, we calculate the set of new features, ℎ

′
, as

given by

ℎ
′
𝑖 =

𝐾

∥
𝑘=1

𝜎
©­«

∑︁
𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑖 )

𝛼𝑘𝑖 𝑗𝑊
𝑘ℎ 𝑗

ª®¬ , (3)

where𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑖) stands for the set of nodes which are adjacent to
the node 𝑣𝑖 and ∥ denotes the concatenation of vectors. In addition,
a non-linearity 𝜎 is applied to the summation results.

3.3 Architecture
In this section, we elucidate the formal workings of GATES. Fig. 1
gives an overview of GATES’ architecture, which has a modular
design comprising

(1) the generation of the input representation, including the
computation of the adjacency matrix generation of the en-
coding of triples,

(2) the computation of scores for triples and
(3) the generation of entity summaries

We discuss each component in detail in the following subsections.

3.4 Input representation
3.4.1 Adjacency Matrix. We compute 𝑇 ’s adjacency matrix as fol-
lows: Let 𝑉 (𝑇 ) be the set of entities contained in 𝑇 , ergo

𝑉 (𝑇 ) = {𝑣 : ∃(𝑣, 𝑝, 𝑜) ∈ 𝑇 ∨ ∃(𝑠, 𝑝, 𝑣) ∈ 𝑇 }. (4)

We define the entries 𝑎𝑖 𝑗 of 𝑇 ’s adjacency matrix 𝐴(𝑇 ) as follows:

𝑎𝑖 𝑗 =

{
1 if (𝑣𝑖 , 𝑝, 𝑣 𝑗 ) ∈ 𝑇 ∨ (𝑣 𝑗 , 𝑝, 𝑣𝑖 ) ∈ 𝑇 ;
0 otherwise.

(5)

In addition to a binary adjacency matrix, we also consider a
weighted version of the adjacency matrix [1] and evaluate whether
it is beneficial for GATES in a series of experiments reported in
Section 4. The weight of a property 𝑝 is computed using its 𝑡 𝑓 𝑖𝑑 𝑓
score relative to a node 𝑣 ∈ 𝑉 (𝑇 ). The term frequency 𝑡 𝑓 (𝑝,𝑢,𝑇 )
encapsulates the number of times that 𝑢 is the subject of a triple
with the property 𝑝 in 𝑇 . The inverse document frequency of 𝑝
describes how important said property is in 𝑇 . Formally, the term
frequency 𝑡 𝑓 (𝑝,𝑢,𝑇 ) is defined by:

𝑡 𝑓 (𝑝,𝑢,𝑇 ) = |{𝑜 : (𝑢, 𝑝, 𝑜) ∈ 𝑇 }|
|{(𝑜, 𝑞) : (𝑢, 𝑞, 𝑜) ∈ 𝑇 }| . (6)

The inverse document frequency of 𝑝 is given by

𝑖𝑑 𝑓 (𝑝,𝑇 ) = ln
|𝑉 (𝑇 ) |

|{𝑣 ∈ 𝑉 (𝑇 ) : (𝑣, 𝑝, 𝑜) ∈ 𝑇 }| . (7)

We now define 𝑡 𝑓 𝑖𝑑 𝑓 (𝑝,𝑢,𝑇 ) as

𝑡 𝑓 𝑖𝑑 𝑓 (𝑝,𝑢,𝑇 ) = 𝑡 𝑓 (𝑝,𝑢,𝑇 ) × 𝑖𝑑 𝑓 (𝑝,𝑇 ) . (8)

The entries of the weighted adjacency matrix 𝑎𝑖 𝑗 are now given by

𝑎𝑖 𝑗 =


∑

𝑝 :(𝑣𝑖 ,𝑝,𝑣𝑗 ) ∈𝑇
𝑡 𝑓 𝑖𝑑 𝑓 (𝑝) if ∃𝑝 : (𝑣𝑖 , 𝑝, 𝑣 𝑗 ) ∈ 𝑇,

0 otherwise.
(9)

To work with weighted adjacency matrix, we follow [27] where
we utilize the weighted edges value as edge features to update node
features in the attention-mechanism process. Let edge features 𝐷
be a set of non-zero value 𝑑𝑖 𝑗 obtained from the weighted adjacency
matrix, where 𝑑𝑖 𝑗 ∈ R𝐹𝐸 and 𝐹𝐸 ∈ N is the number of edge features.
By using linear transformation, 𝐷 is transformed to higher-level
features. In doing so, we apply weight matrices𝑊𝑒 ∈ R𝐹𝐸×𝐹𝐸 to
every edge. Both edge and node features are used in the attention
mechanism 𝑎 : R𝐹

′
× R𝐹

′
× R𝐹

′
𝐸 → R to generate the attention

coefficient. This process is performed on each node as follows:

𝑒𝑖 𝑗 = 𝑎(𝑊ℎ𝑖 ,𝑊ℎ 𝑗 ,𝑊𝑒𝑑𝑖 𝑗 ), (10)

We normalize the attention coefficient using equation 2. Finally,
we calculate the set of new features, ℎ

′
, as given by

ℎ
′
𝑖 =

𝐾

∥
𝑘=1

𝜎
©­«

∑︁
𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑖 )

𝛼𝑘𝑖 𝑗𝑊
𝑘ℎ 𝑗𝑊

𝑘
𝑒 𝑑𝑖 𝑗

ª®¬ , (11)

3.4.2 Triple encoding. We exploit both knowledge graph and text
embeddings to encode the triples in 𝐷𝑒𝑠𝑐 (𝑒) into continuous vec-
tors. Let 𝑡𝑖 be in a triple in 𝐷𝑒𝑠𝑐 (𝑒). Moreover, let𝐺𝐸 : 𝑅 → C𝑘1 be
a knowledge graph embedding function able to represent prop-
erties explicitly. We represent 𝑘1-dimensional complex vectors
as 2𝑘1-dimensional real vectors by concatenating the 𝑘1 real and
𝑘1 imaginary components of the complex vectors. Moreover, let
𝑇𝐸 : 𝐸 → R𝑘2 be a text embedding function able to embed entities.
The embedding of 𝑡𝑖 = (𝑒, 𝑝𝑖 , 𝑜𝑖 ) ∈ 𝐷𝑒𝑠𝑐 (𝑒) is set to

𝐺𝐸 (𝑝𝑖 ) | |𝑇𝐸 (𝑜𝑖 ) (12)
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Figure 1: Architecture of entity summarization using GAT (GATES).

.

and is of dimension 2𝑘1+𝑘2. While computing embeddings using the
approaches above is straightforward, we employ the same method
as [18] to define of the textual form of an object value. If the object
value is identified by Internationalized Resource Identifiers (IRIs),
we retrieve one of its rdfs:label. However, if the object value
does not have a label, we set its local name as the textual form. For
objects that exist in the form of literal, we take their lexical form.
Subsequently, each word of the textual form is mapped into vectors
using a pre-trained word embedding model before averaging the
vectors to obtain one vector representation.

In our implementation, we employ three knowledge graph em-
beddings: DistMult [32], ComplEx [25], and ConEx [6]). DistMult is
a graph embedding that uses neural embedding models and focuses
on symmetric relations. Complex embedding effectively manages
complex number using the Hermitian dot product to handle sym-
metric, reflexity, and irreflexity relations. On the other hand, it
deals also with antisymmetric relations. Furthermore, ConEX is a
complex-valued convolutional neural model that learns complex-
valued vector representation of a given knowledge graph by com-
bining a 2D convolution operation with a Hermitian dot product
[6].

We employ two text embeddings: GloVe and fastText. GloVe [21]
combines global matrix factorization and local context window
methods to produce word vector space with meaningful substruc-
ture. In our work, we use a pre-trained word vectors glove.6B model
that is trained using Wikipedia 2014 and Gigaword 5. fastText [12]
is a skip-gram-based word representations technique where each
word is represented as a bag of character n-grams. This method
aims to capture the meaning of short words. In our work, we use
a pre-trained fasText model that contains 1 million word vectors
trained on Wikipedia 2017.

3.5 Triple scoring
We learn the scoring function for triples in a manner akin to [30].
First, the output of the GAT for each triple is normalized using
the softmax function. Therewith, we compute a distribution of
the probability of triples belonging to the summary we aimed to

compute. We then approximate to generate gold summaries by
using the cross-entropy loss against the gold standard probabilities
of triples belonging to the summary of each of the entities in the
gold standard.

In order to increase the accuracy of triple scoring, we implement
a five-fold cross-validation methodology. Five separate GATESmod-
els (k=5) are resulted in accordance to each fold of training data.
Instead of applying a single model-based learner, we follow the
approach from [2]. Thus, we compute the prediction by involving
all five models. In doing so, we use a soft voting ensemble technique
that has been proven to improve prediction accuracy over a single
model alone.

3.6 Generation of Entity summaries
We can finally define the summary 𝐸𝑆 (𝐸) of an entity 𝑒 based on
𝐷𝑒𝑠𝑐 (𝑒) in a manner akin to [17] by selecting the top-k 𝐷𝑒𝑠𝑐 (𝑒)
triples w.r.t. the score computed in the section above. 𝐸𝑆 (𝑒) is hence
a k-subset of 𝐷𝑒𝑠𝑐 (𝑒) with

∀𝑡 ′ ∈ 𝐸𝑆 (𝑒)\𝐷𝑒𝑠𝑐 (𝑒) : 𝑠𝑐𝑜𝑟𝑒 (𝑡 ′) ≤ min
𝑡 ∈𝐷𝑒𝑠𝑐 (𝑒 )

𝑠𝑐𝑜𝑟𝑒 (𝑡) . (13)

4 EVALUATION
4.1 Goal
The goal of our evaluation was to ascertain whether graph struc-
ture information can improve the quality of entity summaries. To
achieve this goal, we compared GATES with the supervised state-of-
the-art techniques, ESA [30], AutoSUM[31], and DeepLENS [18]3.
The benchmark provides both training and evaluation datasets for
two knowledge graphs, i.e., DBpedia and LinkedMDB (LMDB).

4.2 Datasets and Evaluation Metrics
In this study, we used ESBM (version 1.2) [16] and FACES [9] as
benchmarks. ESBM contains 6,584 triples distributed across 175 en-
tities. 150 entities are from DBpedia and 25 entities are from LMDB.
On the other hand, FACES has 50 entities and 2,152 triples. Both
datasets are designed to support model evaluation using five-fold
3Note that we do not compare with DRESSED because it assumes an interactive setting.



cross-validation and provide two kinds of ground-truth summaries:
summaries of length 5 and 10. For each entity 𝑒 , ESBM provides
six manually generated summaries, while FACES contains four to
eight manually generated summaries. To ensure that our experi-
mental results are reproducible, we did not modify the ESBM bench-
mark in any way and used the evaluation function provided by the
ESBM benchmark4 to compute F-measures and NDCG (Normalized
Discounted Cumulative Gain) scores throughout our experiments.
Since the evaluation function of the benchmark does not serve
FACES’s evaluation, we applied the same algorithm to perform the
evaluation.

4.3 Experimental Setup
This section describes the experimental settings that were used to
train GATES. We trained on the complete knowledge graph con-
tained in the benchmark to compute knowledge graph embeddings
models using ComplEx [25], DistMult [32], and ConEx [6] with the
embedding size set to 300. We used this setting because it has been
used in the literature of knowledge graph embeddings [6]. For text
embeddings, we used 300 dimensions for both GloVe and fastText
based on previous works [18].

We conducted a hyperparameter optimization to discover de-
fault experimental settings for GATES. We optimized for single
and multi-head attention, the weights of the adjacency matrix, the
number of hidden layers, the learning rate, and the use of regular-
ization. Details are given in section 4.4.1. Furthermore, we used
the Adam optimizer and binary cross-entropy (BCE) as loss func-
tion. To avoid overfitting without lowering the number of learning
instances[11, 31], GATES was trained using the five-fold cross-
validation technique. Moreover, the early stopping method was
applied on validation sets during the training. The final hyperpa-
rameters that we used in our experiments were a learning rate of
0.05, 2 hidden layers, single-head attention, a dropout rate of 0 and
no regularization.

To evaluate whether the results achieved by GATES differ signif-
icantly from those of the state-the-art approaches, we performed a
statistical significance test. We used the Wilcoxon signed ranked
test [22] with a significance threshold of 95%. All experiments were
carried on a 8-core Intel i5 8250U CPU (1.60 GHz) with 15.5 GB of
RAM running on Ubuntu 20.04.2 LTS (64-bit) without CUDA.

4.4 Experimental Results
We begin by presenting some of most important results while per-
forming the hyperparameter configuration of GATES. Thereafter,
we compare GATES with ESA, AutoSUM, and DeepLENS.

4.4.1 Hyperparameters. We used six different triple encoding set-
tings by combining each of the three knowledge graph embeddings
and two text embeddings we considered in this work. In a first
series of experiments, we used the binary version of the adjacency
matrix. We fixed the learning rate to 0.05 and we compared all
GATES models with both single-head and multi-head attention
at the following hyperparameter ranges: number of hidden layers
∈ {2, 4}, L2-regularization ∈ {0, 1× 10−5}, and number of attention
heads ∈ {1, 2, 4, 6}.

4https://github.com/nju-websoft/ESBM/tree/master/v1.2/Evaluator

Fig. 2 gives an overview of our findings for this first series of
experiments. Using GloVe led the model to have slightly higher
F-measures than when it used fastText across different settings for
the number of attention heads. On average, the effective configura-
tions to improving the F-measures were by using 1, 2, and 4 heads
in the multi-head attention layer. In a second set of experiments,
we used weighted adjacency matrices where the edge weights were
computed using 𝑡 𝑓 𝑖𝑑 𝑓 (Equation 8). We then compared the differ-
ent settings of GATES with the same hyperparameters as above.
The results shown in Fig. 3 display the performance of GATES for
different settings. On average, GATES achieves better F-measures
with the weighted version of the adjacency matrix. The ranking
across the combinations of knowledge graph and text embeddings
are in line with those achieved in the first experiments.

To select the setting for GATES in all further experiments, we
selected the highest F-measure achieved by GATES using all six
combination of embeddings in Table 1. The combination of Com-
plEx and GloVe embeddings achieves the best average rank across
all experiments by ranking first in 4 of 12 experiments, second
in five experiments, third in two experiments, and fourth in one
experiment. It is also the best configuration on top-5 summaries of
DBpedia with binary and weighted adjacency matrix, and also on
the top-5 of LMDB with binary adjacency matrix, and the top-10
of LMDB with weighted adjacency matrix. DistMult and fastText
embeddings are together able to achieve the best performance on
FACES dataset with a weighted adjacency matrix and the top-10 of
LMDB with a binary adjacency matrix. The combination of Dist-
Mult and GloVe embeddings outperforms all other models on all
top-k summaries of DBpedia with a binary adjacency matrix, and
also in the top-10 summaries of DBpedia with a weighted adjacency
matrix, and for top-5 summaries of FACES with a binary adjacency
matrix. In addition, the combination of ComplEx and fastText has
achieved all other models on all top-k summaries of LMDB with a
binary adjacency matrix, and also on top-10 summaries of FACES.
Still, the verdict is clear: GATES performs best with a weighted
adjacency matrix, ComplEx as graph embedding and GloVe as text
embedding. We hence use this model with 2 hidden layers, a single-
head attention, a dropout rate of 0, and no regularization in our
subsequent experiments.

Table 2 presents NDCG scores that are used to measure the
quality of obtained summaries ranking. In a comparison with the
binary adjacency matrix, applying a weighted adjacency matrix on
GATES is proven to slightly increase the summaries ranking quality.
Furthermore, the combination of ComplEx and GloVe embeddings
outperforms other models where it achieves the highest average
score of NDCG in 7 of 12 experiments. DistMult and fastText em-
beddings combination is in the second place where it achieves the
best average score in 4 of 12 experiments. Meanwhile, the imple-
mentation of ComplEx and fastText gains the best average score
only in two experiments. The last combination, DistMult and GloVe
embeddings, obtains the best average score only in one experiment.

4.4.2 Comparison with state-of-the-art approaches. We compared
GATES with the following state-of-the-art approaches: ESA, Au-
toSUM, and DeepLENS. All approaches use supervised training
methods. Since there are no NCDG scores available for the three
approaches, we re-ran the experiments of all approaches with
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(c) GATES (DistMult, GloVe)
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(f) GATES (ConEx, fastText)

Figure 2: F-measures achieved by all configurations of GATES in the first series of experiments

Table 1: Highest F-measure of all combinations of knowledge graph and text embeddings
in our first (binary adjacency matrix) and second (weighted adjacency matrix) series of
experiments.

DBpedia LMDB FACES

k=5 k=10 k=5 k=10 k=5 k=10

Binary adjacency matrix

GATES (ComplEx, GloVe) 0.418 0.577 0.440 0.457 0.253 0.320
GATES (DistMult, GloVe) 0.418 0.578 0.435 0.449 0.263 0.317
GATES (ConEx, GloVe) 0.357 0.516 0.331 0.406 0.216 0.305
GATES (ComplEx, fastText) 0.407 0.569 0.440 0.466 0.258 0.333
GATES (DistMult, fastText) 0.411 0.572 0.424 0.466 0.260 0.331
GATES (ConEx, fastText) 0.313 0.475 0.333 0.410 0.171 0.290

Weighted adjacency matrix

GATES (ComplEx, GloVe) 0.423 0.574 0.437 0.535 0.254 0.324
GATES (DistMult, GloVe) 0.413 0.577 0.451 0.511 0.254 0.310
GATES (ConEx, GloVe) 0.361 0.525 0.393 0.489 0.220 0.300
GATES (ComplEx, fastText) 0.405 0.576 0.432 0.510 0.253 0.318
GATES (DistMult, fastText) 0.414 0.571 0.431 0.509 0.261 0.344
GATES (ConEx, fastText) 0.326 0.499 0.370 0.443 0.173 0.284

the according configuration settings from the respective papers
[30][31][18]. Subsequently, we evaluated the three approaches with
ESBM (version 1.2) and FACES datasets. As shown in Table 3, GATES
outperforms all approaches on top-5 summaries of DBpedia, top-
10 summaries of LMDB, and all top-k summaries of FACES. The
improvement of GATES over DeepLENS was particular large for
𝑘 = 5 on DBpedia. We performed a Wilcoxon signed rank test to
check whether our results were significant. The null hypothesis of
the test was that the F-measures achieved by GATES on each of the

Table 2: Highest NDCG scores of all combinations of knowledge graph and text embeddings
in our first (binary adjacency matrix) and second (weighted adjacency matrix) series of
experiments.

DBpedia LMDB FACES

k=5 k=10 k=5 k=10 k=5 k=10

Binary adjacency matrix

GATES (ComplEx, GloVe) 0.803 0.893 0.818 0.869 0.693 0.754
GATES (DistMult, GloVe) 0.794 0.892 0.799 0.856 0.703 0.760
GATES (ConEx, GloVe) 0.738 0.845 0.701 0.801 0.652 0.747
GATES (ComplEx, fastText) 0.795 0.889 0.801 0.869 0.694 0.756
GATES (DistMult, fastText) 0.787 0.886 0.806 0.867 0.708 0.766
GATES (ConEx, fastText) 0.702 0.809 0.727 0.821 0.613 0.739

Weighted adjacency matrix

GATES (ComplEx, GloVe) 0.798 0.893 0.804 0.881 0.697 0.759
GATES (DistMult, GloVe) 0.782 0.890 0.818 0.878 0.702 0.759
GATES (ConEx, GloVe) 0.737 0.845 0.744 0.832 0.645 0.739
GATES (ComplEx, fastText) 0.791 0.900 0.800 0.878 0.686 0.757
GATES (DistMult, fastText) 0.786 0.885 0.814 0.877 0.697 0.769
GATES (ConEx, fastText) 0.737 0.843 0.737 0.825 0.617 0.731

summaries came from the same distribution as those achieved by
ESA, AutoSUM, or DeepLENS. We were able to negate this null hy-
pothesis (𝑝 ≤ 0.05) on top-10 summaries of LMDB and FACES, and
on top-5 summaries of all datasets for ESA. Moreover, GATES sig-
nificantly outperforms AutoSUM on top-10 summaries of DBpedia
(see Table 3).

Table 4 presents NDCG results on the benchmark for comparing
the approaches. Although GATES is inferior to DeepLENS in most
settings, GATES outperforms DeepLENS on FACES dataset.
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(f) GATES (ConEx, fastText)

Figure 3: F-measures achieved by all six configurations of GATES in the second set of experiments

Table 3: Average F-measure score based on our model testing via five-fold cross-validation
processes to all entities of the benchmark. Statistically significant results (𝑝 < 0.05) are
indicated by ▲. Results that are not significant are marked with ◦. Underperform results
are denoted with ▼. The first, second and third symbols next to a result in the last row
encode the statistical significance of the comparison of GATES with ESA, AutoSUM and
DeepLENS, respectively.

DBpedia LMDB FACES

k-5 k=10 k=5 k=10 k=5 k=10

F-Measure

ESA 0.332 0.532 0.353 0.435 0.153 0.261
AutoSUM 0.372 0.555 0.430 0.520 0.241 0.316
DeepLENS 0.404 0.575 0.469 0.489 0.130 0.248
GATES 0.423

▲ ◦ ◦
0.574
▲▲▼

0.437
▲ ◦ ▼

0.535
▲▲▲

0.254
▲ ◦ ▲

0.324
▲▲▲

Table 4: Average NDCG score based on our model testing via five-fold cross-validation
processes to all entities of the benchmark.

DBpedia LMDB FACES

k-5 k=10 k=5 k=10 k=5 k=10

F-Measure

ESA 0.755 0.846 0.737 0.799 0.601 0.707
AutoSUM 0.797 0.882 0.809 0.856 0.693 0.768
DeepLENS 0.825 0.905 0.855 0.888 0.585 0.715
GATES 0.798 0.893 0.804 0.881 0.697

(▲0.58%)
0.759

4.5 Complexity Analysis
We performed time complexity analysis of GATES. Given a knowl-
edge graph𝑇 , we can compute𝐴(𝑇 ) in𝑂 ( |𝑉 (𝑇 ) |2) and need𝑂 ( |𝑇 |)
space to store it. Computing the weighted version of 𝐴(𝑇 ) has
the same worst-case time and space complexity. We assume that
the embeddings are pre-computed and can fetch them in constant
time for each element of 𝑅 ∪ 𝐸, ergo need 𝑂 ( |𝑇 |) in space and
time to collect the embeddings which serve as input for out GAT.
Each iteration of the computation in the GAT is carried out in
𝑂 (𝑛ℎ𝑒𝑎𝑑𝑠 × 𝐹

′
𝐹 |𝑉 (𝑇 ) |2), where 𝑛ℎ𝑒𝑎𝑑𝑠 is the number of attention

heads. We also measured the runtime of GATES in our experiments.
The results shown in Table 5 suggest that our approach can be
trained in under 10 min in all experiments.

Table 5: Runtime Analysis of GATES on the benchmark. All times are seconds.

Dataset Input Output Training Time (in second) Epochs

Triples Triples Total Mean

DBpedia top-5 4436 750 657.96 2.631 250
DBpedia top-10 4436 1500 682.98 2.732 250
LMDB top-5 2148 125 354.87 1.419 250
LMDB top-10 2148 250 362.45 1.450 250
FACES top-5 2152 125 361.71 1.447 250
FACES top-10 2152 250 403.36 1,613 250



5 CONCLUSION AND FUTUREWORKS
We presented GATES, a new approach on general-purpose entity
summarization task based on extractive method. Our approach in-
troduces a triple encoding mechanism that combines knowledge
graph embeddings and text embeddings, and implements deep
learning on graphs using a GAT. Based on our ablation study, we
discovered the model achieves the best performance when it was
equipped with 1) the adjacency matrix with weighted edges, 2)
the combination of ComplEx as knowledge graph embedding and
GloVe as text embedding, 3) the use of single-head attention. GATES
outperformed all of the state-of-the-art approaches on top-10 sum-
maries of LMDB and FACES. In addition, GATES achieved ESA
and AutoSUM on top-5 summaries of all datasets and on top-10
summaries of DBpedia, respectively. GATES reaches the highest F-
measure of 0.574. In the future, we expect to implement GATES on
bigger benchmarks and domain-specific datasets such as BioASQ5.
As simple graphs have been proven able to improve entity summa-
rization performance, we hence intend to extend that portion of
our approach with hypergraphs [34].
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