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ABSTRACT
Entity typing in knowledge graphs (KGs) aims to infer missing

types of entities and might be considered one of the most signifi-

cant tasks of knowledge graph construction since type information

is highly relevant for querying, quality assurance, and KG appli-

cations. While supervised learning approaches for entity typing

have been proposed, they require large amounts of (manually) la-

beled data, which can be expensive to obtain. In this paper, we

propose a novel approach for KG entity typing that leverages semi-

supervised learning from massive unlabeled data. Our approach

follows a teacher-student paradigm that allows combining a small

amount of labeled data with a large amount of unlabeled data

to boost performance. We conduct several experiments on two

benchmarking datasets (FB15k-ET and YAGO43k-ET). Our results

demonstrate the effectiveness of our approach in improving entity

typing in KGs. Given type information for only 1% of entities, our

approach ASSET predicts missing types with a 𝐹1-score of 0.47

and 0.64 on the datasets FB15k-ET and YAGO43k-ET, respectively,

outperforming supervised baselines.
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1 INTRODUCTION
In recent years, knowledge graphs (KGs) have had a major impact

on many applications, such as web search, natural language pro-

cessing, and biomedicine [6]. One of the most important features

of KGs are the types of their entities such as person, location, or or-
ganization. This information is often required for querying, e.g., by

means of SPARQL, for quality assurance, e.g., by means of SHACL,

as well as for question answering [19]. Unfortunately, type infor-

mation in existing knowledge graphs is often incomplete, noisy,

and coarse-grained [5]. This pertains both to the construction of

new knowledge graphs as well as to the maintenance of existing

knowledge graphs, e.g. by introducing new types. For example,

36% of entities in DBpedia do not have types [8] and 10% of en-

tities in Freebase labeled with artist/music are missing the type

people/person [11].

While supervised approaches for entity type prediction have

been proposed, e.g., based on hand-crafted features [10], knowl-

edge graph embeddings [21], and language models [1], they all

require a substantial amount of training data which is often not

available. In contrast, unsupervised approaches based on cluster-

ing [3] do not require a priori labeled training data, but require

labeling of clusters and do not reach the same predictive perfor-

mance as supervised approaches. To overcome this challenge and

to close the gap, we propose a semi-supervised approach for entity

typing, dubbed ASSET, requiring only little labeled training data.

Our approach leverages unlabeled data using the teacher-student

framework [9, 13]: (i) we train a teacher model on labeled data,

(ii) we use the teacher model to generate pseudo-labels on unlabeled

data, (iii) we train a student model on the combination of labeled

and pseudo-labeled data. We repeat the process by treating the

student as a new teacher to re-label the unlabeled data and to train

a new student. To the best of our knowledge, our approach is the

first to adapt semi-supervised learning to the entity typing task and

distills knowledge from unlabeled data to boost its performance.

Our evaluation on the two benchmarking datasets FB15k-ET and

YAGO43k-ET shows that given a small amount of training data, our

approach significantly outperforms supervised baselines trained

on the same labeled training data.

2 RELATEDWORK
Entity Typing in Knowledge Graphs. Approaches for entity
typing in knowledge graphs can be distinguished by their features

and models: For instance, Melo et al. [10] employ the incoming

and outgoing relations of an entity to train a hierarchical multi-

label classifier. Similarly, Xu et al. [17] predict the types of Chinese

https://orcid.org/0000-0003-0215-1278
https://orcid.org/0000-0002-4525-6865
https://orcid.org/0000-0001-7112-3516
https://doi.org/10.1145/3460210.3493563
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Algorithm 1: Our Teacher-Student Framework (ASSET)

Require: labeled and unlabeled datasets: D𝑙 , D𝑢 .

Require: teacher and student models: T(𝜃𝑡 ) , S(𝜃𝑠 ) .
1 for num of epochs do
2 Sample batches 𝛽𝑙 from D𝑙 = {(𝑥𝑖 , 𝑦𝑖 ) }, 𝑥𝑖 ∈ R𝑑 ;
3 Train teacher model T𝑖 (𝜃𝑡 ) on 𝛽𝑙 ;

4 Calculate LD𝑙
by Equation (1) on 𝛽𝑙 ;

5 Use T𝑖 (𝜃𝑡 ) to infer pseudo-labels �̃�𝑖 for D𝑢 and let
˜D𝑢 be the

dataset D𝑢 together with pseudo-labels;

6 for num of epochs do
7 Sample batches 𝛽𝑙+𝑢 from D𝑙 and

˜D𝑢 ;

8 Train student model S𝑖 (𝜃𝑠 ) on 𝛽𝑙+𝑢 ;

9 Calculate LD𝑢
by Equation (2) on 𝛽𝑙+𝑢 ;

10 Replace teacher model with student model T𝑖+1 = S𝑖 ;

11 Repeat from Step 1 until student model S𝑖+1 has converged.;

entities by linking them to the English DBpedia and employing

DBpedia’s property and category information within a multi-label

hierarchical classifier. Neelakantan and Chang [12] employ textual

descriptions of entities as features in combination with a linear clas-

sifier. While there has been a lot of research on knowledge graph

embeddings and link prediction [14], most of the approaches fo-

cus on predicting non-type links, and the employed benchmarking

datasets, e.g., FB15k-237, WN18RR, and YAGO3-10 do not contain

type information. Only Moon et al. [11] and Zhao et al. [21] pro-

posed approaches for embedding entities according to their types.

All of these approaches assume a large number of labeled training

samples, which might not be available and expensive to obtain. In

contrast, we employ a semi-supervised approach requiring only a

little training data.

Semi-supervised Learning. Early semi-supervised algorithms

employ hard pseudo-labeling techniques to make 0,1-predictions

for unlabeled data and then train a machine learning model on a

combination of pseudo-labeled and labeled data to improve its per-

formance. Recently, the exploration of a teacher-student framework

and soft pseudo-labels representing probabilities has produced im-

pressive results for image classification [16]. However, few studies

employ this paradigm in the context of natural language process-

ing [4] and to the best of our knowledge, it has not been employed

for knowledge graphs and the entity typing task.

3 SEMI-SUPERVISED TYPE PREDICTION
3.1 Problem Formulation
We formulate the task of entity typing as a multi-label classification
problem, where each entity can have one or more types simulta-

neously. Formally, let E = {𝑒1, 𝑒2, . . . , 𝑒𝑧 } be a set of 𝑧 entities and
Λ = {𝜆1, 𝜆2, . . . , 𝜆𝑘 } be a set of 𝑘 types in a KG. Each 𝑒𝑖 ∈ E can

be associated with a subset of labels yi ∈ 2
Λ
. We identify a set

of relevant labels with a binary vector yi = (𝑦 (1)
𝑖

, 𝑦
(2)
𝑖

, . . . , 𝑦
(𝑘)
𝑖

),
where 𝑦

( 𝑗)
𝑖

= 1 means that 𝑒𝑖 has type 𝜆 𝑗 . Our goal is to learn a

multi-label model H : E → 2
Λ
that maps each entity 𝑒𝑖 ∈ E to a

set of relevant types yi ∈ 2
Λ
. We assume a semi-supervised setting

in which there are two datasets: (i) labeled data D𝑙 = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1,
where 𝑥𝑖 ∈ R𝑑 is a 𝑑-dimensional vector of entity 𝑒𝑖—in our case,

pre-trained ConnectE [21] embeddings—and 𝑦𝑖 denotes the vector

of the corresponding labels; (ii) unlabeled data D𝑢 = {(𝑥 𝑗 )}𝑀𝑗=1. In
the following section, we describe the details of our teacher-student

framework that leverages knowledge distillation [7] and generate

pseudo-labels for unlabeled data D𝑢 .

3.2 The Teacher-Student Framework
Our semi-supervised approach is based on self-training [13] in

the teacher-student framework. We formally describe the over-

all procedure in Algorithm 1. The inputs of our approach are la-

beled and unlabeled datasets D𝑙 and D𝑢 , respectively, from which

we sample batches. First, we train a teacher model T (𝜃𝑡 ) only
on labeled data D𝑙 and compute the supervised loss LD𝑙

using

the cross-entropy function in Equation (1). Then, we employ the

teachermodel to generate pseudo-labels ỹ𝑖 for the unlabeled dataD𝑢

and we refer to the dataset along with pseudo-labels as
˜D𝑢 . The

pseudo-labels ỹ( 𝑗)
𝑖

are soft labels representing the probability of

type 𝜆 𝑗 being assigned to an entity 𝑒𝑖 . Second, we train the student

model S(𝜃𝑠 ) on the combined dataset of labeled and unlabeled data

to minimize the combined cross-entropy loss as illustrated in Equa-

tion (2). Finally, we iterate this paradigm by replacing the teacher

model T𝑖 with the student model S𝑖 to generate new pseudo-labels

and train a new student S𝑖+1.
Teacher Model. We use a neural network with one fully-

connected layer with 128 units and ReLU activations, and an output

layer with sigmoid activation. We train the teacher model for at

most 100 epochs using the Adam optimizer. The model’s hyperpa-

rameters are fine-tuned with grid search (see Section 4.1). To avoid

over-fitting, we employ early-stopping [20]. The loss function is

LD𝑙
= − 1

𝑁

𝑁∑︁
𝑖=1

𝑘∑︁
𝑗=1

[
𝑦
( 𝑗)
𝑖

log

(
𝑦
( 𝑗)
𝑖

)
+
(
1 − 𝑦

( 𝑗)
𝑖

)
log

(
1 − 𝑦

( 𝑗)
𝑖

) ]
(1)

where 𝑦𝑖 are the ground-truth types of 𝑒𝑖 , 𝑦𝑖 are the predicted types

and 𝑁 is the size of dataset D𝑙 .

Student Model. We employ a network similar to the teacher

model with an additional dropout layer with rate 0.20; we optimize

the hyperparameters with grid search. We train the student model

for 100 epochs on batches of labeled and pseudo-labeled data. Each

batch has 128 samples, and we employ the Adam optimizer with

early-stopping to avoid over-fitting. Our loss function is

LD𝑢
= LD𝑙

− 1

𝑀

𝑀∑︁
𝑖=1

𝑘∑︁
𝑗=1

[
ỹ( 𝑗)
𝑖

log

(
𝑦
( 𝑗)
𝑖

)
+
(
1 − ỹ( 𝑗)

𝑖

)
log

(
1 − 𝑦

( 𝑗)
𝑖

) ]
(2)

where ỹ𝑖 denote the pseudo-labels generated by the teacher model,

𝑦𝑖 the predicted labels by the student model, and 𝑀 the size of

dataset D𝑢 .

4 EXPERIMENTS
We conduct a set of experiments to answer the following research

questions:

RQ.1. How effective is our semi-supervised approach compared

to state-of-the-art baselines employing the same number of

labeled samples?

RQ.2. How does the effectiveness depend on the number of training

samples?



Table 1: Statistics of datasets: FB15k-ET and YAGO43k-ET.

FB15k-ET YAGO43k-ET

Top 3 Top 5 Top 10 Top 3 Top 5 Top 10

Relations 1,345 1,345 1,345 37 37 37

Total Type Triples 22,849 26,184 29,058 29,528 32,193 35,225

Train Type Triples 12,748 13,726 14,376 24,078 25,792 27,201

Valid Type Triples 5,038 6,200 7,321 2,689 3,170 3,997

Test Type Triples 5,063 6,258 7,361 2,761 3,231 4,027

0.1% 1% 10% 80%
a) Size of Labeled Data in FB15k-ET

0.3

0.4
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Figure 1: Plots (a) and (b) compare the performance of our
approach ASSET with embedding baselines, plots (c) and (d)
with supervised baselines. All models predict the top 10 types
on FB15k-ET and YAGO43k-ET.

4.1 Experimental Setup and Implementation
Datasets. Table 1 gives an overview of our benchmarking datasets.

FB15k-ET [21] consists of the benchmarking dataset FB15k-237

along with type triples of the form (entity, entity type). We use the

same dataset split (train-valid-test) as Zhao et al. [21] to ensure

the same evaluation setting. In particular, we use three subsets:

train (136,618 triples), valid (15,749 triples) and test (15,780 triples).

Similarly, YAGO43k-ET [21] enriches the benchmarking dataset

YAGO43k with type information, and we use the same data split:

train (375,853 triples), valid (42,750 triples), test (45,182 triples). For

both datasets, we determine the 𝑘 ∈ {3, 5, 10} most frequent types

and employ the subset of entities and triples induced by them for

our experiments.

Embeddings and Supervised Baselines.We employ three KG

embedding models as baselines: TransE-ET [2], DistMult-ET [18],

and ConnectE [21]. To predict the types of an entity, we infer its clos-

est entity in the embedding space according to Euclidean distance

and use its types. On top of the best-performing embeddings (Con-

nectE), we employ three supervised classifiers as baselines: Logistic

Regression, RandomForest, and a Deep Neural Network (DNN).

Evaluation Metrics. We consider the following metrics for

multi-label classification [15]: the hamming loss (H𝑙𝑜𝑠𝑠 ) denotes the

fraction of wrongly predicted labels per instance (lower is better)

and the 𝐹1-score denotes the harmonic mean of precision and recall

of correctly predicted labels per instance (higher is better).

Hyperparameters. We perform a grid search for the hyper-

parameters of our semi-supervised approach ASSET within the

ranges batch-size = {128, 256, 512}, learning-rate = {0.001,

0.01}, dropout = {0.10, 0.20, 0.25, 0.30}, and gradient optimizer
= {ADAM, RMSprop, Adagrad}. We find the following values to

yield the best performance in terms of 𝐹1-score: batch-size=128,
learning-rate=0.001, dropout=0.20 and optimizer=ADAM. For

ConnectE, we set the hyperparameters as described in its paper [21].

For TransE-ET and DistMult-ET, we employ a dimension size of

200 and the default parameters of the PyKeen
1
library. For Logistic

Regression and RandomForest, we set their hyperparameters to the

default values of the Scikit-learn library. For DNN, we employ the

same hyperparameters as for ASSET.

Reproducibility.We provide our source code and datasets on

GitHub.
2
ASSET andDNN are based on TensorFlow version 2.0. The

implementation of ConnectE was obtained from its repository
3
and

TransE-ET and DistMult-ET were obtained from PyKeen version

1.5. For Logistic Regression and RandomForest, we employ the

implementation from Scikit-learn version 0.24.

4.2 Discussion and Results
Performance Comparison (RQ.1). Table 2 compares our ap-

proach both with embedding and supervised baselines on 1% of the

two datasets FB15k-ET and YAGO43k-ET with varying numbers

of entity types (Top 3, Top 5, and Top 10). We observe that—given

such little training data—our semi-supervised approach ASSET

significantly outperforms each of the baselines in terms of both

H𝑙𝑜𝑠𝑠 and 𝐹1-score with 𝑝 < 0.03.4 We attribute this to our teacher-

student paradigm that augments the original training dataset with

pseudo-labeled data from the unlabeled dataset, boosting overall

performance (as discussed in Algorithm 1).

Among the embedding approaches, ConnectE significantly out-

performs the other KG embeddings TransE-ET and DistMult-ET

in terms of both H𝑙𝑜𝑠𝑠 and 𝐹1-score. For example, differences in

terms of H𝑙𝑜𝑠𝑠 range from -0.05 (TransE-ET, YAGO43k-ET, Top

10) to -0.26 (DistMult-ET, YAGO43K-ET, Top 3) and differences

of 𝐹1-scores range from +0.10 (TransE-ET, FB15k-ET, Top 10) to

+0.39 (DistMult-ET, YAGO43k-ET, Top 3). Our results corroborate

previous findings [21] that ConnectE outperforms other embed-

ding models for the entity typing task, and we employ ConnectE

embeddings as feature representation to train our supervised base-

lines (Logistic Regression, RandomForest, and DNN). Among the

supervised approaches, the differences are less pronounced and the

DNN achieves comparable performance to Logistic Regression and

RandomForest. For example, the DNN is at least as good as Logistic

1
https://github.com/pykeen/pykeen

2
https://github.com/dice-group/ASSET

3
https://github.com/Adam1679/ConnectE

4
For each pair of approaches, we employ a two-sided Wilcoxon signed-rank test

between the H𝑙𝑜𝑠𝑠 /𝐹1-scores on Top 3, Top 5, and Top 10 of FB15k-ET and YAGO43k-

ET datasets of two approaches. Our null hypothesis is that the two approaches produce

H𝑙𝑜𝑠𝑠 /𝐹1-scores from the same distribution.

https://github.com/pykeen/pykeen
https://github.com/dice-group/ASSET
https://github.com/Adam1679/ConnectE


Table 2: Evaluation results on FB15k-ET and YAGO43k-ET datasets with 1% labeled training data. A lower value of H𝑙𝑜𝑠𝑠

indicates better performance, for the other metrics higher values are better. Best results are in bold.

FB15k-ET YAGO43k-ET

Top 3 Top 5 Top 10 Top 3 Top 5 Top 10

H𝑙𝑜𝑠𝑠 𝐹1 H𝑙𝑜𝑠𝑠 𝐹1 H𝑙𝑜𝑠𝑠 𝐹1 H𝑙𝑜𝑠𝑠 𝐹1 H𝑙𝑜𝑠𝑠 𝐹1 H𝑙𝑜𝑠𝑠 𝐹1

Embeddings
TransE-ET 0.34 0.60 0.42 0.40 0.26 0.34 0.35 0.48 0.28 0.34 0.17 0.28

DistMult-ET 0.40 0.54 0.37 0.42 0.29 0.31 0.40 0.41 0.29 0.30 0.19 0.22

ConnectE 0.26 0.73 0.37 0.55 0.32 0.44 0.14 0.80 0.14 0.69 0.12 0.55

Supervised
Logistic Regression 0.25 0.72 0.35 0.56 0.35 0.41 0.06 0.90 0.10 0.77 0.12 0.62

RandomForest 0.26 0.72 0.34 0.57 0.26 0.46 0.09 0.76 0.11 0.60 0.08 0.46

DNN 0.26 0.73 0.34 0.56 0.29 0.44 0.09 0.80 0.11 0.66 0.08 0.61

Semi-supervised ASSET (Teacher-Student) 0.24 0.74 0.33 0.59 0.28 0.47 0.04 0.93 0.09 0.80 0.11 0.64

Regression in 6 out of 12 measurements and at least as good as

RandomForest in 9 out of 12 measurements.

Training Size Effect on Performance (RQ.2).We conduct a

set of experiments with different labeled-unlabeled ratios to assess

the effect of training size on the performance. In particular, we use

four ratios of labeled data (0.1%, 1%, 10%, and 80% of train split)

of the FB15k-ET and YAGO43k-ET datasets. In Figure 1, plots (a)

and (b), we compare the performance of our approach with the

embedding models TransE-ET, DistMult-ET, and ConnectE. As we

can see, ASSET outperforms all embedding models at all ratios of

labeled data. In Figure 1, plots (c) and (d) show 𝐹1-scores of our

approach against supervised methods on both datasets. With a

small labeled dataset (0.1% and 1%), our approach outperforms all

baseline methods with large margins. When the size of labeled

data increases (e.g., 10%, 80%), the supervised methods increasingly

achieve competitive performance to our approach—particularly, on

the YAGO43k-ET dataset. The slight decrease in performance of

RandomForest appears to be due to overfitting.

5 CONCLUSION
We propose a novel approach for knowledge graph entity typing

leveraging semi-supervised learning. Our approach alleviates the

problem of few training samples by employing a teacher-student

paradigm to learn from labeled and unlabeled data. The task of a

teacher model is to generate pseudo-labels for unlabeled data. Then,

the student model is trained on the combination of both labeled

and pseudo-labeled data. We conduct several experiments on two

benchmarking datasets. Our results demonstrate the effectiveness

of our approach ASSET compared with state-of-the-art baselines.

In future work, we plan to employ our approach on Wikidata and

help its community to predict newly introduced types with little

training data.
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