
Drift Detection in Text Data with
Document Embeddings

Robert Feldhans1, Adrian Wilke2, Stefan Heindorf2, Mohammad Hossein
Shaker3, Barbara Hammer1, Axel-Cyrille Ngonga Ngomo2, and

Eyke Hüllermeier3

1 Bielefeld University, Germany
{rfeldhans,bhammer}@techfak.uni-bielefeld.de

2 DICE group, Department of Computer Science, Paderborn University, Germany
{adrian.wilke,heindorf,axel.ngonga}@uni-paderborn.de

3 University of Munich (LMU), Germany
mhshaker@mail.uni-paderborn.de,eyke@ifi.lmu.de

Abstract. Collections of text documents such as product reviews and
microblogs often evolve over time. In practice, however, classifiers trained
on them are updated infrequently, leading to performance degradation
over time. While approaches for automatic drift detection have been
proposed, they were often designed for low-dimensional sensor data, and
it is unclear how well they perform for state-of-the-art text classifiers based
on high-dimensional document embeddings. In this paper, we empirically
compare drift detectors on document embeddings on two benchmarking
datasets with varying amounts of drift. Our results show that multivariate
drift detectors based on the Kernel Two-Sample Test and Least-Squares
Density Difference outperform univariate drift detectors based on the
Kolmogorov–Smirnov Test. Moreover, our experiments show that current
drift detectors perform better on smaller embedding dimensions.

Keywords: Drift Detection · Document Embeddings · BERT · Word2Vec

1 Introduction

One of the key challenges when deploying machine learning models in practice is
their degradation of performance after having been deployed [2]. In addition to
technical issues, e.g., changes in the data format, performance degradation can
be caused by (1) drift in the class distribution (virtual drift), and (2) drift in the
labels (real drift). In the former case, the model might have insufficient training
data for all classes and assumes a wrong prior probability. In the latter case,
similar data points are labeled differently over time. For example, in the domain
of natural language processing, this boils down to using language differently over
time (virtual drift) due to novel words, grammatical constructs and writing styles.
It also affects changing class labels over time (real drift) due to new human
annotators joining the teams or updated annotation guidelines, e.g., changing
the definition of disinformation [15], harassment [27], sexism [8], clickbait [7], etc.

PREPRINT

2 R. Feldhans et al.

To detect drift automatically and notify machine learning engineers to po-
tentially update their models, automatic drift detectors have been proposed [12,
17, 22]. However, as we show in this paper, state-of-the-art drift detectors are
hardly applicable to modern NLP applications: they assume the input data to be
low-dimensional, hand-engineered vector spaces, while modern NLP applications
employ complex language models such as transformers with high-dimensional,
latent document embeddings. Towards this end, we empirically compare state-
of-the-art drift detectors which have mainly been designed for low-dimensional
vector spaces and we apply them to drift detection in natural language texts:

RQ1: Which drift detector works best for document embeddings?
RQ2: How does the performance of a drift detector depend on the embedding

dimensions?

We perform our experiments using two benchmarking datasets into which we
inject different amounts of drift. Moreover, we investigate how the predictive
performance of a drift detector depends on the embedding dimensions. Our
experiments show that multivariate approaches based on the Kernel Two-Sample
test (KTS) and Least-Squares Density Difference (LSDD) outperform univariate
drift detectors based on the Kolmogorov-Smirnov test (KS) and that most
approaches perform better on low-dimensional data. The code underlying our
research is publicly available.4

The remainder of this article is structured as follows: In Section 2, we briefly
outline related work. Section 3 describes our methodology, i.e., datasets and drift
detectors as well as our evaluation setup. Finally, Section 4 presents our results
and Section 5 our final conclusions.

2 Related Work

Concept drift has become a highly researched field. There are several recommend-
able introductions from Lu et al. [18], Gama et al. [11], Nishida and Yamauchi
[21], Gama and Castillo [10] and Basseville and Nikiforov [4]. Gama et al. [11]
conducted a survey that provides an introduction to concept drift adaptation,
which includes patterns of changes over time (e.g., incremental changes) and
evaluation metric criteria (e.g., probability of true change detection and delay of
detection), which are part of our injection experiments. Baier et al. [3] provided
an analysis of 34 articles related to concept drift and a framework of 11 categories
to characterize predictive services like drift detectors. With respect to their
overview of existing approaches, we fill the gap in the category data input (here:
unstructured text); our paper can be classified as being gradual as well as sudden
in the category type of change. The overview of concept drift by Tsymbal [24]
distinguished between sudden and gradual concept drift. Additionally, batch
systems (here: LSDD, MMD) and online systems (here: Confidence Distribution
Batch Detection, CDBD) are distinguished. The classical FLORA systems [25]
as well as the more recent MDEF [13], ADWIN [5], and EDDM Baena-Garcıa

4https://github.com/EML4U/Drift-detector-comparison

PREPRINT

https://github.com/EML4U/Drift-detector-comparison

Drift Detection in Text Data with Document Embeddings 3

et al. [1] are also worth mentioning. Moreover, drift detection has successfully
been used on image data [17, 22] and various other applications [28].

3 Comparison of Drift Detectors

Given a classification problem, let X be a feature vector, y be the target variable
and P (y,X) their joint distribution. Following Gama et al. [11], real concept drift
refers to changes in P (y|X) and virtual drift refers to changes in P (X), i.e., if the
distribution of the incoming data changes. In our case, we focus on virtual drift.
One of the particular challenges for natural language processing is that texts are
typically transformed to high-dimensional feature vectors X which might only
appear once in the dataset. Further, state-of-the-art NLP models, such as neural
networks and transformers, follow a discriminative paradigm [20] instead of a
generative one, making it difficult to estimate probability distributions.

For the experiments on drift detectors (Sec. 3.1), we use two real-world datasets
that are transformed using three embedding models––one BERT model [9] with
768 dimensions, one Word2Vec model [19] with 768 dimensions, and another
Word2Vec model with 50 dimensions––to explore the effect of different numbers of
dimensions (Sec. 3.2). Finally, the data are arranged in four subsets in preparation
for the following experiments (Sec. 3.3).

3.1 Drift Detectors in the Experiments

We selected the popular drift detectors KS, KTS and additionally, a more recent
approach, LSDD (2018), as well as the semi-supervised CDBD.

Kolmogorov-Smirnov (KS) is a statistical test for agreement between two
probability distributions using the maximum absolute difference between
the distributions. We use the feature-wise two-sample implementation of the
Alibi Detect5 library. For multivariate data, Bonferroni correction is used to
aggregate the p-values per dimension.

Kernel Two-Sample (KTS) [12] is a statistical independence test based on
Maximum Mean Discrepancy (MMD). MMD is the squared distance between
the embeddings of two distributions p and q in a reproducing kernel Hilbert
space, MMD(p, q) = ||µp −µq||2H, where µ denotes the mean embeddings. We
use the implementation of Emanuele Olivetti6 for our experiments.

Least-Squares Density Difference (LSDD) [6] is based on the least-squares
density difference estimation method. For two distributions p and q, it is
defined as LSDD(p, q) =

∫
(p(x)− q(x))2 dx. To apply the test, we utilize the

Alibi Detect5 implementation.
Confidence Distribution Batch Detection (CDBD) [16] is an uncertainty-

based drift detector using a two-window paradigm coupled with Kullback-
Leibler divergence applied to a confidence score. It can be used with any

5https://github.com/SeldonIO/alibi-detect
6https://github.com/emanuele/kernel two sample test

PREPRINT

https://github.com/SeldonIO/alibi-detect
https://github.com/emanuele/kernel_two_sample_test

4 R. Feldhans et al.

classifier that produces a confidence (uncertainty) score about the classifier
predictions. Given that CDBD requires labels in the beginning for training
the classifier, it is the only semi-supervised detector in our comparison. CDBD
compares the divergence between the distribution of confidence scores of a
batch of reference instances to test instances. The higher the divergence, the
more drift there is between the reference batch and the test batch. In this
paper, we used Random Forest as the classifier and entropy of the output
probability distributions as the confidence score.

3.2 Source Datasets and Embedding Models

Amazon Movie Reviews The Amazon Movie Review dataset7 consists of
nearly 8 million user reviews, from 1997 to 2012, of movies purchasable on the
Amazon website. In particular, this dataset contains the joined user reviews and
summaries thereof in text form, which we will use to detect drift, and a score
from one to five that the user gave the movie. The average length of each text
is 172 words. It can be noted that this score should be directly correlated to
the texts the user wrote and be indicative of the sentiment of said texts. As we
suspect some (uncontrolled) drift over the twelve-year time frame of the dataset,
we opted to use the data of one year (i.e., 2011) to reduce possible changes
over time. We generally use the scores of the reviews as classes, especially for
retraining the models.

The BERT model used with this dataset is a retrained version of the pre-
trained model ’bert-base-uncased’ provided by the Hugging Face [26] library. The
pretrained BERT model was retrained for nine epochs, using all entries from
2011, and provides embeddings with 768 dimensions.

Both BoW models were computed using all tokenized texts contained in the
dataset. For the training, we used 40 epochs and a minimum count of 2 for
each word to be included. As the training algorithm, a distributed bag of words
(PV-DBOW) of the Gensim8 3.8.3 software was applied. The computation took
32 hours (50 dim) and 44 hours (768 dim) for Amazon and 1.5 hours for the two
Twitter models on a 4x Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz machine
with no GPU and 64 GB RAM.

Twitter Election The Twitter Election dataset9 is composed of tweets that
refer to the two candidates of the 2020 US presidential election (i.e., these tweets
use the hashtag #Biden and/or #Trump). All given data points were created
during the last three weeks before the election, i.e., tmin = 2020-10-14 to tmax =
2020-11-07. The original dataset contains around 1.7 million singular data points,
of which ca. 777k use hashtag #Biden and ca. 971k use #Trump.

There are two distinct points in time which coincide with real-world events and
are thus suspected to differ in distribution. These events are the last TV debate

7https://snap.stanford.edu/data/web-Movies.html
8https://radimrehurek.com/gensim/
9https://www.kaggle.com/manchunhui/us-election-2020-tweets

PREPRINT

https://snap.stanford.edu/data/web-Movies.html
https://radimrehurek.com/gensim/
https://www.kaggle.com/manchunhui/us-election-2020-tweets

Drift Detection in Text Data with Document Embeddings 5

2020-10-14 2020-10-18 2020-10-22 2020-10-26 2020-10-30 2020-11-03
25,000

50,000

75,000

100,000

125,000

150,000

tw
ee

ts
 p

er
 d

ay

tweets per day

0
5,000
10,000
15,000
20,000
25,000
30,000

tw
ee

ts
 p

er
 h

ou
r

tweets per hour

Fig. 1. Amount of tweets in the Twitter election dataset by day (red) and hour (blue).
Note the sharp spike during the last TV debate (tdebate = 2020-10-22) and the overall
increase during the election day (telection = 2020-11-03). Slight inaccuracies in the
timeline can be attributed to time zone-related shifts.

before the election (tdebate = 2020-10-22) and the election day itself (telection =
2020-11-03). The increased number of data points in both of these time frames
supports this claim, as can be seen in Fig. 1. We generally distinguish #Biden and
#Trump as the two classes of this dataset. As such, we removed all ambiguous
tweets that contain both the #Biden and #Trump hashtags. Some data points
in this set contain non-English language, most notably Spanish. To reduce the
effect of non-English data points, we removed tweets from the dataset which
were detected as non-English with the Python implementation10 of langdetect.11

Around 500k data points were removed this way, resulting in a dataset of ca.
521k #Biden tweets and 680k #Trump tweets.

The BERT model used with this dataset is a pretrained model provided by
the Hugging Face library called ’bert-base-multilingual-cased’. It was chosen
because of its ability to handle multilanguage input data, as the dataset contains
traces of multi-language data. This model was not retrained.

The BoW models were computed analogously to the ones used in the Amazon
movie dataset and took 1.5 hours to compute on the same machine as used for
the Amazon models.

3.3 Evaluation Setup: Sampling

To evaluate the drift detector’s sensitivity and specificity, we created several
subsets of the datasets with precisely controlled drift.

Drift Induction This subset consists of two balanced sets of 2,000 samples of
randomly chosen but class-balanced data points. The first set is then gradually
injected with specifically chosen negative adjectives. In each step, a certain
percentage γi ∈ {0.05 · i|i = 0, 1, 2, ..., 20} of texts is injected with one of these
negative adjectives. With this subset, we want to evaluate the speed and confidence
with which drift detectors detect gradually induced drift. Injection is done between
two randomly chosen words of the text, and each text is injected with a maximum

10https://pypi.org/project/langdetect/
11http://code.google.com/p/language-detection/

PREPRINT

https://pypi.org/project/langdetect/
http://code.google.com/p/language-detection/

6 R. Feldhans et al.

of one word over all steps. For example, in step γ2, 0.1=10% of texts are injected
with at most one negative adjective. This resembles the method of Shoemark
et al. [23], with the difference that we are not replacing but adding real words
instead of made-up ones.

The specific list of these adjectives was obtained by choosing the 22 adjectives
that occur at least 500 times in all Amazon movie reviews of both one or five
stars and appear at least twice as often in one star reviews. To ensure these
adjectives are negatively connotated, we used a list of 4,783 negative opinion
words,12 mined from negative customer reviews [14]. The experiments using this
subset are repeated ten times using unique data for each run.

Twitter Election Specifics In processing this dataset, we also use the negative
adjectives based on the Amazon Movie Review dataset for injection, to better
compare the Amazon and Twitter variants. Additionally, there is a lack of a
distinct gradient (akin to the score) between both classes of the dataset, so an
analogous but distinct approach to the Amazon variant was discarded.

Same Distribution Using this subset, we test the drift detectors against data
drawn from the same distribution to explore whether the drift detectors abstain
from identifying drift where there is none. This is of importance in general
applications of drift handling, as retraining a model to compensate for drift is
often expensive, so it should only be done if necessary. This subset consists of 500
random samples per class (i.e., 2,500 samples for the Amazon and 1,000 samples
for the Twitter dataset). It is tested against twenty more subsets created with
the same criteria, but distinct samples. We then present the mean of the results.

Different Classes This subset is used to evaluate the drift between data of two
different classes. As such, its main purpose is to establish a tangible maximum of
(virtual) drift possible in each dataset, test whether or not the drift detectors
are able to detect it, and to give context for the drift induction subset. With
this in mind, any drift detector should be able to detect the virtual drift in this
experiment. For this, 1,000 samples were taken from each class. The test was
repeated ten times with unique data.

Amazon Movie Reviews Specifics The classes used for this dataset were those
defined by reviews of scores one and five.

Different Distribution In this subset, we apply the prior knowledge of the
Twitter dataset, thus no Amazon variant of this subset exists. In contrast to the
other subsets, where drift is set up artificially, this one presents an application of
a real-world example of drift. We check for drift between data of a typical point
in time (treference = tmin + 100h) and three other points of interest, i.e., another
typical point tbase = treference + 24h to establish a baseline, tdebate and telection .

12https://www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html#lexicon

PREPRINT

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon

Drift Detection in Text Data with Document Embeddings 7

For each t, 1,000 class-balanced samples were taken between t and t+ 24h. For
this subset, we generate 8 permutations of this setup and present the mean of
the results.

Semi-supervised Algorithm The semi-supervised algorithm CDBD requires
a deviant structuring of input data, as a portion of the data given to the detector
is used to train the model. To avoid a small reference batch, the permutations
of CDBD are different in that the entire data given to the detector is randomly
shuffled to train different models and create different reference batches for each
permutation.

4 Results

Results of the Drift Injection Experiments

Based on the drift induction setup (Sec. 3.3), we evaluate the speed and confidence
with which drift detectors detect slowly induced drift in this experiment. An
ideal drift detector would produce a high p-value with little to no injected words
but quickly drop when more words are injected. The resulting p-values of the
experiments are displayed in Fig. 2.

Regarding RQ1, the KTS and LSDD detectors generally produce similar
results while outperforming CDBD and KS. KTS produced better results than
LSDD, especially for the high-dimensional BoW experiment. In particular, KS
behaves conservatively in its estimations and struggles to detect drift, even with
considerable injection of words. CDBD shows erratic behavior with all BoW
embeddings; it outperforms KS only with the BoW-768 embeddings and on the
Twitter dataset with BoW-50 embeddings.

Regarding RQ2, the lower-dimensional BoW-50 data generally performs
better than or equal to both higher-dimensional sets, and the best detectors
(i.e., KTS and LSDD) reach a p-value of 0.05 with less induced drift than with
the higher-dimensional data. However, it is important to note that almost all
detectors start with a much higher p-value on the higher-dimensional BERT data,
as described in Sec. 3.3.

Results of Same Distribution Experiments

In this experiment, we evaluate the drift detectors’ ability to not falsely detect
drift where none is present. A higher p-value suggests a better performance (see
Tab. 1).

With respect to RQ1, the CDBD detector generally outperforms the other
detectors across all embeddings (p ≈ 0.7). The KS detector performs very
consistently (p ≈ 0.5). Depending on the model and embedding method used, the
KTS yields the single best results in this test (on Amazon BERT) but has a high
standard deviation. LSDD’s performance is generally about as good as KTS’s
on each dataset, although slightly better on average. Its standard deviation is

PREPRINT

8 R. Feldhans et al.

Fig. 2. Drift detection results on injection experiments: Amazon reviews dataset (left)
and Twitter election dataset (right) as well as the models BoW-50 (top), BoW-768
(middle) and BERT-768 (bottom). Presented is the mean p-value of all runs.

comparable to KTS’s. Regarding RQ2, we do not see a consistent effect of the
embedding dimension.

Results of the Different Class Experiments

In this experiment, we evaluate the drift detectors based on their ability to
detect the maximum possible (virtual) drift in each dataset. Here, a lower p-value
suggests a better performance (see Tab. 2). The CDBD detector is omitted from
this experiment since it is impossible to train a classifier on single-classed data
given only the data used in this experiment.

With regard to RQ1, both LSDD and KTS perform as expected and consis-
tently provide nearly perfect results across both datasets and all embeddings.

PREPRINT

Drift Detection in Text Data with Document Embeddings 9

Table 1. Drift detector scores of same distribution exp. (mean p-value of all runs,
higher ∅ is better)

Dataset Model CDBD KS KTS LSDD

∅ stdev ∅ stdev ∅ stdev ∅ stdev

Amazon BoW-50 0.6494 0.2304 0.4678 0.0397 0.4294 0.2920 0.5060 0.2990
Amazon BoW-768 0.6338 0.0727 0.5009 0.0224 0.5860 0.3010 0.4140 0.3492
Amazon BERT-768 0.7148 0.1544 0.5676 0.0195 0.8666 0.1372 0.8160 0.2051
Twitter BoW-50 0.7863 0.0785 0.5330 0.0419 0.5930 0.2398 0.5980 0.2392
Twitter BoW-768 0.4257 0.1190 0.5204 0.0208 0.4828 0.3100 0.6380 0.2825
Twitter BERT-768 0.7720 0.1448 0.5114 0.0190 0.3878 0.1940 0.4910 0.2048

The KS detector struggles to detect drift with statistical significance at the 0.05
significance level. It is able to do so only on the Amazon BERT embeddings.

Regarding RQ2, the results show a tendency of drift detectors to perform
better for lower embedding dimensions, as exemplified by the KS detector.

Table 2. Results of the different class experiments (mean p-value of all runs, lower ∅
is better)

Dataset Model KS KTS LSDD

∅ stdev ∅ stdev ∅ stdev

Amazon BoW-50 0.0709 0.0145 0.0020 0.0000 0.0000 0.0000
Amazon BoW-768 0.0870 0.0160 0.0020 0.0000 0.0000 0.0000
Amazon BERT-768 0.0126 0.0012 0.0020 0.0000 0.0000 0.0000
Twitter BoW-50 0.1009 0.0207 0.0020 0.0000 0.0000 0.0000
Twitter BoW-768 0.2522 0.0266 0.0020 0.0000 0.0180 0.0218
Twitter BERT-768 0.1205 0.0047 0.0020 0.0000 0.0000 0.0000

Results of the Twitter Different Distribution Experiments

In this experiment, we evaluate the drift detectors in a controlled scenario with
prior information about the dataset. A higher p-value in tbase and lower p-values
in tdebate and telection suggest a better performance (see Fig. 3 and Tab. 3).
For this experiment, we do not report CDBD results since large fluctuations
in p-values render CDBD unusable in our experimental setup, emphasizing the
necessity of large datasets for supervised drift detectors.

Regarding RQ1, nine drift detection results are available per detector: three
kinds of embeddings, each with three points in time. LSDD correctly predicted
drift in eight of the nine cases, KTS in seven cases and KS in six cases. From a
qualitative perspective, the KS detector produces the most pronounced curve (see
Fig. 3), i.e., the largest difference in p-values with respect to tbase , and correctly

PREPRINT

10 R. Feldhans et al.

t b a s e t d e b a t e t e l e c t i o n

0.0

0.2

0.4
p-

va
lu

e

0.05
KS
KTS
LSDD

t b a s e t d e b a t e t e l e c t i o n

0.0

0.2

0.4

0.05
KS
KTS
LSDD

t b a s e t d e b a t e t e l e c t i o n

0.0

0.2

0.4

0.05
KS
KTS
LSDD

Fig. 3. Results of Twitter different distribution experiment (mean p-value of all runs):
BoW-50 (left), BoW-768 (center) and BERT-768 (right)

predicts no drift in tbase across all embedding models. However, it struggles to
detect drift in tdebate and telection at the 0.05 significance level. Both the KTS
and LSDD detectors are capable of detecting drift that occurred in those points
of time.However, their mean p-values are close to the 0.05 significance level in
tbase , leading to fluctuating decisions considering their standard deviation.

For RQ2, all detectors produced correct results for the low-dimensional
BoW-50 embeddings, whereas this is not guaranteed for higher dimensions.

Table 3. Results of the different distribution experiments (mean p-value of all runs)

t Model KS KTS LSDD

∅ stdev ∅ stdev ∅ stdev

tbase BoW-50 0.3961 0.0697 0.0813 0.1444 0.0775 0.0935
tbase BoW-768 0.4259 0.0225 0.0135 0.0304 0.3812 0.2382
tbase BERT-768 0.3933 0.0274 0.0235 0.0187 0.0437 0.0394

tdebate BoW-50 0.0493 0.0446 0.0020 0.0000 0.0000 0.0000
tdebate BoW-768 0.0810 0.0853 0.0020 0.0000 0.0025 0.0066
tdebate BERT-768 0.0873 0.0674 0.0020 0.0000 0.0000 0.0000

telection BoW-50 0.0052 0.0029 0.0020 0.0000 0.0000 0.0000
telection BoW-768 0.0281 0.0137 0.0020 0.0000 0.0000 0.0000
telection BERT-768 0.0618 0.0104 0.0020 0.0000 0.0000 0.0000

5 Conclusion

Regarding our research questions, our conclusions are as follows:
RQ1. Our experimental results suggest LSDD and KTS as the best drift

detectors with LSDD slightly outperforming KTS in the real-world Twitter
election experiment. KS produced rather average results in all experiments
due to its conservative estimation of p-values. CDBD, as a supervised drift
detector, requires a large reference batch to produce robust results, questioning
its usefulness in many practical applications.

PREPRINT

Drift Detection in Text Data with Document Embeddings 11

RQ2. Our results indicate that lower embedding dimensions tend to produce
better drift detection results.

In future work, we would like to further explore the effect of different dimen-
sionality reduction techniques on drift detectors and to devise novel drift detectors
specifically tailored to text data with high-dimension document embeddings, e.g.,
based on the similarity metrics employed by the embedding approaches.

Acknowledgments This work has been supported by the German Federal
Ministry of Education and Research (BMBF) within the project EML4U under
the grant no 01IS19080 A and B.

Bibliography

[1] Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda, R.,
Morales-Bueno, R.: Early drift detection method. In: Fourth international
workshop on knowledge discovery from data streams, vol. 6 (2006)

[2] Baier, L., Jöhren, F., Seebacher, S.: Challenges in the deployment and
operation of machine learning in practice. In: ECIS (2019)

[3] Baier, L., Kühl, N., Satzger, G.: How to cope with change? - preserving
validity of predictive services over time. In: HICSS, ScholarSpace (2019)

[4] Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes: Theory and
Application. Prentice Hall (1993)

[5] Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive
windowing. In: SDM, pp. 443–448, SIAM (2007)

[6] Bu, L., Alippi, C., Zhao, D.: A pdf-free change detection test based on
density difference estimation. IEEE Trans. Neural Networks Learn. Syst.
29(2) (2018)

[7] Chen, Y., Conroy, N.J., Rubin, V.L.: Misleading online content: Recognizing
clickbait as ”false news”. In: WMDD@ICMI, pp. 15–19, ACM (2015)

[8] Chowdhury, A.G., Sawhney, R., Shah, R.R., Mahata, D.: #youtoo? detection
of personal recollections of sexual harassment on social media. In: ACL, pp.
2527–2537 (2019)

[9] Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR (2018)

[10] Gama, J., Castillo, G.: Learning with local drift detection. In: ADMA,
Lecture Notes in Computer Science, vol. 4093, pp. 42–55, Springer (2006)

[11] Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey
on concept drift adaptation. ACM Comput. Surv. 46(4), 44:1–44:37 (2014)

[12] Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.J.: A
kernel two-sample test. J. Mach. Learn. Res. 13, 723–773 (2012)

[13] Heit, J., Liu, J., Shah, M.: An architecture for the deployment of statistical
models for the big data era. In: IEEE BigData (2016)

[14] Hu, M., Liu, B.: Mining and summarizing customer reviews. In: KDD, pp.
168–177, ACM (2004)

PREPRINT

12 R. Feldhans et al.

[15] Kumar, S., West, R., Leskovec, J.: Disinformation on the web: Impact,
characteristics, and detection of wikipedia hoaxes. In: WWW, ACM (2016)

[16] Lindstrom, P., Namee, B.M., Delany, S.J.: Drift detection using uncertainty
distribution divergence. Evol. Syst. 4(1), 13–25 (2013)

[17] Lopez-Paz, D., Oquab, M.: Revisiting classifier two-sample tests. In: ICLR
(Poster), OpenReview.net (2017)

[18] Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., Zhang, G.: Learning under
concept drift: A review. IEEE Trans. Knowl. Data Eng. 31(12) (2019)

[19] Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word
representations in vector space. In: ICLR (Workshop Poster) (2013)

[20] Ng, A.Y., Jordan, M.I.: On discriminative vs. generative classifiers: A com-
parison of logistic regression and naive bayes. In: NIPS, pp. 841–848, MIT
Press (2001)

[21] Nishida, K., Yamauchi, K.: Detecting concept drift using statistical testing.
In: Discovery Science, Lecture Notes in Computer Science, vol. 4755, pp.
264–269, Springer (2007)

[22] Rabanser, S., Günnemann, S., Lipton, Z.C.: Failing loudly: An empirical
study of methods for detecting dataset shift. In: NeurIPS (2019)

[23] Shoemark, P., Liza, F.F., Nguyen, D., Hale, S.A., McGillivray, B.: Room
to glo: A systematic comparison of semantic change detection approaches
with word embeddings. In: EMNLP/IJCNLP, pp. 66–76, Association for
Computational Linguistics (2019)

[24] Tsymbal, A.: The problem of concept drift: definitions and related work.
Computer Science Department, Trinity College Dublin 106(2), 58 (2004)

[25] Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Machine learning 23(1), 69–101 (1996)

[26] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac,
P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen,
P., Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T.L., Gugger, S., Drame, M.,
Lhoest, Q., Rush, A.M.: Transformers: State-of-the-art natural language
processing. In: EMNLP (Demos), pp. 38–45, ACL (2020)

[27] Yin, D., Xue, Z., Hong, L., Davison, B.D., Kontostathis, A., Edwards, L.:
Detection of harassment on web 2.0. Proceedings of the Content Analysis in
the WEB 2, 1–7 (2009)

[28] Žliobaitė, I., Pechenizkiy, M., Gama, J.: An overview of concept drift appli-
cations. Big data analysis: new algorithms for a new society (2016)

PREPRINT

	Drift Detection in Text Data with Document Embeddings

