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Abstract—Knowledge graph completion refers to predicting
missing triples. Most approaches achieve this goal by predicting
entities, given an entity and a relation. We predict missing triples
via the relation prediction. To this end, we frame the relation
prediction problem as a multi-label classification problem and
propose a shallow neural model (SHALLOM) that accurately
infers missing relations from entities. SHALLOM is analogous
to C-BOW as both approaches predict a central token (p) given
surrounding tokens ((s, o)). Our experiments indicate that SHAL-
LOM outperforms state-of-the-art approaches on the FB15K-237
and WN18RR with margins of up to 3% and 8% (absolute), re-
spectively, while requiring a maximum training time of 8 minutes
on these datasets. We ensure the reproducibility of our results
by providing an open-source implementation including training
and evaluation scripts at https://github.com/dice-group/Shallom.

I. INTRODUCTION

Knowledge Graphs (KGs) represent structured collections
of facts describing the world in the form of typed relationships
between entities [1]. These collections of facts have been
applied to diverse tasks, including machine translation and
collaborative filtering [2], [3]. However, most KGs on the
Web suffer from incompleteness [4]. For instance, the birth
place of 71% of the persons in Freebase and 66% of the
persons in DBpedia is not to be found in the respective KGs.
In addition, more than 58% of the scientists in DBpedia are
not linked to the predicate that describes what they are known
for [5]. The identification of such missing information is called
knowledge graph completion [6] that is addressed in predicting
missing entities or relations. Knowledge graph embedding
approaches have been particularly successful at the knowledge
graph completion task, among many others [7], [2], [8].

We investigate the use of a shallow Neural Networks (NNs)
for predicting missing triples. The motivation thereof lies in the
following consideration: Several early works have shown that
NNs (even with a single hidden layer) are universal approxi-
mators [9]. This means that shallow NNs with numerous non-
polynomial activation functions approximate any continuous
function on a complex domain. However, these theorems do
not impose a constraint on the number of units in the hidden
layer [10]. In addition, deep NNs seem to perform better than
shallow NNs when the target function is expected to be a
hierarchical composition of functions [11]. Still, training deep
NNs requires more extensive hyperparameter optimization than
training shallow NNs to alleviate the overfitting problem and

the choice of initialization technique plays a more important
role for deep NN in their applications [10]. Moreover, deep
NNs necessitate more computational resources, have higher
energy consumption, and consequently lead to substantially
higher CO2 emissions [12]. The essay of the hardware
lottery [13] highlighted the impact of available hardware system
in determining which research ideas succeed (and fail). It is
therein emphasized how the hardware lottery can delay research
progress by casting successful ideas as failures. Importantly,
findings of Ruffinelli et al. [14] have shown that the relative
performance differences between various KGE approaches
often shrinks and sometimes even reverses when compared to
prior results provided that approaches are optimized properly.
With this consideration, we propose a shallow neural model,
SHALLOM, for relation prediction that relies on two affine
transformations. By virtue of this architecture, SHALLOM is
analogous to C-BOW [15], as both approaches predict a central
token (p) given surrounding tokens (s, o).

We evaluate our approach against many state-of-the-art
approaches on the WN18, WN18RR, FB15K, FB15K-237, and
YAGO3-10 benchmark datasets. Overall, our results suggest
that SHALLOM outperforms the state-of-the-art in terms of Hits
at N (Hits@N) and has a more efficient runtime. In particular,
SHALLOM yields state-of-the-art performance with a training
time of under ten minutes on a knowledge graph containing
more than 106 triples.

II. PRELIMINARIES AND NOTATION

A. Knowledge Graph and Completion

Let E and R represent the set of entities and relations,
respectively. Then, a KG G = {(s,p,o) ∈ E × R × E} can
be formalised as a set of triples where each triple contains
two entities s,o ∈ E and a relation r ∈ R. Knowledge Graph
Completion (KGC) refers to predicting missing triples on a
given G. Most approaches learn a scoring function ψ that is
often formalised as ψ : E × R× E 7→ R [7]. In contrast, the
scoring function of approaches solely addressing the relation
prediction task is often defined as ψ : E×E 7→ R|R| [16]. Both
formalizations allow computing a score for any triple (s, p, o)
either directly (i.e., by computing ψ(s,p,o)) in the case of the
entity prediction or indirectly (i.e., by looking up the value for
p in ψ(s,o)) for the relation prediction. Ergo, KGC approaches
differ primarily in their scoring function ψ while sharing the
same goal: given an (s, p, o), its score is expected to be
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proportional to the likelihood of such a triple being contained
(s,p,o) ∈ G [7]. To learn such function, most KGC approaches
generate corrupted/negative examples [17], [4]. In this setting,
each (s,p,o) ∈ G is considered as a positive example, whilst
all (x,y,z) 6∈ G with x,z ∈ E and y ∈ R are considered to be
candidates for negative examples [4]. Ergo, such approaches
presuppose that the absence of a relationship between two
entities implies that the corresponding triple is false if such
triple is sampled as a corrupted triple otherwise unknown.
Such a schema creates a trichotomy (positive, negative and
unknown triples) and disregards the open world assumption,
which suggests that non-existing triples are to be interpreted
as unknown, not false [4]. SHALLOM complies with the open
world assumption since the learning problem is formulated as a
multi-label classification problem where a dichotomy between
triples is created.

III. SHALLOM

In this section, we formally elucidate SHALLOM that is
defined as

ψ(s, o) = σ
(
W · ReLU

(
H ·Ψ(s, o) + b1

)
+ b2

)
, (1)

where Ψ(s, o) ∈ R2d, H ∈ Rk×2d, W ∈ R|R|×k, b1 ∈ Rk,
and b2 ∈ R|R|. σ(·), ReLU(·) and Ψ(·, ·) denote the sigmoid,
the rectified linear unit and the vector concatenation func-
tions, respectively. Given (s, o), Ψ(s, o) returns concatenated
embeddings of (s,o). Thereafter, we perform two affine
transformations with the ReLU and the sigmoid function to
obtain predicted probabilities for relation (ŷ ∈ R|R|). Finally,
the incurred loss is computed by the binary cross-entropy
function:

L(y, ŷ) = −
|R|∑
i

(
(yi · log(ŷi)) + (1−yi) · log(1− ŷi)

)
(2)

where ŷ is the vector of predicted probabilities and y is a
binary vector of indicating multi labels.

Figure 1 shows the architecture of SHALLOM. To obtain a
composite representation of (s, o), we concatenate embeddings
of entities as opposed to averaging them, since averaging
embeddings loses the order of the input (as in the standard bag-
of-words representation [18]). Retaining order of embeddings
avoids possible loss of information. As concatenation does
not consider any interaction between the latent features, the
first affine transformation is applied with the ReLU activation
function. Thereafter, the second affine transformation is applied
with the sigmoid function to generate probabilities for relations.

IV. EXPERIMENTS

We compared SHALLOM against many state-of-the-art ap-
proaches and Uniform Random Classifier (URC) in
the relation prediction task on benchmark datasets [7].

A. Evaluation Protocol

We applied Hits@N to evaluate the prediction performances.
Given a test triple (s,p,o) ∈ GTest, we computed |R| number

of scores and obtained Irelation = [(p’, score) : score =
ψ(s, p′, o)∧p′ ∈ R]. Then, we sorted the Irelation in descending
order of assigned scores and we computed Hits@N as follows:

Hits@N =
1

|GTest|
∑

(s,p,o)∈GTest

f(Irelation,p, N), (3)

where f returns 1 if p is contained in the top N ranked
tuples, otherwise 0 [6]. To evaluate runtime performances, we
measured the elapsed runtime during the training phase. Ergo,
we ignored the elapsed time during the data preprocessing
since the training setup for SHALLOM is done on the fly
while some approaches, including RDF2Vec, require additional
computations such as applying the random walk technique. All
approaches were trained four times on datasets. The reported
runtimes (RT) of approaches are in seconds and the mean of
the last three runs.

B. Hyperparameter Optimization

We selected the hyperparameters of SHALLOM via grid
search according to the Hits@1 on the validation set of each
dataset. The hyperparameter ranges for the grid search were set
as follows: embedding size d = [30, 50, 100, 200], epochs =
[30, 50, 100], the width of the hidden layer k = [.5d, d, 3d],
batch size = [256, 1000], dropout rate = [.0, .2, .5] and
L2-normalizer = [.0, .1]. Initially, we used the default hy-
perparameters for all competing approaches provided in [19].
However, RESCAL, ComplEx, CP and DistMult did not termi-
nate within three hours of computation. The long runtimes are
corroborated by [19]. We hence optimized the hyperparameters
of RESCAL, CP, TransE, DistMult and ComplEx via a grid
search according to the Hits@1 on the validation set of each
dataset. The hyperparameter ranges for the grid search were
as follows: epochs = [100, 200], negative ratio per valid
triple = [1, 5, 10, 50], and batch size = [256, 512, |GTrain|/100].
We omitted d, regularization term and learning rate from
grid-search and used the parameter settings provided in
[19]. We selected the hyperparameters of RDF2Vec via grid
search according to the Hits@1 on the validation set of each
dataset. The hyperparameter ranges of RDF2Vec for the grid
search were set as follows: embedding size d = [50, 100],
epochs = [100], number of negatives for W2V = [25, 100]
and random walk depth = [3, 5, 7]. After the embedding
vectors are generated, we train the same scoring function
defined in Equation (1) (look-up operation performed on
RDF2Vec embeddings), by following the same optimization
schema as our approach.

V. RESULTS

Table I, Table II and Table III report the HitsN relation
prediction results on the five benchmark datasets. Overall,
SHALLOM outperforms many state-of-the-art approaches while
maintaining a superior runtime performance. The slightly supe-
rior (.018 absolute) performance of ProjE on the FB15K comes
with the cost of more than 3 hours of computation. SHALLOM is
significantly more time-efficient; it requires only 8 minutes, on
average, a commodity computer. Since we could not reproduce



subject object

. . . . . .

. . .

Fig. 1. Visualization of SHALLOM.

TABLE I
HITS@1 RELATION PREDICTION RESULTS ON FB15K AND WN18.

RESULTS ARE TAKEN FROM CORRESPONDING PAPERS.

Method FB15K WN18
TransE [6] .651 .736
TransR [20] .702 .713
ProjE-listwise [6] .758 -
PTransE (ADD, len-2 path) [6] .695 -
DKLR(CNN) [20] .698 -
TKRL (RHE) [21] .711 -
RDFDNN [22] .691 .770
KGML [16] .725 .975
SSP [23] .709 -

SHALLOM .734 .970

the reported relation prediction results [6], we could neither re-
evaluate ProjE on FB15K nor include it on the other benchmark
datasets. Approaches perform significantly better on WN18 than
on FB15K. This may stem from the fact that WN18 contains
(1) significantly fewer relations and (2) entity pairs having
multiple relations than FB15K. More specifically, FB15K and
WN18 datasets contain 63.856 and 277 number entity pairs,
respectively, that occurred with multiple relations in the training
splits. Table II shows that SHALLOM outperforms all state-of-
the-art approaches on the WN18RR and FB15K-237 datasets
while maintaining an overall superior runtime performance.
Note that the RT solely denotes the elapse training runtime
(see section IV-A for details.) Initially, we trained RESCAL,
TransE, ComplEx, CP and DistMult with hyperparameters
provided in [24]. However, models other than TransE did not
terminate within 3 hours of computation. Consequently, we
selected the hyperparameters of approaches via grid search
as explained in Section IV-B. TransE and DistMult yield a
surprisingly better performance on WN18RR and FB15K-
237 than on WN18 and FB15K. This may stem from (1)
the hyperparameter optimization and (2) the fact that fewer
numbers of entity pairs have multiple relations on training
and testing datasets. The hyperparameters of TransE were not
optimized in [6], [22], [16] where the Hit@1 performances of
TransE were taken. CP performed poorly on the WN18RR due
to the small number of relations as observed in [19]. During
the training phase, the batch size was set to 32 in KGML

and RDFDNN [16], [22]. Although training models with a
small-batch regime seemed to alleviate a possible degradation
in the generalization performances of models [25], it came
with the cost of increased runtime. By virtue of being a
shallow NN, the error propagation was computationally more
efficient in SHALLOM than KGML. Importantly, KGML and
RDFDNN do not optimize the width of the hidden layers.
Conversely, we optimized the width of SHALLOM, as per the
suggestion in [26]—that optimizing the width of the network
has an impact on the generalization performance. RDFDNN
erroneously assumes one-to-one mapping between entity pairs
to relations and possibly suffers from the hyperbolic tangent
saturation as the hyperbolic tangent is applied in the hidden
layer [27]. RDF2Vec outperforms RESCAL, TransE, CP and
DistMult w.r.t. Hits@3 and Hits@5 on WN18RR.

To confirm the performance of SHALLOM, we compared it
with some of the best approaches in terms of runtime require-
ment and Hits@1 on a large benchmark dataset. Table III
shows that SHALLOM reaches close to 1.0 Hits@5 and requires
less than 10 minutes on the YAGO3-10. We could not evaluate
KGML on YAGO3-10 due to its high memory consumption
requiring more than 16 GB RAM.

The superior performance of SHALLOM stems from: (1) it
being a shallow neural model, (2) optimizing the width of
the hidden layer, (3) the task and evaluation measures used.
By virtue of being a shallow NN, SHALLOM requires only
562 seconds to train on |G| > 106 on a commodity computer.
NNs are required to be wide enough (larger than the input
dimension) to learn disconnected decision regions [26]. Lastly,
given the example (Obama, Hawaii), SHALLOM assigns high
scores for BirthPlace and low scores for SpouseOf. This
stems from the fact that input G does not involve triples
such as (SpouseOf, Hawaii), while it involves many triples
(BirthPlace, Hawaii). SHALLOM assigns presumably a
high score (Obama, BirthPlace, Paderborn) although
such a triple is not contained in G. Since the test splits of the
benchmark datasets do not involve such false triples, the Hit@N
metric quantifies merely the performances of the relation
prediction approaches on the valid triples. Ergo, the idea of
corrupted triples is not necessary for relation prediction as each
entity pair found in the test split is linked with a relation.



TABLE II
THE MEAN OF HITS@N RELATION PREDICTION AND RUNTIME RESULTS ON WN18RR AND FB15K-237.

WN18RR FB15K-237

Hits Hits

RT @1 @3 @5 RT @1 @3 @5

RESCAL 1860±6 .331 .529 .734 5160±4 .115 .327 .456
TransE 960±11 .507 .761 .864 540±10 .774 .899 .918
ComplEx 2160±15 .515 .652 .758 5880±30 .153 .300 .378
CP 840±15 .332 .518 .659 8040±39 .467 .609 .675
DistMult 780±13 .497 .677 .799 1140±8 .092 .176 .428

KGML 840±15 .868 .954 .975 1080±10 .921 .960 .976
RDFDNN 540±8 .819 .967 .985 720±10 .913 .934 .953
RDF2VecSkip-Gram 310±5 .534 .815 .940 482±6 .518 .600 .677
RDF2VecCBOW 337±10 .451 .785 .932 472±8 .522 .608 .687
URC .095 .265 .446 .003 .013 .020

SHALLOM 610±13 .874 .982 .995 404±8 .948 .993 .997

TABLE III
THE MEAN OF HITS@N RELATION PREDICTION AND RUNTIME RESULTS ON YAGO3-10.

YAGO3-10

Hits

RT @1 @3 @5
RDF2VecSkip-Gram 593±11 .487 .796 .875
RDF2VecCBOW 625±12 .491 .803 .873

SHALLOM 562±19 .630 .983 .996

VI. RELATED WORK

A wide range of works have investigated the KGC prob-
lem [4], [28]. DistMult [29] can be seen as an efficient
extension of RESCAL with a diagonal matrix per relation.
ComplEx [24] extends DistMult into a complex vector space.
RDFDNN [22] considers the relation prediction task as a
multi-class classification problem. Embeddings of entities are
learned disjointly. Relations are predicted through the softmax
function. KGML [16] implements a multi-layer neural model
for relation prediction. Experimental results show that KGML
outperforms TransE, TransR, PTransE and RDFDNN in the
relation prediction task. After an embedding layer, KGML
concatenates embeddings of subject and object with the element-
wise product of embeddings. This is followed by two inner
product layers with fixed decreasing width. SHALLOM differs
from KGML by: (1) concatenating embeddings of entities
without including a multiplication step, (2) having solely one
inner product layer and omitting dynamic weighted binary
cross entropy loss. RDF2Vec [30] employs Word2Vec [15] for
unsupervised feature extraction from sequences of words, and
adapts them to RDF graphs.

VII. CONCLUSION

We presented a shallow neural model effectively predicts
missing triples without disregarding the open world assumption.
SHALLOM retains a linear space complexity in the number
of entities. Experiments showed that training SHALLOM on

benchmark datasets is completed within a few minutes. This is
an important result, as it means that our approach can be applied
on large knowledge graphs without requiring high-performance
hardware. This also implies that winning the hardware lottery
is not necessary to tackle the link prediction problem [13].
In future work, we plan to investigate extending SHALLOM
into temporal knowledge graphs and learning complex-valued
valued embeddings via SHALLOM [31], [32].
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