
LEMMING – Example-based Mimicking of
Knowledge Graphs

Michael Röder
DICE group

Department of Computer Science
Paderborn University, Germany;
Institute for Applied Informatics

Leipzig, Germany

Pham Thuy Sy Nguyen
and Felix Conrads

and Ana Alexandra Morim da Silva
Department of Computer Science
Paderborn University, Germany

Axel-Cyrille Ngonga Ngomo
DICE group

Department of Computer Science
Paderborn University, Germany;
Institute for Applied Informatics

Leipzig, Germany

Abstract—The size of knowledge graphs used in real appli-
cations grows constantly. Predicting the performance of storage
solutions for knowledge graphs w.r.t. their query performance
is hence of central performance for the practical use of said
storage solutions. We address this challenge by learning graph
invariants of a given graph. We then use these invariants to fuel
a stochastic generation model that is able to generate graphs of
arbitrary sizes similar to the input graph. We evaluate our graph
generator, dubbed LEMMING, by comparing the performance
of storage solutions on synthetic and real versions of three
datasets of up to 3.4 × 106 triples. Our results suggest that the
performance of storage solutions on synthetic data generated
by LEMMING reflects their performance on real data in most
of the cases. The source code of LEMMING is available at
https://github.com/dice-group/Lemming.

I. INTRODUCTION

The size of the knowledge graphs (KGs) used in real appli-
cations grows constantly. For example, the Google Knowledge
Graph grew from 3.5 × 109 facts to 18 × 109 facts in 7
months. The authors of [1] point out that comparable growth
rates can be observed in KGs of other large companies. The
same phenomenon is also present in open data sets. For
example, DBpedia crossed the mark of 23 × 109 triples in
20171 while it begun with 0.1× 109 triples in 2007 [2]. The
ranking of corresponding storage solutions w.r.t. their runtime
performance (measured in query mixes per hour, short QMpH)
has been observed to change with the size of the KGs [3],
[4]. For example, the authors of [3] report the performance of
four triple stores on different versions of an RDF KG ranging
from 105 to 106 triples. While BlazeGraph Free version 8.5
achieves the second-best performance on the smallest version
of the KG, it achieves the worst performance on the subsequent
version of the KG, which is merely five times larger. Similar
insights can be derived from [4], where Jena TDB version
2.3.0 is ranked first across three triple stores and achieves
the best QMpH performance on a 10% fragment of DBpedia
version 2016-10 but is outperformed by Virtuoso version 7.0.0
on the full version of the same dataset and even achieves the
worst QMpH performance in some high-load settings with 16
concurrent queries.

1https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10

Given that the performance of triple stores changes across
dataset versions, there is a need to predict the future per-
formance of storage solutions given existing versions of a
dataset. Such a prediction can facilitate the deployment of
reliable KG infrastructures, the timely acquisition and alter-
ation of software components and the maintenance of quality-
of-service requirements, e.g., in terms of minimal QMpH
performance. In this work, we hence address the challenge of
predicting the performance and ranking of storage solutions
on a (future) version of a knowledge graph of size k (measured
in numbers of nodes) given previous versions of the same
dataset. This task differs from that addressed by current RDF
generators, which assume a particular dataset or ontology (e.g.,
universities) and generate data based thereupon [5], [6], [7],
[8], [9], [10].

We formalize the problem as follows: Given versions
K1, . . . ,Kν of a KG (e.g., WikiData, DBpedia, MusicBrainz),
we aim to learn a synthetic dataset generator K which allows
the prediction of the performance and ranking of storage
solutions (w.r.t. their performance measured in QMpH and in
queries per second, short QpS) on a version of K of size k.
We use K(k) to denote the KG of size k generated by K. To
learn K, we use training data in form of K = {K1, . . . ,Kν}
to learn graph-specific invariants, which we define as functions
g whose with a low variance on K and a high variance on
other sets of graphs disjoint from K . We learn these functions
using a refinement operator ρ for arithmetic functions. We
show that our operator is finite, redundant and complete. Our
experiments show that our approach is able to learn generators
K which generate datasets with which the ranking on real
datasets can be approximated with a root mean squared error
on ranks under 0.15.

II. RELATED WORK

The generation of synthetic graphs that can mimic real-
world graphs is an important field of research. Starting from
the Erdös-Renyi model [11], several further models have been
developed. The Watts-Strogatz model [12] is able to create
random graphs with small-world properties. The Barabasi-
Albert model [13] is able to create scale-free graphs similar
to the link graph of the World Wide Web. However, all these

https://github.com/dice-group/Lemming
https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10

models and their extensions aim at general graphs and do not
take special features of RDF graphs into account.

The Attribute Synthetic Generator [5] mimics social net-
works and takes different types of edges and features of nodes
into account. In a similar way, the Property Graph Model [14]
takes node features and link types into account. However,
both approaches are not applicable for RDF as they create
undirected graphs and take only a limited set of graph features
into account.

Statistical analysis for RDF datasets can be found in dif-
ferent publications. LODStats [15], [16] collects statistical
data about more than 9 000 RDF datasets gathered from a
dataset catalogue. In [17], the authors gather and analyse 3.985
million open RDF documents from 778 different domains
regarding their conformity to Linked Data best practices.
In [18] and [19], the authors propose a set of metrics to
characterize RDF graphs and show that most of the analyzed
RDF graphs have a power-law distribution with respect to the
in- and out-degree distributions of their nodes.

There are several generators for RDF datasets. In [20], the
authors propose an approach to generate synthetic schemas of
RDF datasets. This is different to our work since we focus on
the instance data and not the schema. The Lehigh University
Benchmark [7] generates RDF graphs with a given number
of triples describing synthetic universities, their lectures etc.
The LDBC [9] generator creates RDF data describing a social
network. In a similar way, SP2Bench [8] relies on the publica-
tion domain. The Waterloo SPARQL Diversity Test Suite [6]
offers a data generator for scalable RDF datasets relying on
the WatDiv schema. PoDiGG [10] is an RDF generator for
an artificial transport network based on a given population
density. While all these generators create RDF graphs, they
are bound to a certain domain or ontology.

Some approaches support the generation of RDF datasets
independently of the dataset’s domain. Grr [21] is a generator
that relies on commands written in a domain specific language
describing the single steps that are necessary to generate the
dataset. In contrast, gMark [22] offers a more comfortable
generator for an RDF dataset and a set of queries that can be
used to benchmark the dataset. However, gMark needs a large
amount of statistical information about the dataset including in
and out degree distributions. Similarly, LinkGen [23] relies on
a given ontology and a set of parameters including distribution
parameters. Apart from that, LinkGen has never been evaluated
with respect to the quality of the generated graphs. In com-
parison, the generator proposed in this paper relies solely on
the given RDF graphs without additional ontological data and
gathers all statistical values that are needed for the generation
process by itself. In addition, LEMMING is the first graph
generation algorithm able to mimic real-world datasets by
determining necessary statistics and characteristic expressions
that give invariant values for the given dataset.

III. APPROACH

Our approach begins by learning graph-specific invariants
g for K using a refinement operator ρ. Thereafter, an initial

graph of size k is generated, which is further refined to meet
a value within a range acceptable for g. Finally, the graph is
finalised by adding literals and exporting it to RDF.

A. Preliminaries

1) Knowledge Graph: Let R be the set of all RDF re-
sources, B the set of all RDF blank nodes, P ⊆ R be
the set of all properties and L the set of all RDF literals.
Following [24], an RDF KG K is a set of RDF triples
(s, p, o) ∈ (R ∪ B) × P × (R ∪ B ∪ L). In the following,
we assume that K is fully materialized.

2) Labeled Directed Multigraphs: LEMMING represents
KGs as labeled directed graphs during the graph generation.
Let G = (V,E, α) be the graph representation of K:
• V = {v : (v, p, o) ∈ K ∨ (s, p, v) ∈ K}.
• α : V → 2C , where C is the set of all instances of
rdfs:Class in K. This function maps each node v ∈
V to the set of all classes (including rdfs:Literal)
to which it belongs.

• E = {(u, p, v) : (u, p, v) ∈ K}.
We use Gi to denote the graph representation of Ki. When
necessary, we use VGi , EGi and αGi to denote the set of
vertices resp. edges or the mapping function of Gi. The graph
representations of the versions of K form G = {G1, . . . , Gν}.

B. Graph Analysis

First, the given set of graphs G is analysed. The density of
each Gi ∈ G , denoted, δGi

is determined as follows:

δGi
=
|EGi |
|VGi |

. (1)

Let T ∈ 2C be a set of classes. We also determine the
distribution over sets of classes T ∈ 2C by calculating the
probability that a vertex is an instance of exactly all classes
in T . This probability is defined as

PGi(T) =
|{vj |vj ∈ V ∧ T = α(vj)}|

|V |
. (2)

In a similar way, the probability that an edge has p as property
is calculated using

PGi
(p) =

|{ej |ej ∈ E ∧ ∃s, o ∈ V : ej = (s, p, o)}|
|E|

. (3)

For pairs of class sets (Tt, Th), the probability that the vertices
on the tail and the head of an edge are instances of the classes
in Tt and Th, respectively, is

PGi((Tt, Th)|p) =

|{ej |ej ∈ E ∧ ej = (s, p, o) ∧ Tt ⊆ α(s) ∧ Th ⊆ α(o)}|
|{ej |ej ∈ E ∧ ∃x, y ∈ V : ej = (x, p, y)}|

.

(4)

We also collect which types of triples occur in the graph, i.e.,
which combination of property, domain and range occur. These
triples are collected in the set

ΩGi = {(Tt, p, Th)|∃ej ∈ E ∧ ej = (s, p, o)

∧ Tt = α(s) ∧ Th = α(o)}.
(5)

With respect to datatype properties, we collect the average
number of outgoing edges δTjpdGi with a datatype property pd
the instances of a class set T have. This is defined as follows:

δTjpdGi =
|{el|el ∈ E ∧ el = (s, pd, o) ∧ Tj ⊆ α(s)}|

|{va|va ∈ V ∧ Tj ⊆ α(va)}|
. (6)

After analysing the single graphs, the analysis results are
summarised as follows.

δG =
1

|G |
∑
Gi∈G

δGi
(7)

PG (T) =
1

|G |
∑
Gi∈G

PGi
(T) (8)

PG (p) =
1

|G |
∑
Gi∈G

PGi
(p) (9)

PG ((Tt, Th)|p) =
1

|G |
∑
Gi∈G

PGi
((Tt, Th)|p) (10)

ΩG =
⋃
Gi∈G

ΩGi
(11)

δTjpdG =
1

|G |
∑
Gi∈G

δTjpdGi
(12)

In addition to that, we gather the degrees of the vertices that
are instances of all classes over all graphs in G . The degrees
are used to determine the degree distribution dTjG for Tj . This
allows the usage of different types of distributions for different
Tj . For each datatype property, we gather data about the literal
values the edges of this property have as object. This data is
used to create a literal value distribution φpdG for each pd.

C. Learning Graph Invariants

Our approach to learning graph invariants is based on a
refinement operator ρ, which uses a specificity function as
heuristic to measure the quality of arithmetic expression. In the
following, we begin by presenting ρ and prove that it is finite,
redundant and complete. We then present how we compute the
specificity of expressions. Finally, we combine the refinement
operator and the specificity function to learn graph invariants.

1) Operator: Let A(F) be the space of all arithmetic
expressions over a finite set F of predefined real-valued
functions over the set of all RDF graphs. We denote the ith

element of F with fi.

Example 1. We can imagine F to be the set of functions which
return the minimal (m) and maximal (M) degree of the nodes
in a graph.

Every arithmetic expression λ ∈ A(F) can be naturally
represented as a tree. We say that an expression λ1 is sub-
sumed by an expression λ2 (denoted λ1 v λ2) iff λ1’s tree
representation is a subtree λ2’s tree representation.

Example 2. λ1 = (M+m) is subsumed by λ2 = (M+m)/m.

The subsumption relation defines a partial ordering over
A(F). We now define the operator ρ : A(F) → 2A(F) as
follows:

ρ(λ) =

F if λ is the empty expression ε,⋃
fi∈F
{λ+ fi, λ− fi, λ× fi, λ/fi} else. (13)

Example 3. Let F = {M,m}. Then ρ(m) = {m + m,m −
m,m×m,m/m,m+M,m−M,m×M,m/M}.

We call two arithmetic expressions λ1 and λ2 in A(F)
equivalent iff they return the same value for all input graphs.
Based on this definition of equivalence, we can show that ρ
is a finite, redundant and complete refinement operator over
(A(F),v):2

ρ is a refinement operator. By virtue of the construction of
ρ, it is evident that ∀λ ∈ A(F) ∀λ′ ∈ ρ(λ) : λ v λ′. Given
that ∀λ ∈ A(F) : ε v λ because the tree representation of ε is
the empty tree, we can conclude that ∀λ′ ∈ ρ(λ) : λ v λ′. By
virtue of the definition of refinement operators [25], we can
conclude that ρ is a refinement operator.
ρ is finite. A refinement operator τ is called finite if |τ(λ)| <
∞. The finiteness of ρ is given by |ρ(λ)| = 4|F | <∞ for all
non-empty expressions3 and |ρ(λ)| = |F | <∞ for the empty
expression.
ρ is redundant. We call a refinement operator τ redundant

if at least two different sequences of application of τ can lead
to the same expression. ρ is redundant because there are two
refinement paths from ε to the equivalent expressions f1 + f2

and f2 + f1, i.e., ε→ f1 → f1 + f2 and ε→ f2 → f2 + f1.
ρ is complete. A refinement operator τ is called complete if

it can generate an expression λ equivalent to any λ′ ∈ A(F).
The proof of ρ’s completeness is more involved and is omitted
for the sake of space. The idea behind the proof is that
the completeness of ρ is a direct consequence of the set
of arithmetic operators being closed w.r.t. the inversion of
operators. Hence, every tree representation of an arithmetic
expression can be converted into an equivalent right-linear
tree, which is the set of trees generated by ρ. Hence, ρ can
generate an expression λ ∈ A(F) equivalent to any arithmetic
expression λ′ ∈ A(F).

Example 4. Consider the expression f1 × f2 + f3 × f4.
While this expression cannot be generated by ρ, the equivalent
expression (((f1 × f2)/f4) + f3)× f4 can.

2) Specificity: We can compute how characteristic an ex-
pression λ is for G by measuring the invariance of its values
over all graphs in G and by comparing it with negative
example graphs. We begin by using a set of graph generators G
for generating a set of negative examples G ’ made up of |G|×ν
graphs G′1, . . . , G

′
|G|×ν . G can comprise any off-the-shelf

graph generator. During the generation, we ensure that for each
generator in G, ∀i ∈ [1, ν] : |VGi | = |VG′i |. The set of negative
examples is used to contrast the positive examples found in G
during the learning of the graph-specific invariants. First, we

2For the sake of space, we refer the interested reader to [25] for more
details on refinement operators.

3Note that we have exactly 4 arithmetic operators.

use the following variance-inspired measure to compute how
close λ is to being an invariant of G :

h(λ,G) = 1−

ν∑
i=1

ν∑
j=1

(λ(Gi)− λ(Gj))
2

γ2ν(ν − 1)
, (14)

where γ = max{λ(G1), . . . , λ(Gν)}. For invariants,
h(λ,G) = 1. The lower bound of the expression is 0.
h treats expressions of all lengths the same. For the sake of

computational efficiency, we would want h to prefer shorter
invariants over longer ones. To achieve this goal, we extend h
by defining h′ as follows:

h′(λ,G) = h(λ,G)− η|λ|, (15)

where |λ| is the number of arithmetic operators in λ and η ∈
[0, 1] is a small constant.4

While h′ captures how close λ is to being a short invariant
on G , it fails to capture how specific this expression is for G .
For example, while the expression f1−f1 is a trivial invariant
for G , it is also an invariant for any non-empty set of graphs.
We alleviate this problem by using the following function:

g(λ,G ,G ′) =
2h′(λ,G)(1− h′(λ,G ′)
h′(λ,G) + (1− h′(λ,G))

. (16)

g(λ,G ,G ′) is the harmonic mean of h′(λ,G) and 1−h′(λ,G ′)
and is a measure of the specificity of λ as an invariant for G .
For η = 0, g(λ,G ,G ′) = 1 if λ is an invariant of G (i.e.,
h′(λ,G) = 1) and not an invariant for G ′ (i.e., h′(λ,G) = 0).

3) Learning Approach: We can now learn invariants for G
as follows. We begin by generating G ′ using an off-the-shelf
graph generator based on the BA model [26]. We chose this
model because it is often representative of real-world graphs.
As suggested by previous on negative sampling (see, e.g.,
[27]), the choice of the models should not affect our results
and is hence not further analysed in this work. We initialise
the set of candidate expressions Λ with {ε}. The set S of seen
expressions is initialised with ∅. We then iterate the following
three steps a predefined number of times:5

1) Selection: λmax = argmax
λ∈Λ\S

g(λ,G ,G ′).6

2) Refinement: Λ = Λ ∪ ρ(λmax).
3) Update: S = S ∪ {λmax}.

Finally, we select argmax
λ∈Λ

g(λ,G ,G ′) as our final output.

D. Initial Graph Generation

The initial graph generation aims at creating an initial graph
K(k) = (V ′, E′, α′). To generate the graph, the number of
edges is computed based on the given number of vertices k and
the average density δG . After that, the classes and properties
are assigned to the vertices and edges based on the class and
property distributions, respectively. Finally, the edges are used

4We set η = 0.1 in all experiments.
5In our experiments, we use 50 iterations.
6Given that ρ is redundant, we exploit the commutativity and the associativ-

ity of some arithmetic operations to detect and remove duplicate expressions
from E in our implementation. We omit details for the sake of space.

to connect the vertices. This is done by applying the following
three steps for each edge. First, the set of possible classes for
the head and the tail of the edge are determined. Second, the
classes of the two endpoints (Tt and Th) of the edge are chosen
from these sets. Third, two instances are chosen which will be
connected by the edge from the two sets of vertices that are
instances of the chosen classes.

1) Class set selection: This first step uses the previously
collected constraints ΩG . Let px be a property and qt =
(px, Th) be a function that returns a set of classes whose
vertices are potential tails of edges with Property px and a
head vh with α(vh) = Th. Let qt = (px, Th) be a similar
function for potential head classes.

qt(px, Th) = {Tt|(Tt, px, Th) ∈ ΩG } (17)
qh(Tt, px) = {Th|(Tt, px, Th) ∈ ΩG } (18)

Both functions can be used as qt(px, ·) and qh(·, px) where ·
donates any set of classes.

2) Endpoint class definition: We propose three different
approaches for selecting the set of classes of the two endpoints
of a given edge.

The approach Uniform Class Selection (UCS) randomly
draws Tt from qt(px, ·) using a uniform distribution. In the
same way, Th is chosen from qh(Tt, px).

The approach Biased Class Selection (BCS) relies on the
PG ((Tt, Th)|p) probabilities of the different class sets to
sample the class sets for the tail and head of the edge. For
each set of classes Ti ∈ qt(px, ·) the probability PG ((Tt, ·)|p)
is used. It is determined as follows:

PG ((Ti, ·)|p) =
∑

Tj∈qh(Ti,px)

PG ((Ti, Tj)|p). (19)

Based on these probabilities, a class set Tt is sampled for the
tail of the edge. Based Tt, a set of classes is sampled for the
head of the edge. For each possible class set Ti ∈ qh(Tt, px)
the probability PG ((Tt, Ti)|p) is used for that.

While UCS and BCS are sampling Tt before Th, the
Clustered Class Selection (CCS) samples both class sets at
the same time. For each possible class set pair (Ti, Tj) with
(Ti, px, Tj) ∈ Ω, its probability PG ((Ti, Tj)|p) is used.

3) Vertex selection: After the classes of the tail and head
vertices of the edge are chosen, the two single vertices with
these classes have to be chosen. Let α′−1 be the inverse
function of α′, i.e., a function that returns for a given set
of classes T the set of vertices that are instances of these
classes: α′−1(Ti) = {vj |vj ∈ V ′, Ti ⊆ α′(vj)}. For sampling
two vertices, the Uniform Instance Selection (UIS) assigns a
uniform probability to all vertices of the sets α′−1(Tt) and
α′−1(Th), respectively.

In contrast, the Biased Instance Selection (BIS) approach
uses the dTG distributions to assign degree weights to the
single vertices. For each vertex vj ∈ V ′, a degree weight
wj is sampled from dα′(vj)G . Based on these weights, a
probability P (vj |Ti) is assigned to each vertex to be chosen

when sampling a vertex for a given set of classes Ti. The
probability is defined as

P (vj |Ti) = wj/
∑

vl∈α′−1(Ti)

wl. (20)

The chosen vertices are connected by the given edge.
However, if both vertices are already connected with an edge
that has the same property px two new vertices have to be
sampled. By combining the three approaches for selecting the
tail and head classes for an edge with the two techniques to
select the single vertices, six approaches are obtained: UCS-
UIS, UCS-BIS, BCS-UIS, BCS-BIS, CCS-UIS and CCS-BIS.

E. Graph Amendment

The initial graph is further amended based on the set of
characteristic expressions determined on the set of original
graphs. To this end, we define an error score that is used to
measure the difference between the values of the invariant
expressions for the original graphs G and the generated graph
H . Let Λmax be the set of the best invariant expressions
learned on G as described in Section III-C. Let µi be the
average value the expression λi returns for the original graphs
and let σi be its standard deviation. Let ∆(H,λi, µi, σi) be
the difference function defined as follows:

∆i =
(λi(H)− µi)2

σ2
i

. (21)

Let ε(H) be the error of graph H with respect to the
characteristic expressions defined as follows:

ε(H) =

|Λmax|∑
i=1

∆(H,λi, µi, σi). (22)

The target of the amendment phase is to optimise for the
error score of the graph H by successive modifications. We
achieve this goal by using a greedy approach. In each iteration,
the algorithm generates two new versions of H by adding or
removing a random edge, respectively. Thereafter, the graph
with the lower error score is used for the next iteration.
The amendment phase ends when a maximum number of
iterations is reached or no improvement has been achieved for
several iterations. The removal of an edge randomly chooses
an edge and removes it. The addition of a new edge starts with
choosing a property px for the edge following the property
distribution. Based on the chosen property, the same steps as
during the generation of the initial graph are executed to assign
tail and head vertices to the newly generated edge.

F. Graph Completion

The completion phase takes the result graph H of the
amendment phase as input and extends it to form the final,
complete graph. First, datatype edges are created. For each
set of classes Tj and each datatype property pd, the number
of edges with pd the instances of these classes should have
is determined by multiplying the number of instances with
the average degree δTjpdG . Second, for each datatype edge,
a literal is generated by sampling a literal value from the

previously learned distribution vd. Third, the datatype edges
are connected to a resource node within the graph. This is
done by sampling a vertex of the set of instances of Tj .

Finally, the graph is transformed into an RDF graph rep-
resentation. To this end, each resource vertex of the graph
receives a generated URI. With these URIs, the graph can be
transformed into an RDF triple representation. After that, the
rdf:type triples are generated, i.e., for each vertex vj ∈ V ′
and c ∈ α′(vj) an RDF triple vj rdf:type c using the URIs
of vj and c, respectively.

IV. EVALUATION

We evaluate our graph generation approach based on three
different real-world datasets and four different triple stores.
The main aim of our evaluation is to measure the performance
of the selected triple stores based on our generated datasets
and compare it with that achieved by the same triple stores on
an unseen version of the dataset.

A. Experimental setup

1) Overview: The three datasets we use, i.e., Semantic
Web Dog Food (SWDF), Linked Geo Data (LGD) and the
International Chronostratigraphic Chart (ICC), are such that
at least three different versions are available. We use the
latest version of each dataset as held-out graph and its size
as input parameter k for our generation algorithm. We use the
six versions of our approach and compare it with a baseline
algorithm to generate graphs. Since all approaches are based
on sampling mechanisms, we execute each algorithm three
times. After that, we evaluate four reference triple stores—
Virtuoso, Blazegraph, Fuseki and GraphDB—on the held-out
as well as the generated datasets using Iguana [4].7 Iguana is
a generic SPARQL Benchmark execution framework. It can
be used to benchmark different triple stores with different
datasets in a comparable way. During the benchmarking, we
measure the query mixes per hour (QMpH) and queries per
second (QpS). QpS is measured for each query while QMpH
summarizes the overall performance of a triple store over
all queries. The similarity between the measured values is
calculated using the Spearman rank correlation (RC) for the
QMpH values and the root mean squared error (RMSE) for
the QpS values.

2) Datasets: SWDF comprises data about semantic web
conferences from 2001 to 2015.8 The data mainly focuses
on persons, events, papers and organisations related to these
conferences. Since the dataset is designed to build one version
upon the previous version we define it to have 15 versions—
one version per year. Each version comprises the previous
version and the data of the conferences of the next year.
The last version of 2015 is the held-out version. The LGD
dataset is a subset of the Linked Geo Dataset [28]. We use
the Military and Craft files of the three consecutive

7The stores are available at https://github.com/openlink/
virtuoso-opensource/releases, https://blazegraph.com/, https://jena.apache.org
and https://graphDB.ontotext.com/, respectively.

8https://old.datahub.io/dataset/semantic-web-dog-food

https://github.com/openlink/virtuoso-opensource/releases
https://github.com/openlink/virtuoso-opensource/releases
https://blazegraph.com/
https://jena.apache.org
https://graphDB.ontotext.com/
https://old.datahub.io/dataset/semantic-web-dog-food

TABLE I
FEATURES OF THE TARGET GRAPHS OF THE DIFFERENT DATASETS

SWDF LGD ICC

Triples 445 821 3 387 842 12 742
Resources (k) 45 423 591 649 1 423
Queries 20 43 27

TABLE II
SET OF METRICS F USED FOR THE SEARCH OF INVARIANT EXPRESSIONS.

Metric Description

#edges The number of edges.
#vertices The number of vertices.
avgDegree Average vertex degree.
maxInDegree The highest in-degree of a vertex found in the graph.
maxOutDegree The highest out-degree of a vertex found in the graph.
stdInDegree Standard deviation of the vertex in-degrees.
stdOutDegree Standard deviation of the vertex out-degrees.
#eTriangles Number of unique triangles formed by three edges.
#vTriangles Number of unique triangles formed by three vertices.

versions of 2013, 2014 and 2015. The latter is used as held-
out version. We apply an inference step to get infer missing
rdf:type triples based on domain and range definitions
of properties from the dataset’s ontologies. Table I lists the
features of the target graphs of the different datasets. The
third dataset, ICC, represents the chronostratigraphic chart as
RDF [29], [30], [31], [32]. This chart defines the geological
time intervals including their names, start and end dates as well
as their relations to each other. The dataset has been updated
several times leading to twelve versions in the years 2004–
2018. All versions of all three datasets are preprocessed by
materializing all implicit knowledge that can be infered based
on the ontology of the datasets. Table I shows the features of
the target graphs.

We use LSQ [33] to retrieve real user queries to the
datasets from query logs. We use FEASIBLE [34] to generate
benchmark queries from the LSQ queries, which can be used
to benchmark the triple stores based on the different datasets.
Table I shows the number of queries generated for the different
datasets. For each dataset, the ontology is retrieved. If a dataset
makes use of more than one ontology, the intersection of
the ontologies is used. For each query, every URI that is
not contained in the respective ontology (i.e., each URI that
is neither a class nor a property) is replaced by a template
variable [4]. Iguana replaces these variables on the fly with
resources from the graph used for benchmarking. This leads to
several queries with different resources. It is ensured that only
queries with a non-empty result are used for the benchmarking.
This allows the usage of queries comprising instance URIs
although the target graph as well as the generated graphs have
different instance URIs.

3) Configuration: Table II shows the set F , i.e., the set
of metrics that are used to learn the invariant expressions of
the input graphs. The refinement operator is configured to use
50 iterations for its search with η = 0.1. As a set of graph
generators G for negative examples G ′ we use generators for

TABLE III
INVARIANT CHARACTERISTIC EXPRESSIONS PER DATASET.

ID Expression

SW
D

F

λ1 maxInDegree / ((#vertices × stdDevOutDegree) + maxInDegree)
λ2 maxInDegree / (#vertices + maxInDegree − stdDevOutDegree)
λ3 maxInDegree / ((#vertices / maxInDegree) + maxInDegree)
λ4 maxInDegree / (#edges + maxInDegree − stdDevOutDegree)
λ5 maxInDegree / ((#vertices / stdDevOutDegree) + maxInDegree)

L
G

D

λ1 (2× #vertices − #edges) / (#edges × avgDegree)
λ2 #vertices / (#edges × avgDegree2)
λ3 (#vertices − #edges) / (#edges + maxOutDegree − #vertices)
λ4 #vertices / (#edges × (avgDegree − 1.0))
λ5 (#vertices − #edges) / (#edges + maxInDegree − #vertices)

IC
C

λ1 maxInDegree / ((#edges − #vertices) + maxInDegree)
λ2 maxInDegree / ((#vertices / maxOutDegree) + maxInDegree)
λ3 maxInDegree / ((#vertices − #edges) + maxInDegree)
λ4 maxInDegree / ((#vertices × stdDevInDegree) + maxInDegree)
λ5 maxInDegree / ((#vertices / maxInDegree) + maxInDegree)

star, ring, grid, clique and bipartite graphs. Our algorithm is
configured to use a maximum of 50 000 iterations to reduce
the error score during the amendment phase. The phase ends
earlier if the error score does not improve for 5000 iterations.
Further, we configure the CCS approaches to rely on Poisson
distributions for dTG . The distribution parameters are learned
for each T individually.

Depending on the datatype of literals, we configure the
algorithm to use different literal value distribution types. For
properties pd with literals that have a numeric, Date or
DateTime datatype, we determine the minimum and maxi-
mum values ymin and ymax, respectively. After that, we define
φpdG as uniform distribution of the range [ymin, ymax]. All
other literals are treated as datatype string. For the generation
of such literals, we define a distribution that always returns a
new string making all string-based literals unique.

4) Baseline: An analysis of the datasets showed that they
do not have a common type of degree distribution, i.e., it
is not possible to assign them to a common class of graphs
like scale-free or Poisson graphs. However, since it has been
shown that the degree distributions of a large number of RDF
datasets follow a power-law distribution [18], [19] we decided
to use an implementation of the Barabasi-Albert model [26].
This algorithm adds one node after the other to the graph by
creating δG new directed edges. The direction of the edge is
sampled from a Bernoulli distribution with the probability 0.5
for both cases. The second vertex for each edge is sampled
based on the degree of the vertices, i.e., the higher the degree,
the higher the probability that a vertex is chosen. After the
generation of the graph, the properties and node types are
sampled from PG (p) and PG (T), respectively.

B. Results

Tables III and IV summarize the results of the graph
generation process. Table III shows the graph invariants per
dataset, which clearly differ across datasets. A comparison
of the values of the graph invariants for the original graphs,
the target graph and the generated graphs are shown in

TABLE IV
AVERAGE RESULTS OF THE DIFFERENT EXPRESSIONS ON THE ORIGINAL GRAPHS, AND DIFFERENCE OF THE AVERAGE VALUES ON THE TARGET GRAPH

AND THE GENERATED GRAPHS IN PERCENTAGES OF THE ORIGINAL GRAPHS’ AVERAGE. THE LAST TWO LINES OF THE RESULTS ON A DATASET CONTAIN
THE AVERAGE ERROR SCORES ε(H) OF THE GENERATED GRAPHS AND THE AVERAGE RUNTIMES. ∗ ,∗∗ ,∗∗∗—1, 2 OR ALL 3 RUNS TERMINATED BEFORE

REACHING THE MAXIMUM NUMBER OF ITERATIONS, RESPECTIVELY.

Exp. Original Target UCS BCS CCS BL
graphs graph UIS BIS UIS BIS UIS BIS

SW
D

F

λ1 0.0926 -16.05% -61.86% -63.24% 3.48% 0.00% 0.00% 0.00% -99.18%
λ2 -0.1751 -15.72% 0.79% 0.69% -0.59% -0.09% -0.09% -0.09% -99.33%
λ3 0.9997 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% -35.10%
λ4 0.1294 -11.98% 0.77% 0.69% -0.26% 0.12% 0.12% 0.12% -99.09%
λ5 0.9965 0.15% 0.28% 0.29% -0.11% -0.11% 0.00% -0.06% -35.50%

Error ε(H) 0.3076 0.3195 0.0034 0.0011 0.0002 0.0004 1.4299
Runtime (in h) 3.4 3.5 ∗ 2.9 3.5 ∗∗∗ 0.9 ∗∗∗ 0.8 0.0

L
G

D

λ1 -0.1250 -0.06% 0.02% 0.03% 0.02% 0.02% -0.03% 0.02% 0.03%
λ2 0.0160 -11.17% -1.00% -1.43% -0.96% -0.13% 4.19% -0.07% -4.00%
λ3 -0.9978 0.12% -0.04% -0.07% 0.17% 0.17% -0.02% 0.21% 0.18%
λ4 0.0851 -8.77% -0.77% -1.11% -0.74% -0.09% 3.26% -0.04% -3.11%
λ5 -0.7857 0.68% 0.04% 0.00% 0.04% -0.03% -0.43% -0.04% 27.22%

Error ε(H) 0.0008 0.0014 0.0038 0.0035 0.0046 0.0051 6.7174
Runtime (in h) ∗∗ 36.1 ∗ 56.0 48.4 ∗∗ 49.1 ∗∗∗ 35.3 ∗∗ 51.7 0.1

IC
C

λ1 0.0797 15.63% 0.04% 0.04% 0.04% 0.04% 0.37% 0.04% -87.79%
λ2 0.9936 -0.03% -0.11% 0.00% 0.00% 0.00% 0.00% -0.17% -14.74%
λ3 -0.0948 19.05% -0.04% -0.04% -0.04% -0.04% 0.35% -0.04% -89.54%
λ4 0.0168 3.02% 0.00% -0.05% -1.18% -0.05% -5.85% -0.23% -56.29%
λ5 0.9975 0.02% 0.04% 0.06% 0.04% 0.04% 0.04% 0.03% -14.18%

Error ε(H) 0.0026 0.0020 0.0008 0.0007 0.0022 0.0056 124.8374
Runtime (in s) ∗∗∗290.7 ∗∗∗153.3 ∗∗∗190.0 ∗∗∗111.3 505.3 ∗∗∗218.0 0.6

Table IV. The difference between the values of the invariants
for original graphs and the target graphs are low for most
of the graph invariants we learned. These results corroborate
the assumption of the existence of graph invariants for RDF
datasets.

Table IV also shows the overall error ε(H) and the runtimes
of the different graph generation approaches are given. Note
that for all three datasets the baseline leads to the generation
of graphs with the highest error score ε(H). A comparison
of the errors ε of our generation approaches (see Table IV)
suggests that none is better overall. Still, our results suggest
that the different approaches for selecting the tail and head
classes for an edge (UCS, BCS and CCS) have a higher
influence on the overall error than the technique to select
the single vertices (UIS and BIS). With respect to runtime,
all three approaches take several hours for the generation of
larger graphs. As expected, the runtimes are shorter for the
small ICC graph. The majority of the time is used in the
amendment phase. Hence, some approaches lead to shorter
runtimes if the amendment phase is stopped earlier after 5000
iterations without any improvement.

Table V shows a summary of the triple store evaluation, i.e.,
the rank correlation of the QMpH values and the RMSE for
the QpS values. The QMpH values suggest that the benchmark
on SWDF is harder than that on LGD. On both target graphs,
Virtuoso shows the best performance with 1,018 and 1,460
QMpH respectively. In contrast, ICC seems to be less hard
since all triple stores achieve values up to 434,911 QMpH

(GraphDB). The results in Table V suggest that our approaches
show a much better performance than the baseline for the hard
SWDF dataset. For the LGD dataset, all generators achieve the
same ranking of the triple stores. However, the average RMSE
value of the baseline is significantly higher.9 This is caused
by much higher runtimes of the benchmark queries on the
BL graphs than on the target graph. For the ICC dataset, the
prediction of the order of the triple stores seems to be trivial as
well. However, because of the higher QpS values achieved by
all triple stores, a small difference in the query runtime leads
to large differences in the calculated QpS values and, hence, to
large RMSE values. Although the UCS-BIS approach achieves
the smallest RMSE value, its difference to the baseline as well
as several other approaches is not significant.10 Overall, our
results suggest that LEMMING is consistently better than the
off-the-shelf approach. In addition, the differences across the
benchmarks propound that the difference in the performance
of LEMMING and the baseline is positively correlated with the
difficulty of the benchmark.

V. CONCLUSION

In this paper, we presented LEMMING, a graph generator for
creating graphs that mimic a given, real-world RDF dataset.
We proposed the usage of graph invariants and a refinement
operator that is able to find these invariants based on a
given set of graph metrics. Further, we proposed six different

9We use a Wilcoxon signed rank test with α = 0.1%.
10We use a Wilcoxon signed rank test with α = 2%.

TABLE V
RANK CORRELATION (RC) OF THE TRIPLE STORE SYSTEMS BASED ON THEIR QMPH ON THE GENERATED GRAPHS COMPARED TO THE RANKING ON THE

TARGET GRAPH AND AVERAGE RMSE VALUES OF THE QPS VALUES MEASURED ON THE TARGET GRAPH AND THE GENERATED GRAPHS.

Approach SWDF LGD ICC

RC RMSE RC RMSE RC RMSE

UCS-UIS 0.87 81.1 1.00 111.8 1.00 280.9
UCS-BIS 0.93 82.0 1.00 115.3 0.93 219.6
BCS-UIS 0.93 88.2 1.00 115.3 1.00 261.2
BCS-BIS 0.93 64.1 1.00 117.6 1.00 242.8
CCS-UIS 1.00 72.7 1.00 117.3 1.00 255.6
CCS-BIS 0.93 95.8 1.00 115.9 0.93 229.0

BL 0.32 170.5 1.00 159.1 0.93 222.6

approaches for the generation of a graph with a given size
that abides to the determined graph invariants. Our evaluation
showed that LEMMING is able to generate graphs that lead to
similar benchmarking results as the real-world graph while a
comparable baseline struggled to achieve this for all datasets.

Our future work is to improve the runtime of LEMMING.
Thereafter, we plan to use it to generate large graphs to
evaluate the scalability of triple stores.

ACKNOWLEDGEMENTS

This work has been supported by the German Federal
Ministries for Economic Affairs and Energy (BMWi), and for
Education and Research (BMBF) within the projects RAKI
(no. 01MD19012D) and DAIKIRI (no. 01IS19085B).

REFERENCES

[1] N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J. Taylor,
“Industry-scale knowledge graphs: Lessons and challenges,” Queue,
vol. 17, no. 2, pp. 48–75, 2019.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
“Dbpedia: A nucleus for a web of open data,” in The semantic web.
Springer, 2007, pp. 722–735.

[3] V. Papakonstantinou, I. Fundulaki, and G. Flouris, “Second version of
the versioning benchmark,” in Holistic Benchmarking of Big Linked
Data, 2018.

[4] F. Conrads, J. Lehmann, M. Saleem, M. Morsey, and A.-C. Ngonga
Ngomo, “IGUANA: a generic framework for benchmarking the read-
write performance of triple stores,” in The Semantic Web ISWC 2017.

[5] A. M. Ali, H. Alvari, A. Hajibagheri, K. Lakkaraju, and G. Suk-
thankar, “Synthetic generators for cloning social network data,”
in Proceedings of the Fifth ASE International Conference on Big
Data/SocialInformatics/PASSAT/BioMedCom, 2014.

[6] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee, “Diversified stress
testing of rdf data management systems,” in International Semantic Web
Conference. Springer, 2014, pp. 197–212.

[7] Y. Guo, Z. Pan, and J. Heflin, “Lubm: A benchmark for owl knowledge
base systems,” Journal of Web Semantics, vol. 3, no. 2, 2005.

[8] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel, “Sp2bench: a sparql
performance benchmark,” in Proceedings of the ICDE, 2009.

[9] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat,
M.-D. Pham, and P. Boncz, “The LDBC social network benchmark:
interactive workload,” in Proceedings of the ACM SIGMOD, 2015.

[10] R. Taelman, P. Colpaert, E. Mannens, and R. Verborgh, “Generating
public transport data based on population distributions for rdf bench-
marking,” Semantic Web Journal, Jul. 2018.

[11] P. Erdös and A. Rényi, “On random graphs. i,” Publicationes Mathe-
maticae, vol. 6, pp. 290–297, 1959.

[12] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’smallworld’
networks,” Nature, vol. 393, pp. 440–442, 1998.

[13] A.-L. Barábasi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, 1999.

[14] A. V. Sathanur, S. Choudhury, C. Joslyn, and S. Purohit, “When labels
fall short: Property graph simulation via blending of network structure
and vertex attributes,” in Proceedings of the CIKM, 2017.

[15] S. Auer, J. Demter, M. Martin, and J. Lehmann, “Lodstats – an exten-
sible framework for high-performance dataset analytics,” in Knowledge
Engineering and Knowledge Management, 2012, pp. 353–362.

[16] I. Ermilov, J. Lehmann, M. Martin, and S. Auer, “Lodstats: The data
web census dataset,” in The Semantic Web – ISWC, 2016, pp. 38–46.

[17] A. Hogan, J. Umbrich, A. Harth, R. Cyganiak, A. Polleres, and
S. Decker, “An empirical survey of linked data conformance,” Journal
of Web Semantics, vol. 14, pp. 14–44, 2012.

[18] J. D. Fernández, M. A. Martı́nez-Prieto, P. de la Fuente Redondo,
and C. Gutiérrez, “Characterizing rdf datasets,” Journal of Information
Science, vol. 1, pp. 1–27, 2016.

[19] M. Zloch, M. Acosta, D. Hienert, S. Dietze, and S. Conrad, “A software
framework and datasets for the analysis of graph measures on rdf
graphs,” in The Semantic Web. Springer, 2019, pp. 523–539.

[20] Y. Theoharis, Y. Tzitzikas, D. Kotzinos, and V. Christophides, “On graph
features of semantic web schemas,” IEEE Transactions on Knowledge
and Data Engineering, vol. 20, no. 5, pp. 692–702, 2008.

[21] D. Blum and S. Cohen, “Generating rdf for application testing,” in
Proceedings of the ISWC-PD. CEUR-WS.org, 2010.

[22] G. Bagan, A. Bonifati, R. Ciucanu, G. H. L. Fletcher, A. Lemay,
and N. Advokaat, “gMark: Schema-Driven Generation of Graphs and
Queries,” in Proceedings of the ICDE, 2017.

[23] A. K. Joshi, P. Hitzler, and G. Dong, “Linkgen: Multipurpose linked
data generator,” in The Semantic Web – ISWC 2016. Cham: Springer
International Publishing, 2016, pp. 113–121.

[24] A.-C. Ngonga Ngomo, S. Auer, J. Lehmann, and A. Zaveri, “Introduc-
tion to linked data and its lifecycle on the web,” in Reasoning Web
International Summer School. Springer, 2014.

[25] P. R. van der Laag and S.-H. Nienhuys-Cheng, “Completeness and
properness of refinement operators in inductive logic programming,” The
Journal of Logic Programming, vol. 34, no. 3, 1998.

[26] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-
works,” Reviews of modern physics, vol. 74, no. 1, 2002.

[27] S. Stergiou, Z. Straznickas, R. Wu, and K. Tsioutsiouliklis, “Distributed
negative sampling for word embeddings,” in AAAI, 2017.

[28] C. Stadler, J. Lehmann, K. Höffner, and S. Auer, “Linkedgeodata: A
core for a web of spatial open data,” Semantic Web Journal, vol. 3,
no. 4, pp. 333–354, 2012.

[29] S. Cox, “Rdf representation of 2016 edition of international chronostrati-
graphic chart (geologic timescale) v1,” CSIRO, Data Collection, 2017.

[30] ——, “Rdf representation of 2017 edition of international chronostrati-
graphic chart (geologic timescale) v3,” CSIRO, Data Collection, 2018.

[31] S. Cox and S. Richard, “Rdf representation of international chronostrati-
graphic chart (geologic timescale) v2,” CSIRO, Data Collection, 2014.

[32] ——, “Rdf representation of 2018 edition of international chronostrati-
graphic chart (geologic timescale) v1,” CSIRO, Data Collection, 2019.

[33] M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and A.-C.
Ngonga Ngomo, “LSQ: the linked SPARQL queries dataset,” in The
Semantic Web ISWC 2015, 2015.

[34] M. Saleem, Q. Mehmood, and A.-C. Ngonga Ngomo, “Feasible: A
Feature-Based SPARQL Benchmark Generation Framework,” in The
Semantic Web ISWC 2015, 2015.

	Introduction
	Related work
	Approach
	Preliminaries
	Knowledge Graph
	Labeled Directed Multigraphs

	Graph Analysis
	Learning Graph Invariants
	Operator
	Specificity
	Learning Approach

	Initial Graph Generation
	Class set selection
	Endpoint class definition
	Vertex selection

	Graph Amendment
	Graph Completion

	Evaluation
	Experimental setup
	Overview
	Datasets
	Configuration
	Baseline

	Results

	Conclusion
	References

