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Abstract—The ontology alignment task aims at linking two
or more different ontologies from the same domain or different
domains. Over the years, many techniques have been proposed
for ontology instance alignment, schema alignment, and link
discovery. Most of the available approaches require human
intervention or work within a specif c domain and follow a
rule-based and logic-based approach. In this paper, we present
an ontology alignment approach using graph embedding with
negative sampling that is independent of the domain and does
not require any human intervention. The graph neural network
with negative sampling enr iches the embedding of a class/concept
by encapsulating the ontological structure of the class/concept.
The exper imental results show that our proposed unsupervised
learning-based approach successfully captures the structural in-
formation or meta-information of ontological classes and predicts
the cor rect cor respondence list with accuracy comparable to
other state-of-the-ar t systems.

Index Terms—Learning-based Alignment, Graph Neural Net-
work, Graph embedding with negative sampling, Ontology
Schema Alignment

I. INTRODUCTION

An ontology is a vocabulary that provides a formal de-
scription of entities within a domain and their relationships
with other entities. Along with basic schema information,
ontology also captures information in the form of metadata
about cardinality, restrictions, hierarchy and semantic mean-
ing. With the rapid growth of semantic (RDF) data on the web,
many organizations like DBpedia, Earth Science Information
Partners (ESIP) are publishing more and more data in RDF
format. The ontology alignment task aims at linking two or
more different ontologies from the same domain or different
domains. In particular, it is the process of f nding the semantic
relationships between two or more ontological entities and/or
instances. Information/data sharing among different systems is
quite limited because of differences in data based on syntax,
structures, and semantics. Ontology alignment is used to
overcome the limitation of semantic interoperability of current
vast distributed systems available on the Web.
In spite of the availability of large hierarchical domain-

specif c datasets, automated ontology mapping is still a com-
plex problem. Over the years, many techniques have been
proposed for ontology instance alignment, schema alignment,
and link discovery. Most of the available approaches such as
COMA++ [1], GLUE [2] require human intervention or work
within a specif c domain. The challenge involves representing

an entity as a vector that encodes all context information of the
entity such as hierarchical information, properties, constraints,
etc. The ontological representation is rich in comparison with
the regular data schema because of metadata about various
properties, constraints, domain membership and relationship
to other entities within the domain. While f nding similarities
between entities this metadata is often overlooked. The second
challenge is that the comparison of two ontologies is an intense
operation and highly depends on the domain and the language
that the ontologies are expressed in. Most current methods
require human intervention that leads to a time-consuming and
cumbersome process with output being human error-prone.

To address this challenge, we aim at developing an unsuper-
vised ontology alignment approach that is independent of do-
main knowledge and does not need domain expert intervention.
Our proposed approach explores the use of machine learning
techniques in ontology linking in an unsupervised manner
with no or minimum background knowledge and compares
the results with state-of-the-art tools. Our goal is to perform
ontology mapping without any domain expert intervention
using an unsupervised neural approach utilizing metadata of
ontological entities and evaluate the performance of the system
in comparison with state-of-the-art systems.

The work presented in this paper addresses the following
research questions.
(i) Can ontology alignment be achieved using unsupervised
machine learning with graph neural networks instead of the
traditional rule-based approaches?
(ii) Can ontology alignment be done independent of domain
information and without the need for domain expert interven-
tion?
(iii) Can ontology alignment be improved using the meta-
information and structural information of ontologies?

To the best of our knowledge, our study is the f rst to
present a domain-agnostic unsupervised learning approach to
deal with the ontology alignment. Our experiments using our
proposed graph embedding with negative sampling achieves
performance similar to current state-of-the art systems with
the added advantage of being domain-independent and not
requiring human intervention.

Preprint/review version to be published in ICMLA21:
Proceedings of the IEEE International Conference on Machine Learning and Applications, 2021
Jaydeep Chakraborty, Mohamed Ahmed Sherif, Hamada M. Zahera, Srividya Bansal



II. RELATED WORK

Traditional data integration approaches are mainly applica-
ble to relational data models. There are mainly two approaches
used in traditional schema mapping. The first approach is
called global-as-view which requires that the global schema
must be expressed in terms of the data sources. The second
approach is called local-as-view which requires the global
schema has to be specified independently from the sources,
and the relationships between the global schema and the
sources are established by defining every source as a view over
the global schema [3], [4], [5]. As relational data models do
not have semantic information, the traditional data integration
techniques often fail for ontology alignment.

The matching process for ontologies is different compared
to traditional data as an ontology captures semantic
information in the form hierarchical relationships. There
has been lot of research in the area of ontology matching.
Ontology Alignment Evaluation Initiative, i.e., OAEI [6] is
one such initiative. It is a coordinated international initiative
and an annual competition that organizes the evaluation of
different ontology matching systems and provides benchmark
evaluation. There are a number of different proposed
approaches available with good results. However, these
approaches have their advantages and disadvantages.

Non-Learning based methods: There are number of
techniques such as syntactic-based, structural-based, semantic-
based, extensional-based that have been explored over time.
For example, tools like LIMES [7], AGREEMENTMAKER
LIGHT [8], and COMA++ [1] use different type of distance
metrics such as Hamming, Levenshtein and Jaro-Winkler
distances for the ontology alignment process. In structural-
based approach, external linguistic resources like WordNet [9]
(a machine-readable dictionary) is used for finding similarity
between entities. Different distance metrics such as wu-palmer
metric [10], resnik similarity [11], lin similarity [12], jiang-
conrath distance [13] are used to calculate the path similarity
between entities. On the other hand, there are semantic-based
approaches like SAT, description logic, rule-based inference,
Propositional Horn satisfiability. Most of the state-of-the-art
tools such as S-Match [14], CTXMATCH/CTXMATCH2
[15], BLOOMS/BLOOMS+ [16], LogMap/LogMap2 [17],
Paris [18] use rule-based or logic-based approach extensively.
Some of these approaches use an extensional-based approach,
i.e., use instance or individual representations to find similarity
between two classes/concepts. GLUE [2], RiMOM [19], and
ObjectCoref [20] are such tools using extensional-based
approaches for ontology alignment. These approaches are
customized based on knowledge of a particular domain with
the use of specialized vocabularies or a domain-expert and
cannot be used across multiple domains.

Learning-based methods: Besides traditional and rule-based
approaches, nowadays many are exploring learning-based
approaches in ontology alignment. Tools like Context and

TABLE I: Challenges with Ontology Alignment

Mouse Ontology Human Ontology

Case-A lunate Lunate_Bone
(partially different) spleen periarteriolar Periarteriolar_Lymphoid

lymphatic sheath _Sheath
lumbar vertebra 3 L3_Vertebra
trochlear IV nerve Trochlear_Nerve
hair shaft Shaft_of_the_Hair

Case-B cranium Skull
(completely
different)

external naris Nostril

Inference-based alignER (CIDER) [21], GLUE [2], Yet An-
other Matcher (YAM++) [22], DL-Learner [23] systems use
heuristic learning methods. On the other hand, approaches
like Zhang et al. [24], OntoEmma [25], DeepFCA [26], and
VeeAlign [27] use pre-trained embedding for ontology entities
in neural network. On the other hand, Chen et al. [28]
uses a semi-supervised approach to the traditional base tool
LogMap to enhance the ontology alignment process. Wang
et al. [29] propose a graph convolution network to embed
entities from different languages into a unified vector space,
where equivalent entities are expected to be as close as
possible. These approaches use semi-supervised approaches
with labeling done with the help of a domain expert. In
contrast, the approach presented in this paper is a domain-
agnostic and completely unsupervised approach that takes
advantage of the hierarchical nature of the meta-data about
the various concepts described in the ontology through graph
embedding and presents performance results in comparison
with other existing systems.

III. APPROACH

The lack of ground truth is a massive problem in the
evaluation of different ontology alignment systems. The dif-
ferences in literal expressions of the ontological entities make
the ontology alignment unpredictable. String-based approaches
fail to calculate correct similarity in ontology alignment.
Entity names that are syntactically similar could have different
naming conventions used, e.g., “E-mail” vs. “email”, “url”
vs “U.R.L.”. Entities could be synonyms. e.g., “Participant”
vs. “Attendee” or similar in meaning in a specific domain,
e.g., “contribution” vs. “paper” in the conference organization
domain. The representation could be in abbreviated forms. e.g.,
“PC Member” vs.“ProgramCommitteeMember”, or acronym,
e.g., “WWW” vs “World Wide Web”. Entity names that are
tokenizable and their tokens (or only a part of tokens) are syn-
tactic or meaning similar. e.g., “hasSurname” vs. “has the last
name”, “Camera-ready contribution” vs “Final manuscript”.
They could be partially syntactically similar. e.g., “email” vs
“hasEmail”, or “Regular author” vs. “author”.

Table I shows different challenges in the ontology alignment
process with the examples from the Anatomy dataset [30].
Case-A contains human and mouse anatomy classes/concepts
which are partially different. For example, "lunate" from
mouse ontology and "Lunate_Bone" from the human ontology



are presenting the same body part but their label is partially
different syntactically. Another example is "lumbar vertebra 3"
and "L3_Vertebra". In this example "L" is an abbreviation of
"lumbar". For the Case-B, the ontological classes/concepts are
completely different syntactically. Here "cranium" and "skull"
are semantically synonymous but syntactically completely
different.

Our proposed approach is a combination of syntactic and
structural learning-based methods that exploits the meta-
information of the ontological classes (hierarchy, parent-child
classes, restrictions, equivalent class, and disjoint class). We
use a pre-trained embedding model to generate a meaningful
vector for all ontological concepts. These vectors can then be
fed into a graph neural network to train a model and use it
for prediction.

A. Graph Embedding

We deployed a graph embedding approach that transforms
nodes and edges into a vector space that encapsulates the
structure of a graph and information about neighboring nodes.
Our goal is compare an entity in a given source ontology to
entities in a given target ontology in order to identify entities
that are similar. In an unsupervised learning-based approach,
the goal is to use the structure of the source ontology and come
up with an embedding that is later compared for similarity with
entities of a destination ontology. In our study, three different
graph neural network methods are explored. The first graph
neural method is the Graph Convolution Network (GCN) that
uses general neural learning concepts to graph like data and
enhance the embedding of each node by a message passing
scheme. In the paper [31], the authors describe a scalable
approach for semi-supervised learning on graph-structured
data that is based on an efficient variant of convolutional neural
networks which operate directly on graphs. The GCN layer
defined in [31] is described in equation 1, where x

(`+1)
v is

the node features of all nodes v ∈ V in a graph G = (V, E).
W(`+1) denotes a trainable weight matrix and cw,v refers to
a fixed normalization coefficient for each edge. In GCN, the
weights of edges are defined explicitly.

x(`+1)
v = W(`+1)

∑
w∈N (v)∪{v}

1

cw,v
· x(`)

w (1)

The second graph neural method explored is the Graph
Attention Network (GAT) [32] that determines the weights of
edges of the graph implicitly. GAT employs self attention over
the node features, where the embeddings from the neighbors
are aggregated together and scaled by the attention layer.
Every neighbor node of a node sends its own embedding
of attentional coefficients. The attentional coefficients per
each attention head are used to compute a separate linear
combination of neighbours’ features or embedding. GAT ag-
gregates all the combinations by concatenation or averaging
to obtain the next level features of the node. Both GCN and
GAT work well in the transductive and inductive approaches
that involve observing specific labeled training cases. The

challenge we are addressing is ontology alignment in the
absence of labeled data and therefore the learning has to be
completely unsupervised.

As an alternative, the third approach is Graph embed-
ding with negative sampling is explored. PyTorch-BigGraph
(PBG) [33] is a distributed system for learning graph em-
beddings for large graphs. PBG operates on graphs with
vertices having multiple edges. Here the vertices are called
entities and the edges are the relation between source and
destination entity. A multi-relation graph is a directed graph
G = (V,R,E) where V are the nodes or entities, R is a set
of relations, and E is a set of edges. In the graph, a generic
element e = (s, r, d) where s is the source node/entity, d is
the destination node/entity, and r is the relation between s
and d. Here, s, d ∈ V and r ∈ R. Equation 2 is the scoring
function used in PBG, where θs is the source entity, θd is
the destination entity, and θr is the relation between them.
gs(θs, θr) is the "complex-diagonal" operator between θs and
θr. On the other hand, gd(θd, θr) is the "complex-diagonal"
operator between θd and θr. PBG tries to maximize the scoring
function f(θs, θr, θd) for any (s, r, d) ∈ E and minimizes it
for (s, r, d) 6∈ E.

f(θs, θr, θd) = sim(gs(θs, θr), gd(θd, θr)) (2)

The learning principle of the PyTorch-BigGraph (PBG) is
to find embeddings for the entities so the distance between the
neighbor nodes and the entity should be closer. On the other
hand, the distance between non-neighbor nodes and the entity
should be longer. The edges of the input graph data given to
the PBG model are treated as positive edges. It produces a set
of negative edges for each positive edge. It produces negative
samples for a given positive edge by a corrupted version of
the entity on one side and keeping the other side intact [34].
PBG uses different ways to sample negative edges. For our
experiment, "all negative" is used to generate the negative
samples. "all negative" sampling method creates a negative
edge/relation between the source and the destination node.
Let’s say r is a positive edge between two entities s and d.
For each such positive edge (s, r, d) there will be a negative
edge (s′, r, d) between s′ and d where s′ is of the same entity
type as s. Besides this, there will be another negative edge
(s, r, d′) between s and d′ where d′ is of the same entity type
as d.

Equation 3 is the loss (L) function used in PBG. The main
idea of PBG is to maximize the scores of positive edges and
minimize the scores of negative edges. Here, G is a list of
edges. S′

e is the set of negative edges for every positive edge.
f(e) is the score of a positive edge and f(e′) is the score of
a negative edge. λ is the regularization parameter.

L =
∑
e∈G

∑
e′∈S′

e

max(f(e)− f(e′) + λ, 0)

S′
e = (s′, r, d)|s′ ∈ V ∪ (s, r, d′)|d′ ∈ V

(3)

PBG updates the embeddings and related parameters in
minibatch stochastic gradient descent (SGD). It uses an Ada-



grad optimizer and sums the accumulated gradient over each
embedding vector to reduce the memory usage on large
graphs [35].

The main motivation of graph embedding with negative
sampling is generating embedding of nodes that uses its
neighbor nodes’ information. This approach does not need
any labeled data for the training and we can fit our unlabeled
graph-structured data easily. In the following section, the graph
embedding with negative sampling approach is discussed in
detail.

B. Graph Embedding with negative sampling Approach

In this section we present an Ontology alignment system
called ONTOCONNECT that uses graph embedding with nega-
tive sampling. The overall ONTOCONNECT alignment process
with graph neural network can be divided into two main
processes. The first one is generating the embedding of the
source ontology classes/concepts and the target ontology class-
es/concepts. The second one is calculating the similarity score
between source classes/concepts for each target class/concept
to form correspondences.

The strategy is to train a graph neural network model in a
stochastic manner with each meta-information of source and
target classes/concepts. The generation of embedding of the
source and target ontology classes/concepts is described in
Algorithm 1 shown below. The first step in the algorithm
is to extract the meta-information for each source class/con-
cept. The function “getMetaInformation” is responsible for
collecting the meta-information for a class from the ontology.
The function “getVector” retrieves the word-vector for each
source class/concept from a pre-trained model. The function
“getEmbed” trains the graph neural model for each class/con-
cept and encodes each class/concept into an embedding which
captures the meta information or structural information of that
particular class/concept.

Algorithm 2 shows the algorithm for calculating the simi-
larity between the source and target ontology classes/concepts.
The method “getVector” retrieves the word-vector for a class/-
concept for both source and target ontology. Now, for a target
class/concept, we are calculating similarity for each source
ontology class/concept. The word similarity (Wordsimi,j ) is

the cosine similarity between the target and source ontology
class/concept word-vectors retrieved from a pre-trained model
(described in the next section). On the other hand, meta-
similarity (Metasimi,j

) is the cosine similarity between the
target and source ontology class/concept graph-embedding
from the graph neural network model. Next, a weighted com-
bined similarity of the word-similarity (Wordsimi,j ) and meta-
similarity (Metasimi,j ) is calculated for each pair of the target
and source ontology classes/concepts. We are considering the
source ontology class/concept as a similar class/concept with
the maximum combined similarity (Cmbsimi

). The correspon-
dence list is updated with the most similar class/concept pair
having the highest similarity score. In the end, it returns the
correspondence list.

C. Pre-trained Word embedding model

We explored and experimented with a number of differ-
ent word embedding models to identify the right fit for
ONTOCONNECT. The first word embedding technique is
Word2vec [36] that belongs to a family of model architec-
tures and optimizations that used to learn word embeddings
from large datasets. In Word2vec, there are two novel model
architectures that compute continuous vector representations
of words from a very large corpus. The two model architec-
tures are the continuous bag-of-words model (CBOW) and
the continuous skip-gram model. In the continuous bag-of-
words model, the current word is predicted from a window of
surrounding context words on the other hand, in the continuous



skip-gram model, the model predicts the surrounding window
of context words for the current word. Apart from Word2vec,
GloVe [37] is another technique to obtain the word embedding.
GloVe or Global Vectors for Word Representation uses train-
ing on aggregated global word-word co-occurrence statistics
from a corpus. It encodes the co-occurrence probability ratio
between two words. Both Word2vec and GloVe don’t work
well for corpus with new or unseen words. Our approach used
unsupervised learning that is domain-agnostic and therefore
needs the ability to handle unseen words.

In our experiments, we have also explored BERT or Bidirec-
tional Encoder Representations from Transformer [38]. BERT
is based on Transformers, a deep learning model in which
every output element is connected to every input element,
and the weights between them are dynamically calculated
based upon their connection. It is designed to read or encode
sentences from both directions left-to-right and right-to-left.
The main difference between BERT and Word2vec is BERT
can produce different word representations for the same word
in different sentences. For example, given two sentences: “The
man was accused of robbing a bank.” and “The man went
fishing by the bank of the river.” In both sentences, Word2vec
produces the same word embedding for the word “bank”
while BERT generates different embeddings as the context
is different for the word “bank” in those two sentences. This
model is suitable for corpus with sentences where the position
of the word in a sentence and its context in comparison with
other words in the sentence is important. However, for the
ontology alignment problem we are comparing ontological
terms that are typically words or phrases and not sentences.

Another pre-trained embedding models that is currently
popular is FastText [39] developed by Facebook’s AI Research
(FAIR) lab. This embedding model uses the skip-gram tech-
nique, where each word is considered as a bag of n-gram
characters. It learns the representations for character n-grams
and represents the words as the sum of the n-gram vectors. The
main advantage of the model provided by FastText is that it can
generate a meaningful vector for a word that is not present in
its dictionary. In our approach, we used FastText model trained
on Wikipedia 2017, UMBC WebBase corpus, and statmt.org
news data set, which generates a 300-dimension vector for
each word. The main reason behind using FastText within
ONTOCONNECT is that it can generate meaningful vectors of
the ontology class/concept even when the word is not present
in the model.

D. ONTOCONNECT System Workflow

Our proposed ontology alignment system, ONTOCONNECT,
consists of two main tasks: (1) Generating the embedding for
each class/concept in the source and target ontology, and (2)
Calculating the similarity score between the source and target
ontology class from the embedding and generate correspon-
dence list. Figure 1 represents a workflow of the proposed
ONTOCONNECT system using Graph Neural Network.

In the Graph Neural Network, in the first step, OWL API
is used to extract the meta-information of each class from the

Fig. 1: Project Flow of ONTOCONNECT - Graph Neural
Network

source ontology and target ontology. In the next step, data pre-
processing techniques such as Lemmatisation and stop-word
removal are used on the labels of the extracted class. After that,
we have used a pre-trained model FastText [39] to generate
vectors from each source and target ontological classes. Each
class of the source and target and its meta-information are fed
to the Graph Neural network which produces entity embedding
for each entity. In the next phase, both word-similarity and
meta-similarity are calculated for each pair of classes of source
and target ontologies. Based on the similarity score, the list of
correspondence is generated.

E. Graph Entity Embedding

In this step, the context of classes is used to make its vector
representation semantically richer. From the ontology match-
ing model, a class can have attributes like Parent Classes, Child
Classes, Equivalent Classes, Disjoint Classes, and Restrictions.
Figure 2 shows an example of training data which will be used
in training the Graph Neural Network. Assume the class is
“c1”. “c1” has meta information “parent class”, “child class”,
“equivalent class”, “disjoint class” and “restriction class”. The
parent class of “c1” is “pc1c1”. “cc1c1”, “cc2c1”, “ec1c1”,
“dc1c1”, “rc′1c1”, “rc′′1c1” are child classes, equivalent class,
disjoint class and restriction classes of “c1” respectively. In
this process, the class of source and target ontology are
encoded into vector or embedding which incorporates its meta-
information.

F. Correspondence Generation

Given two ontologies where O is the source ontology and
O′ is the target ontology, an alignment between these two



Fig. 2: Graph structure of a sample ontology class and High
level representation of Graph Embedding process

ontologies is a set of correspondences < e, e′, r, n >. Here,
e ⊆ O is an entity from source ontology, and e ⊆ O′ is an
entity from target ontology. r is the relationship between e
and e′. In our project relationship will be equivalence ,i.e., =.

To generate the correspondence, two similarity values are
calculated. The first one is word similarity (Wordsim) and the
second one is the meta similarity (Metasim). In our experi-
ment, we have calculated a combined similarity (Cmbsim) by
the harmonic mean of the word and meta similarity.

The word similarity (Wordsim) is the cosine distance be-
tween the source and target class/concept vectors. Equation 4
shows the cosine similarity measurement between two vectors
−→s and

−→
t , which is the cosine of the angle projected in

a multi-dimensional (d) space. In our experiment, the time
complexity of this step is O(mn), where m is the number of
source ontology classes and n is the number of target ontology
classes.

cos(−→s ,−→t ) =
−→s · −→t
‖−→s ‖‖−→t ‖

=

∑d
i=1 siti√∑d

i=1 (si)
2

√∑d
i=1 (ti)

2
(4)

The meta similarity (Metasim) is the cosine distance be-
tween the source and target class/concept graph embedding.
Equation 5 shows the cosine similarity measurement between
two vectors −→sg and

−→
tg , which is the cosine of the angle

projected in a multi-dimensional (d) space. In our experiment,
the time complexity of this step is O(mn), where m is the
number of source ontology classes and n is the number of
target ontology classes.

cos(−→sg ,
−→
tg ) =

−→sg ·
−→
tg

‖−→sg‖‖
−→
tg ‖

=

∑d
i=1 sgitgi√∑d

i=1 (sgi)
2

√∑d
i=1 (tgi)

2

(5)

IV. EXPERIMENTAL STUDY

Evaluation Methodology & Metrics: For evaluation, we have
conducted an intrinsic evaluation that automatically compares

computed similar concepts with gold standard provided by the
Ontology Alignment and Evaluation Initiative (OAEI). In or-
der to evaluate the performance of the ontology matching sys-
tem, we have used standard precision and recall measurement
[40]. Given two ontologies where O is the source ontology
and O′ is the target ontology, an alignment between these two
ontologies is a set of correspondences, i.e., < e, e′, r, n >
where, e is an entity from source ontology (e ⊆ O) and e′ is
an entity from target ontology (e ⊆ O′). r is the relationship
between e and e′. In our work, relationship will be equivalence,
i.e., =. n is the similarity value or confidence value [0..1] of the
relationship r between e and e′. The output alignment of the
ontology matching process is denoted by A. The gold copy
of the reference alignment is denoted by R. The alignment
produced is evaluated in terms of precision, recall, and F-
measure.

Experimental Setup: The ONTOCONNECT system was tested
on a Unix system with 16 GB RAM and 100GB of disk space.
Java 1.8, Python 3.6, PyTorch v1.7, PyTorch-BigGraph (PBG)
are used to develop the ontology alignment system. The source
code and details of dependencies and libraries can be find at
this location 1.

Results & Findings: We have tested ONTOCONNECT(Graph
Neural Network) on OAEI Anatomy [30] dataset. We have
varied parameters, i.e., similarity threshold and class vector
dimension. For each combination of parameters the precision,
recall, and F-measure are calculated for top-k predictions of
target class where k=1,3,5 with 100, 200, 300 dimension word-
vector. Table II shows the outcome for each combination of
parameters.

The average precision, recall and F-measure across all the
class/concept vector dimensions (100, 200, 300) and the num-
ber of target class predictions (k=1,3,5) are presented in Figure
3 (a). It shows the change in precision, recall, and F-measure of
the system with different similarity values. It can be observed
that the precision increases whereas the recall decreases with
the increase in the similarity threshold value. This is expected
as a higher similarity threshold causes the system to return
a lower number of correspondences compared to the number
of existing correspondences in the reference alignment. From
the result analysis, it can be noted that with a 0.97 similarity
threshold value, the proposed ontology alignment system using
Graph embedding with negative sampling approach performs
best with the highest average F-measure value of 81.0%.

Similarly, Figure 3 (b) shows the change in the average
precision, recall, and F-measure values with different lengths
of class vector dimensions across all the similarity threshold
values and the top-k (k = 1, 2, 3) predicted target classes.
It can be observed that only a minuscule change in the
performance of the ontology alignment system occurs with the
increase of the class vector dimensions. Thus, it can be noted
that the performance of the proposed system stays almost
invariant towards the change in class vector length.

1https://drive.google.com/drive/folders/1RtOFbZiT9aZBa51v8G3Df4G1GZHdR3NS



TABLE II: Experimental results of the ONTOCONNECT for
varying similarity thresholds (δ): Precision (P), Recall (R),
and F-measure (F) values for class/concept vector dimensions
= 100, 200, 300 and number of predictions k = 1, 3, 5

100-dim. 200-dim. 300-dim.

δ P R F P R F P R F

Top-1

0.99 97.4 67.4 79.6 97.9 67.0 79.5 97.9 66.9 79.5
0.98 93.5 71.0 80.7 96.7 69.2 80.6 97.3 68.3 80.3
0.97 85.3 73.0 78.7 93.0 71.5 80.8 95.3 70.5 81.0
0.96 75.1 75.2 75.1 88.0 73.3 80 91.6 72.1 80.7
0.95 67.8 76.6 71.9 80.8 75.0 77.7 86.8 73.6 79.7
0.94 61.9 77.5 68.8 74.6 76.4 75.5 81.5 75.0 78.1
0.93 57.8 78.6 66.6 69.2 77.3 73.0 75.4 76.4 75.9
0.92 55.3 79.2 65.1 64.8 78.6 71.1 71.3 77.4 74.2
0.91 53.2 80.4 64.1 61.2 79.4 69.0 67.1 78.3 72.3
0.90 51.2 81.0 62.8 58.1 80.1 67.3 64.1 78.9 70.8

Top-3

0.99 97.6 67.6 79.9 98.1 67.1 79.7 98.2 67.1 79.7
0.98 94.0 71.4 81.1 96.9 69.3 80.8 97.6 68.5 80.5
0.97 86.2 73.7 79.5 93.4 71.8 81.2 95.6 70.6 81.2
0.96 76.4 76.5 76.6 88.5 73.7 80.5 92.0 72.4 81.0
0.95 69.7 78.7 73.9 81.5 75.7 78.4 87.3 74.0 80.2
0.94 63.7 79.9 70.9 75.8 77.6 76.7 82.1 75.6 78.7
0.93 59.8 81.3 68.9 70.7 79.0 74.6 76.4 77.4 76.9
0.92 57.4 82.2 67.6 66.5 80.7 72.9 72.5 78.7 75.5
0.91 55.4 83.6 66.7 62.8 81.6 70.9 68.7 80.2 74.0
0.90 53.4 84.4 65.4 59.8 82.5 69.4 65.8 81.1 72.6

Top-5

0.99 97.6 67.6 79.9 98.1 67.1 79.7 98.2 67.1 79.7
0.98 94.0 71.4 81.1 96.9 69.3 80.8 97.6 68.5 80.5
0.97 86.3 73.8 79.6 93.4 71.8 81.2 95.5 70.7 81.2
0.96 76.6 76.7 76.7 88.5 73.7 80.5 92.0 72.4 81.0
0.95 69.9 79.0 74.2 81.5 75.7 78.4 87.3 74.0 80.2
0.94 64.0 80.2 71.2 76.0 77.9 76.9 82.2 75.7 78.8
0.93 60.3 82.0 69.5 70.9 79.3 74.9 76.6 77.6 77.1
0.92 57.9 83 68.2 66.9 81.2 73.4 72.8 79.0 75.8
0.91 56.2 84.8 67.6 63.2 82.1 71.4 69.0 80.5 74.3
0.90 54.2 85.6 66.4 60.4 83.2 70.0 66.2 81.5 73.0

The average precision, recall, and F-measure of the ontology
alignment system with different values of k in the top-k
predicted target class across all the class vector dimensions
and the similarity threshold values are presented in Figure 3
(c). The figure shows that there is only a minuscule change
in the performance of the ontology alignment system with the
increase of the number of target class predictions. Therefore,
our tool may be used as an autonomous tool (i.e., without
any human intervention) or an assistive tool to help a domain
expert by reducing the search space for ontology alignment in
any domain. In comparison with systems presented in OAEI
2020 Anatomy Challenge [6], our proposed system has results2

comparable to other domain-specific systems in spite of not
using any domain knowledge to produce alignments.

V. CONCLUSION

In this study, the ONTOCONNECT system is presented
that uses a generic and domain-independent approach to
align multiple ontologies thereby eliminating cumbersome and
error-prone manual work. A non-linear neural network (graph
neural network) is used for feature extraction from the source
ontology and is independent of the domain knowledge. There

2http://oaei.ontologymatching.org/2020/results/anatomy/index.html

(a) Change in precision, recall, F-measure of ONTOCONNECT
with increasing similarity threshold

(b) Performance of ONTOCONNECT with Graph Neural Net-
work for different class/concept vector dimensions (100d, 200d,
300d)

(c) Performance of ONTOCONNECT with Graph Neural Net-
work for top-k predictions with k = 1, 3, 5

Fig. 3: ONTOCONNECT Experimental results on Anatomy
dataset

are numerous Neural network approaches for unsupervised
machine learning. Our study shows the graph embedding
with negative sampling is well suited for domain-agnostic
ontology alignment in unsupervised setting. The other key
findings are that a pre-trained word embedding model such
as FastText is suitable for vector generation. ONTOCONNECT
system is comparable with other state-of-the-art systems (that
work for domain-specific data) that competed in the OAEI
2020 challenge and has a high precision without the use of
any domain-specific knowledge. In future, ONTOCONNECT
will be tested on datasets like Large Bio Medical ontology [41]



that has large number of instances and a complex ontological
structure. It will be evaluated in a future OAEI challenge. Fur-
ther refinement of word vectors will be explored through the
use of synonym and antonym relationships to learn semantic
representation of words through the use of thesaurus such as
Wordnet.
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