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Abstract. In this paper, we describe our submission to the semantic web chal-
lenge on mining the product data in websites (MWPD2020). The dataset provided
19K instances of product data collected from various websites. The task is to pre-
dict the category, defined as hierarchical taxonomy as provided in the training
set, of the product titles in the test set. In our approach, we present a simple
BERT-based model (dubbed PrRoBERT) for classifying product data into one or
more categories. We trained our system on product title and descriptions to learn
semantic representation. The participated systems are evaluated using weighted
precision, recall and F1-score.

1 Introduction

Recently, many e-commerce websites are embedding structured product data into their
content; according to the statistics from web data common', there are 37% of web pages
or 30% of websites contain structured data. Consequently, these structured data can be
used for product data integration and optimize product search service [8]. In addition,
product categorization becomes essential in providing personalized recommendations
and targeting advertisements. However, classifying product data is a challenging task
due to the intrinsic noisy nature of the product labels, the size of modern e-commerce
catalogues. In addition, each website has its a different structure of their product data,
we refer to it as site-specific annotation [5, 1]. For example, one product like a T-shirt
can have different annotation labels in different websites (College>T-Shirts,Clothing
>Tops>Shirts,Clothing accessories>Clothing>Tops).

To train robust models in these cases, we need large amount of training data with
balanced classes. Therefore, automated product classification is need to further organize
these data semantically into a universal categorization system regardless of their site-
specific annotation.

In this paper, we explain our method to solve this problem through the semantic web
challenge on mining HTML-embedded product data (MWPD2020?). The challenge
aims to mining product data embedded into websites content. Previous studies [3, 6]
focused on categorizing product data on a single e-commerce website and sensitive to
it’s site-specific content. In this challenge, the goal is to predict each product’s cate-
gories based on datasets from different websites. We address this task as a multi-label

'http://webdatacommons.org/structureddata/2018-12/stats/stats.html
Zhttps://ir-ischool-uos.github.io/mwpd/



classification problem, where each product can be assigned more than one class (i.e.,
label or category) simultaneous. In particular, we propose a BERT-based neural model
to categorize a product based on it’s meta-data such as product name, description or
site-specific annotation.

The latest development in language models (e.g., BERT) have shown impressive
gains in a wide variety of natural language tasks ranging from sentence classification
to sequence labeling. In our approach, we employ a fine-tune BERT model to represent
product data as low-dimensional contextualized vector. We feed our model with product
name and description to capture semantic representation for product information. We
summarize our main contributions in this paper as follows:

— We presented PRoBERT, a BERT-based model for multi-label product classification
based on product name and description.

— We conducted different experiments to benchmark the impact of different embed-
dings approaches. The result suggests that our method can be a good baseline with
contextualized embedding (BERT) for product classification.

The rest of this paper is organized as follows: We first explore the dataset used in the
challenge in section 2. Then, we present our proposed approach and official results in
sections 3 and 4 respectively. In section 5, we conclude the paper with some discussion
about future work.

2 Dataset

The dataset is provided in the JSON format and divided into three subsets: (1) train-
ing contains approximately 10k product instances, (2) validation contains 3k instances
and (3) 3k instances used for evaluated and testing the submitted systems. The product
attributes in the dataset as follows:

— ID: refers to the product identification number.

— Name: is the product name (can be an empty string if unavailable).

— Description: is the description of product (truncated to a maximum of 5k characters.
can be an empty string if unavailable).

— CategoryText: is the website-specific category for a product, or breadcrum (an
empty string if unavailable).

— URL.: refers to the original web page URL of the product.

Each product may be assigned one or more from the following classification levels,
corresponding to the three GS1 GPC classification levels:

— 1vl1: the level 1 GS1 GPC classification.
— 1v12: the level 2 GS1 GPC classification.
— 1v13: the level 3 GS1 GPC classification.



3 Approach

In this section, we present PROBERT, our simple BERT-based model for multi-label
product classification. BERT is a pre-trained transformer network [2], which set for
various NLP tasks new state-of-the-art results including text classification [7] and natu-
ral language understanding [4]. When we adopt BERT to NLP tasks in a target domain,
a proper fine-tuning strategy, where a task-specific layer is added on top of BERT ar-
chitecture. In this work, we leverage the BERT-Base pre-trained model with these de-
tails: Uncased: 12-layer, 768-hidden, 12-heads, 110M parameters. Then, we add a fully-
connected layer (i.e Dense). For multilabel classification purpose, we use binary-cross-
entropy as in Eq.1 loss function and sigmoid activation function to replace the original
softmax. All hyper-parameters remain as default values, except we set max_seq_length
as 30 words per input sequence.

L= —% ; [yilog(H(x))) + (1 = y;) log(1 = H(x;))] )]

where y; and H(x;) denote ground-truth and predicted categories for each product. x;
refers to the feature vector obtained from the BERT model.
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Fig. 1: PROBERT: A Fine-tuned BERT Model for Multi-label Product Categorization.



The general architecture of BERT is shown in Figure 1. We use a combined text of
product titles and descriptions as Input features. Then, we do standard preprocessing
which lower-casing and lemmatization of text. Then, a special preprocessing is per-
formed for BERT processing; first inserting two special tokens. (CLS) is appended to
the beginning of the text, another special token (SEP) is inserted after each sentence as
an indicator of sentence boundary. The modified text is then represented as a sequence
of tokens X = [wy,w,...,w,]. Each token w; is assigned three kinds of embeddings:
token embedding, segmentation embedding and position embedding. These three em-
beddings are summed to a single input vector (C), which captures the overall meaning
of the input.

4 Experiments

4.1 Evaluation

The evaluation metrics used in this challenge are precision, recall and F1 to benchmark
the performance of submitted systems. F1-score in Eq. 2 is the harmonic mean of pre-
cision and recall scores. The organizers used the macro-averaged F1 score to compare
and rank the participating systems.

Fi=2x precision X recall @)

precision + recall

4.2 Results

The organizers provided an overview of the performance of baselines with different
embedding approaches (FastText, CBOW and Skipgram) on the validation dataset. As
shown in Table 1, the baselines are evaluated based on both weighted-average and
macro-average Fl-scores. The experimental results are promising and shows that the
systems based on embedding methods can achieve good F1-scores. Hence, we proposed
our approach that employs the state-of-art contextualized embedding such as BERT to
benchmark the system performance.

Table 1: Experimental Results

Model Weighted Avg. P, R, F1 Macro Avg. P, R, F1

Baseline 85.553 84.167 84.255 66.164 60.709 61.542
Baseline+embeddings(CBOW) 86.498 86.000 85.734 70.639 63.925 65.551
Baseline+embeddings(Skipgram) 85.453 84.911 84.575 70.574 62.740 64.693

The results are reported in terms of three evaluation metrics: (precision, recall and
F1-score). Fl-score is the score ultimately used to compare and rank the participating
systems. Table 2 shows the results of five participating teams and the baseline (Fast-
Text). Our team (DICE_UPB) submitted one system based on fine-tuning BERT model.



The performance is close to the baseline system in terms of F1 score (81.84% com-
pared to baseline 84.26%). However, we found that feature engineering needs a special
preprocessing rather than the standard preprocessing, due to the nature of product data
such as: highly imbalanced in labels as shown in Figures 2a and 2b; noisiness in the de-
scriptions. We suggest to perform the same preprocessing as [8] and change our strategy
of fine-tuning BERT model to address these challenges properly.

Table 2: System Evaluation Results. R2 refers to the systems which participated in the
second round. Best Results in Bold

System Precision Recall F1-score
Rhinobird 89.01 89.04 88.62
Rhinobird (R2) 88.97 88.72 88.43
Team ISI 87.16 86.85 86.54
ASVinSpace 86.96 86.30 86.10
Megagon 84.98 84.98 84.98
Baseline FastText 85.55 84.17 84.26
DICE_UPB 85.30 81.49 81.84

5 Conclusion and Future Work

In this paper, we described our approach (PrRoBERT) to classify product data based on
micro annotations. Our approach leverage a simple BERT model that represents a single
feature vector from product’s title and description, then predicts it’s categories. Our ex-
periments suggest that PROBERT is a good baseline to benchmark the task of automatic
products classification. In the future, we plan to re-evaluate our approach with different
preprocessing and fine-tuning strategies. Also, we will investigate more deep models
with different architectures (e.g., graph-based Neural Model).
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