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Abstract. The number and size of RDF knowledge graphs grows continuously.
Efficient storage solutions for these graphs are indispensable for their use in real
applications. We present such a storage solution dubbed TENTRIS. Our solu-
tion represents RDF knowledge graphs as sparse order-3 tensors using a novel
data structure, which we dub hypertrie. It then uses tensor algebra to carry out
SPARQL queries by mapping SPARQL operations to Einstein summation. By
being able to compute Einstein summations efficiently, TENTRIS outperforms
the commercial and open-source RDF storage solutions evaluated in our exper-
iments by at least 1.8 times with respect to the average number of queries it
can serve per second on three datasets of up to 1 billion triples. Our code, eval-
uation setup, results, supplementary material and the datasets are provided at
https://tentris.dice-research.org/iswc2020.

1 Introduction

A constantly increasing amount of data is published as knowledge graphs. Over 149 bil-
lion facts are published in the 2973 datasets of the Linked Open Data (LOD) Cloud [9],
including large datasets such as UniProt4 (55.3 billion facts) and LinkedTCGA [22]
(20.4 billion facts). Even larger knowledge graphs are available in multinational or-
ganisations, including Google, Microsoft, Uber and LinkedIn [18]. Proposing scalable
solutions for storing and querying such massive amount of data is of central importance
for the further uptake of knowledge graphs. This has motivated the development of a
large number of solutions for their storage and querying [8,24,10,19,4,28,12,27,15,29].

We present TENTRIS, a new in-memory triple store for the efficient storage and
querying of RDF data. Two innovations are at the core of our triple store. First, TEN-
TRIS represents RDF data as sparse order-3 tensors using a novel in-memory tensor
data structure dubbed hypertrie, which we also introduce in this paper. This data struc-
ture facilitates the representation of SPARQL queries as (sequences of) operations on
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tensors. A hypertrie combines multiple indexes into a single data structure, thus elimi-
nating some of the redundancies of solutions based on multiple indexes (see, e.g., [15]).
As a result, TENTRIS can store whole knowledge graphs and corresponding indexes
into a single unified data structure.

Our second innovation lies in the way we process SPARQL5 queries: To query the
RDF data stored in TENTRIS, SPARQL queries are mapped to Einstein Summations.
As a result, query optimization is delegated to the implementation of an Einstein sum-
mation operator for hypertries. Since the proposed tensor data structure offers precise
statistics, the order for tensor operations is computed online, thus further speeding up
the query execution.

The rest of the paper is organized as follows: Section 2 gives an overview of related
work. In Section 3 notations are defined and backgrounds on tensors are provided. In
Section 4 the mapping of RDF graphs to tensors is defined and in Section 5 we introduce
our new tensor data structure. In Section 6 the querying approach is described. The
evaluation is presented in Section 7, and in Section 8 we conclude and look at future
prospects. Examples for definitions and concepts are provided throughout the paper.
For an extended, comprehensive example, see the supplementary material.

2 Related Work

Several commercial and open-source triple stores have been developed over recent years
and used in a number of applications. In the following, we briefly introduce the most
commonly used triple stores that are documented and freely available for benchmark-
ing. We focus on these triple stores because they are candidates for comparison with
our approach. We do not consider distributed solutions (see [1] for an overview), as
a distributed version of TENTRIS will be the subject of future work. Throughout our
presentation of these approaches, we sketch the type of indexes they use for storing and
querying RDF, as this is one of the key differences across triple stores.6

RDF-3X [15] makes extensive use of indexes. This triple store builds indexes for
all full collation orders SPO (Subject, Predicate, Object), SOP, OSP, OPS, PSO, POS,
all aggregated indexes SP, PS, SO, OS, PO, OP and all one-value indexes S, P and O. It
uses a B+-tree as index data structure that is extended by LZ77 compression to reduce
the memory footprint. Virtuoso [8] uses “2 full indexes over RDF quads plus 3 partial
indexes” [8], i.e., PSOG (Predicate, Subject, Object, Graph), POGS, SP, OP and GS.
Apache Jena TDB2 [10] uses three indexes to store the triples in the collation orders
SPO, POS, and OSP. The indexes are loaded via memory mapped files. GraphDB [19]
uses PSO and POS indexes to store RDF statements. BlazeGraph [24] uses B+-trees as

5 At the moment TENTRIS supports the same fragment of SPARQL as [4,27,12,26] which in-
cludes basic graph patterns and projections with or without DISTINCT.

6 Note that indexes for different collation orders are crucial for the performance of triple stores.
They determine which join orders are possible and which triple patterns are cheap to resolve.
However, building indexes comes at a cost: each index takes additional time to build and
update. It also requires additional memory. Consequently, there is always a trade-off between
querying speed on the one hand and memory consumption and maintenance cost on the other
hand.
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data structure for its indexes. Statements are stored in the collation orders SPO, POS,
and OSP. gStore [29] uses a signature-based approach to store RDF graphs and to an-
swer SPARQL queries. An RDF graph is stored in an extended signature tree, called
VS*-tree. Additionally, it generates materialized views to speed up star queries. In con-
trast to most other triple stores, gStore derives signatures from RDF terms instead of
using unique IDs. gStore is a in-memory system, i.e., it holds all data in main memory.

Another in-memory triple store, RDFox [14], uses a triple table with three addi-
tional rows which store linked lists of triples with equal subjects, predicates and object
respectively. The elements of the subjects and objects lists are grouped by predicates.
Indices on the triple table are maintained for collation orders S, P, and O as arrays, and
for collation orders SP, OP and SPO as hashtables.

The idea of using matrices or tensors to build triple stores has been described in
a few publications. BitMat [4], like TENTRIS, uses an order-3 Boolean tensor as an
abstract data structure for an RDF graph. The actual implementation stores the data
in collation orders PSO and POS. The subindexes for SO and OS are stored using
Boolean matrices. Join processing is done using a multi-way join approach. However,
BitMat is unable to answer queries that use variables for predicates in triple patterns,
i.e., SELECT ?p WHERE {a ?p b.}. A similar approach was chosen by the au-
thors of TripleBit [28]. For each predicate, this approach stores an SO and OS index
based on a custom column-compressed matrix implementation. This results in two full
indexes—PSO and POS. In contrast to BitMat, TripleBit supports variables for predi-
cates in triple patterns. A more generic approach is used for MagiQ [12]. The authors
define a mapping of RDF and SPARQL to algebraic structures and operations that may
be implemented with different linear algebra libraries as a backend. The RDF graph is
encoded into a sparse matrix. A statement is represented by using predicates as values
and interpreting the column and row number as subject and object IDs. Basic graph
patterns are translated to general linear algebra operations. The approach does not sup-
port variables for predicates in triple patterns. A similar mapping was also chosen by
the authors of TensorRDF [27] using Mathematica as a backend for executing matrix
operations. All mentioned triple stores except gStore use unique IDs to represent each
resource. They store the mapping in an index for query translation and result serializa-
tion. Further, all of them except gStore apply column-oriented storage.

Like most stores above, TENTRIS adopts the usage of unique IDs for resources and
column-oriented storage. However, it does not use multiple independent indexes or ma-
terialized views. Instead, TENTRIS relies on the novel hypertrie tensor data structure
that unifies multiple indexes into a single data structure. Like gStore and RDFox, it
holds all data in-memory. In contrast to some of the other tensor-based solutions, TEN-
TRIS can process queries which contain unbound predicates.

3 Background

3.1 Notation and Conventions

Let B be the set of Boolean values, i.e., {true, false} and N be the set of the natural
numbers including 0. We map true to 1 and false to 0. The natural numbers from 1 to n
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are shorthanded by In := {i ∈ N | 1 ≤ i ≤ n}. The set of functions {f | f : X → Y }
is denoted Y X or [X→Y ]. The domain of a function f is written as dom (f) and the
target (also called codomain) is denoted by cod (f). A function which maps x1 to y1 and
x2 to y2 is denoted by [x1→ y1, x2→ y2]. Sequences with a fixed order are delimited
by angle brackets like l = 〈a, b, c〉. Their elements are accessible via subscript, e.g.,
l1 = a. Bags are delimited by curly-pipe brackets, e.g., {|a, a, b|}. The number of times
an element e is contained in any bag or sequence C is denoted by count (e, C); for
example, count (a, {|a, a, b|}) = 2. We denote the Cartesian product of S with itself i
times with Si = S × S × . . . S︸ ︷︷ ︸

i

.

3.2 Tensors and Tensor Operations

In this paper, we limit ourselves to tensors that can be represented as finite n-dimensional
arrays.7 An order-n tensor T is defined as a mapping from a finite multi-index K =
K1 × · · · × Kn to some codomain V . We only use multi-indexes with K1 = · · · =
Kn ⊂ N. In addition, we consider exclusively tensors T with B or N as codomain. We
call k ∈ K a key with key parts 〈k1, . . . ,kn〉. Values v in a tensor are accessed in array
style, e.g., T [k] = v.

Example 1. An example of an order-3 tensor T ∈ [(I8)3 → B] is given in Figure 1.
Only those entries given by the points in the figure are set to 1.

Slices. Slicing is an operation on a tensor T that returns a well-defined portion of T
in the form of a lower-order tensor. Slicing is done by means of a slice key s ∈ S :=
K1 ∪ { : } × ··· × Kn ∪ { : } with : /∈ K1, ... ,Kn. When applying s to a tensor T
(denoted T [s]), the dimensions marked with : are kept. A slice key part si 6= : removes
all entries with other key parts at position i and removes Ki from the result’s domain.
The sequence brackets may be omitted from the notation, e.g., T [:, 2, :] for T [〈:, 2, :〉].

Example 2. Let T be the tensor from example 1. The slice T [s] with the slice key s =
〈:, 2, :〉 is an order-2 tensor with 1 at keys 〈1, 3〉, 〈1, 4〉, 〈3, 4〉, 〈3, 5〉, 〈4, 3〉 and 〈4, 5〉.

Definition 1. Assume T , K, V , n, S and s to be defined as above. Let P be the sequence
of positions in s which are set to : . For s = 〈:, 2, :〉, P would be 〈1, 3〉. A sub-multi-
index is defined by K′ :=×i∈P Ki. Keys from the sub-multi-index are mapped to the
original multi-index by ϕs : K

′ → K with

ϕs : k
′ 7→ k with ki =

{
k′j if i = Pj ,
si otherwise.

A slice T ′ = T [s] can now be defined formally as follows: T ′ ∈ V K′ : k′ 7→ T [ϕs(k
′)] .

7 Tensors can be defined in a more general manner than provided herein, see [2] for details.
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Table 1. Example RDF Graph. Resources
are printed alongside their integer IDs. The
integer IDs are enclosed in brackets and are
not part of the resource.

Subject Predicate Object

:e1 (1) foaf:knows (2) :e2 (3)
:e1 (1) foaf:knows (2) :e3 (4)
:e2 (3) foaf:knows (2) :e3 (4)
:e2 (3) foaf:knows (2) :e4 (5)
:e3 (4) foaf:knows (2) :e2 (3)
:e3 (4) foaf:knows (2) :e4 (5)
:e2 (3) rdf:type (6) dbr:Unicorn (7)
:e4 (5) rdf:type (6) dbr:Unicorn (7)

Fig. 1. 3D plot of the tensor that represents the
RDF graph from Table 1. Every 1 is indicated by
a point at the corresponding position. Points are
orthogonally connected to the subject-object-plane
for better readability.

Einstein summation. We define Einstein summation in a manner akin to [13]. Ein-
stein summation is a variable-input operation that makes the combination of multiple
operations on vectors, matrices and tensors in a single expression possible [20,7]. Ein-
stein summation is available in many modern tensor and machine learning frameworks
[26,25,11,13]. It supports, amongst others, inner products, outer products, contractions
and scalar multiplications. “The notation uses [subscript labels] to relate each [dimen-
sion] in the result to the [dimension] in the operands that are combined to produce its
value.” [13, p. 77:3]

Example 3. Consider the tensor T from example 2 and slices T (1) := T [1, 2, :], T (2)[:

, 2, :] and T (3) := T [:, 6, 7]. An exemplary Einstein summation is given byRf ← T
(1)
f ×

T
(2)
f,u × T

(3)
u . The result R is an order-1 tensor, which is calculated as R[f ∈ I8] =∑

u∈I8
T (1)[f ] · T (2)[f, u] · T (3)[u], and results in R = 〈0

1
, 0
2
, 1
3
, 2
4
, 0
5
, 0
6
, 0
7
, 0
8
〉 .

We use Einstein notation expressions on the semiring (N,+, 0, ·, 1) to support bag
semantics for SPARQL results. We also implement set semantics for DISTINCT queries
using (B,∨, 0,∧, 1) as semiring. All corresponding definitions are analogous to those
presented in the paper for bag semantics and are hence not detailed any further.

4 RDF Graphs as Tensors

Our mapping of RDF graphs to order-3 tensors extends the model presented in [17] by
adding a supplementary index, which serves to map undefined variables in SPARQL
solution mappings. By adopting the same representation for RDF graphs and bags of
solution mappings, we ensure that graphs and bags of mappings are compatible and can
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hence conjoint in tensor operations. Informally, the tensor T (g) of an RDF graph g with
α resources is hence an element of [(Iα+1)

3 → B] such that T [i, j, k] = 1 holds iff the
i-th resource of g is connected to the k-th resource of g via the j-th resource (which
must be a predicate) of the same graph. Otherwise, T [i, j, k] = 0.

Example 4. Consider the triples of the RDF graph g′ shown in Table 1. Each RDF term
of g′ is printed alongside an integer identifier that is unique to each term. All entries
shown in Figure 1 are set to 1. All other entries are 0.

Formally, we define the tensor T (g) for an RDF graph g:

Definition 2. Let g be an RDF graph and r(g) the set of RDF terms used in g. We define
id as a fixed bijection that maps RDF terms r(g) and ε, a placeholder for undefined
variables in SPARQL solution mapping, to integer identifiers I := I|r(g)|+1. The inverse
of id is denoted id−1. With respect to g and id, an RDF term 〈s, p, o〉 is represented by
a key 〈id(s), id(p), id(o)〉. The tensor representation of g is given by t(g) ∈ [I3 → B].
The entries of t(g) map a key k to 1 if the RDF statement corresponding to k is in g;
otherwise k is mapped to 0:

∀k ∈ I3 : t(g)[k] := count (〈id−1(k1), id
−1(k2), id

−1(k3)〉, g).

The results of a SPARQL query on g is a bag of solution mappings Ω with vari-
ables U . Let 〈u1, . . . , u|U |〉 be an arbitrary but fixed sorting of U . A solution map-
ping [u1 → w1, . . . , u|U | → w|U |] with wi ∈ r(g) ∪ {ε} is represented by a key
〈id(w1), . . . , id(w|U |)〉.8 The tensor representation of Ω is an order-|U | tensor t(Ω)
where each variable u ∈ U is mapped to a separate dimension. t(Ω) maps a key k to
the count of the represented solution mapping in Ω:

∀k ∈ I|U | : t(Ω)[k] := count ([u1→ id−1(k1), . . . , u|U |→ id−1(k|U |)], Ω).

5 Hypertries – A Data Structure for Tensors

Using tensors for RDF graphs requires a data structure that fulfills the following require-
ments: (R1) the data structure must be memory-efficient and (R2) must allow efficient
slicing (R3) by any combination of dimensions (also see Section 6.1). Additionally,
(R4) such a data structure must provide an efficient way to iterate the non-zero slices of
any of its dimensions.

A trie [6] with a fixed depth is a straightforward sparse tensor representation that
fulfills (R1) and (R2). A key consisting of consecutive key parts is stored by adding
a path labeled with these key parts from the root node of the trie. Existing labeled
edges are reused, introducing a moderate amount of compression (R1). Further, the trie
sparsely encodes a Boolean-valued tensor by only storing those keys that map to 1 (R1).
Descending by an edge, representing a key part k, is equal to slicing the tensor with the
first key part fixed to k. The descending is efficient (R2) if a hashtable or a search tree is

8 Technically, SPARQL semantics define solution mappings as partial functions f . Our formal
model is equivalent and simply maps all variables for which f is not defined to ε.
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1 3 4 5

2 62

3 4 74 5

2

5

6

7

T

T[3, : , : ]

3

Fig. 2. Trie representation of a tensor T depicting the data from Table 1. A slice T[3, :, :] by the
first dimension with 3 is shown in the red box.

used to store the children of a node. However, to support efficient slicing by any other
dimension except the first, a new trie with another collation order must be populated.
The same holds true for iterating non-zero slices as required for joins (see (R4)).

Example 5. Figure 2 shows an order-3 Boolean tensor stored in a trie. Each leaf encodes
a 1 value for the key that is encoded on the path towards it. The slice for the key 〈3, :, :〉
is shown in the red box, resulting in an order-2 tensor.

These limitations are overcome by hypertries, a generalization of fixed-depth tries.
A hypertrie permits the selection of a key part at an arbitrary position to get a (sub-)
hypertrie that holds the concatenations of the corresponding key prefixes and suffixes.
To achieve this goal, a node holds not only a set of edges for resolving the first key part,
but also a set for every other dimension. This allows for slicing by any dimension as
required by condition (R3) above. By storing each dimension’s edges and children in a
hashmap or search tree, iterating the slices by any dimension is accomplished implicitly.
Hence, hypertries fulfill (R4).

Formally, we define a hypertrie as follows:

Definition 3. Let H(d,A,E) with d ≥ 0 be the set of all hypertries with depth d,
alphabet A and values E. If A and E are clear from the context, we use H(d). We set
H(0) = E per definition. A hypertrie h ∈ H(1) has an associated partial function
c
(h)
1 : A 9 E that specifies outgoing edges by mapping edge labels to children. For
h′ ∈ H(n), n > 1, partial functions c(h

′)
i : A9 H(d−1), i ∈ In are defined. Function

c
(h′)
i specifies the edges for resolving the part equivalent to depth i in a trie by mapping

edge labels to children. For a hypertrie h, z(h) is the size of the set or mapping it
encodes.

An example of a hypertrie is given in Figure 3. A naive implementation of a hy-
pertrie would require as much memory as tries in every collation order. However, we
can take advantage of the fact that the slicing order relative to the original hypertrie
does not matter when chaining slices. For example, consider a hypertrie h of depth 3. It
holds that h[3, :, :][:, 4] = h[:, :, 4][3, :]. Consequently, such equivalent slices should be
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 〈 : , : , : 〉
1 2 3

41 3 5 2 6 53 4 7

〈3, : , : 〉

2 46 5

〈3, 6, : 〉〈3, 2, : 〉 〈3, : , 4〉 〈3, : , 5〉 〈3, : , 7〉

1 2
7

7 2 2 6

 〈 : , 2, : 〉

3 4
2

 〈 : , 2, 4〉 〈 : , 2, 5〉

3

5

1

〈 : , 2, 3〉

 〈 : , 6, : 〉

1
3 5

 〈 : , : , 4〉

1 23
1 2

 〈 : , : , 3〉

2
2

54

1
1 3 4

43

7
2

41

1
1 4

… … … …

… … … …

………

… … ………

…
…

……
…

Fig. 3. A hypertrie storing the IDs from Table 1. Most nodes are left out for better readability.
Each node represents a non-empty slice of the parent node. The slice key relative to the root node
is printed in the node. The orange numbers indicate slice key positions, the mapping below them
link all non-empty slices by that position to the nodes encoding the slice result.

stored only once and linked otherwise. By applying this technique, the storage bound is
reduced from O(d! · d · z(h)) for tries in any collation order to O(2d−1 · d · z(h)) for
a hypertrie (for proof see supplementary material). Given that d is fixed to 3 for RDF
graphs, this results in a data structure that takes at most 4 times more memory than
storing the triples in a list. Note that storing all tries for all six collation orders (see,
e.g., [15]) requires 6 times as much memory as storing the triples in a list.

6 Querying

6.1 From SPARQL to Tensor Algebra
Triple Pattern. Let g be an RDF graph with the tensor representation T and index
function id as defined in Definition 2. Let Q be a triple pattern with variables U and
let Q(g) be the bag of solutions that results from applying Q to g. The slice key k(Q)

which serves to execute Q on T is given by

k
(Q)
i :=

{
: , if Qi ∈ U ,
id(Qi), otherwise.

If k(Q) is defined,9 it holds true that T [k(Q)] ∈ [I|U | → B] is a tensor representation for
the set of solution mappings Q(g). Otherwise, the set is empty and thus represented by
the empty tensor which has all values set to 0.

Basic Graph Pattern. Consider a BGP B = {B(1), ... , B(r)} and its set of used
variables U . Let g and T be defined as above. A tensor representation of applying B to
g, i.e., B(g), is given by T ′ with T ′〈l∈U〉 ←×i∈Ir T [k

B(i)

]〈l∈B(i)|l∈U〉 .
9 It may not be defined if t contains any resource that is not in dom (id).

8



Algorithm 1: Einstein notation over hypertries

Input: A list of hypertries O, a list of
subscripts to the hypertries L and a
subscript to the result R

Output: A hypertrie or another tensor
representation

1 einsum(O, L, R)
2 k ← 〈id(ε), ... , id(ε)〉, |k| = |R|
3 r ← empty tensor of rank |R|
4 einsum rek(O,L,R, k, r)
5 return r

6 einsum rek(O,L,R, k, r)
7 U ← {λ ∈ Λ | Λ ∈ L}
8 if U 6= ∅ then
9 l← any label from U

10 L′ ← 〈Λ \ l | Λ ∈ L〉
11 P ← 〈{i | Λ[i] = l} | Λ ∈ L〉

12 K ←
⋂
j∈I|O|

⋂
i∈P[i] dom (c

O[j]
i )

13 for κ ∈ K do
14 O′ ← 〈〉
15 for i ∈ I|O| do

16 s← s[i] :=

{
κ, if i ∈ P[i]
:, otherwise

17 O′ ← O′ + 〈O[i][s]〉
18 if z(O′[i]) = 0 then
19 continue with next κ

20 if l ∈ R then
21 k[i]← κ with R[i] = l

22 einsum rek(O′, L′, R, k, r)

23 else
24 r[k]+←

∏
o∈O o

Input: A list of hypertries O, a list of
subscripts to the hypertries L and a
subscript to the result R

Output: A hypertrie or another tensor
representation

1 einsum(O, L, R)
2 k ← 〈id(ε), ... , id(ε)〉, |k| = |R|
3 r ← empty tensor of rank |R|
4 einsum rek(O,L,R, k, r)
5 return r

6 einsum rek(O,L,R, k, r)
7 U ← {λ ∈ Λ | Λ ∈ L}
8 if U 6= ∅ then
9 l← any label from U

10 L′ ← 〈Λ \ l | Λ ∈ L〉
11 P ← 〈{i | Λ[i] = l} | Λ ∈ L〉

12 K ←
⋂
j∈I|O|

⋂
i∈P[i] dom (c

O[j]
i )

13 for κ ∈ K do
14 O′ ← 〈〉
15 for i ∈ I|O| do

16 s← s[i] :=

{
κ, if i ∈ P[i]
:, otherwise

17 O′ ← O′ + 〈O[i][s]〉
18 if z(O′[i]) = 0 then
19 continue with next κ

20 if l ∈ R then
21 k[i]← κ with R[i] = l

22 einsum rek(O′, L′, R, k, r)

23 else
24 r[k]+←

∏
o∈O o

Projection. Let B, r, U , g, and T be as above; consider U ′ ⊆ U . The projection
ΠU ′(B(g)) is represented by the tensor T ′′〈l∈U ′〉 ←×i∈Ir T [k

B(i)

]〈l∈B(i)|l∈U〉 .
With this mapping, we can now implement the key operations of the SPARQL al-

gebra using hypertries.

6.2 Tensor Operations on Hypertries

Hypertries support both slices and Einstein summation efficiently. The efficient evalua-
tion of slices was described in Section 5. An algorithm to evaluate Einstein summation
based on a worst-case optimal multi-join algorithm by [16] is given by Algorithm 1 and
discussed in this section. The algorithm is structured in two functions, a recursion starter
and a recursion. The recursion starter (ll. 1-5) takes a list O of hypertrie operands, a
list L of subscripts for the operands and a subscript R for the result as input and returns
the resulting tensor r. A subscript is represented by a sequence of labels. The recursion
starter prepares the key k and the result tensor r, calculates the result by calling the
recursion einsum rek and returns the result.

The recursion (ll. 6-24) additionally takes k and r as parameters. It first selects a
label l that is used in L (ll. 7+9). If there is such a label (l. 8), a new operand’s subscript
L′ is calculated by removing l from L (l. 10). It is to be used in the next recursion
level. Next, the intersection K (l. 12) of edge labels by all those dimensions of the
hypertries O (l. 11) that are subscripted by l is calculated. Note that operand subscripts
with repeating labels, e.g., 〈?x, ?x〉 for a TP ?x :pred ?x, are implicitly covered by
the construction of P which stores for each operand all positions that are subscripted
with l. For each κ ∈ K (l. 13) the l-subscripted dimensions of operands in O are
resolved by κ and the new operands stored to O′ (ll. 14-17). If any of the new operands
is empty, the current κ is skipped (ll. 18-19). Operands that are not subscripted by l
are just copied. If R contains l, k is set to κ at the corresponding position (ll. 20-21).
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A recursive call is issued with the modified operands O′ and operands’ subscript L′ (l.
22). If there is no label left in L, the break condition is reached (ll. 23-24). At this point
the operands are scalars. The product of the operands is calculated and added to the
entry at k in the result tensor r (l. 24).

6.3 Processing Order

The Einstein summation encapsulates all joins into a single operation. Thus, join or-
dering is not required. Nonetheless, the order in which labels are selected in line 9 of
Algorithm 1 is crucial for the actual processing time. Clearly, the worst-case search
space for the result is a subset to the Cartesian product of all operands’ non-zero en-
tries’ keys. Evaluating a label that occurs more than once at operands reduces the search
space if the size of the cut K in line 12 of Algorithm 1 is smaller than its inputs. As-
suming equal distribution in the subhypertries, an upper bound to the reduction factor
by a label is given by the ratio of the size of K to the maximum number of children
of dimensions subscripted with the label. Given a sequence of operands O and their
sequences of labels L, we define the reduction factor for a label l, an operand o ∈ O
and its labels Λ ∈ L by

ψo,Λ(l) =

{
m−O,L(l)

m+
o,Λ(l)

if l ∈ Λ,
1 otherwise.

where, m−O,L(l) = min
(
|dom (c

O[i]
j )|

∣∣∣ L[i][j] = l
)

is the minimal cardinality of di-

mensions of any operand subscripted with l and m+
o,Λ(l) = max

(
|dom (coj)|

∣∣ Λ[j] = l
)

is the maximum cardinality of dimensions of o subscripted with l. Thus, the full guar-
anteed reduction factor for l is given by ΨO,L(l) =

∏
i ψO[i],L[i](l). To reflect the

observation that in practice K is mostly smaller than m−O,L(l), we additionally divide
ΨO,L(l) by the number of sets of different sizes used in the cut. We hereby assume
two such sets to be equal if they have the same size. As ΨO,L(l) can be computed ef-
ficiently, it is calculated in each recursive call for all label candidates l. The label with
the smallest factor is chosen.

7 Evaluation

7.1 Experimental Setup

All experiments10 were executed on a server machine with an AMD EPYC 7742, 1 TB
RAM and two 3 TB NVMe SSDs in RAID 0 running Debian 10 and OpenJDK 11.0.6.
Each experiment was executed using the benchmark execution framework IGUANA
v3.0.0-alpha2 [5], which we chose because it is open-source and thus ensures that our
experiments can be repeated easily.

10 The full setup is available as Ansible playbook at https://github.com/dice-group/
tentris-paper-benchmarks/releases/tag/v1.0
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Table 2. Numbers of distinct triples (T), subjects (S), predicates (P) and objects (O) of each
dataset. Additionally, Type classifies the datasets as real-world or synthetic.

Dataset #T #S #P #O Type

SWDF 372 k 32 k 185 96 k real-world
DBpedia 681 M 40 M 63 k 178 M real-world
WatDiv 1 G 52 M 186 92 M synthetic

Table 3. Statistics on the queries used for each dataset. #Q stands for the number of queries used
in our evaluation. The average and the min-max range in brackets are given for the number of
triple patterns (#TP), the number of results (#R), and the average join-vertex degree (avg JVD).
The absolute and relative frequencies (in brackets) are given for the number of distinct queries
(#D) and for the number of queries with large results (>5000 results) .

Dataset #Q #TP #R #D avg JVD >5000 results

SWDF 203 1.74 (1 - 9) 5.5 k (1 - 304 k) 124 (61%) 0.75 (0 - 4) 18 (8.9%)
DBpedia 557 1.84 (1 - 14) 13.2 k (0 - 843 k) 222 (40%) 1.19 (0 - 4) 73 (13.1%)
WatDiv 45 6.51 (2 - 10) 3.7 k (0 - 34 k) 2 (4%) 2.61 (2 - 9) 9 (20.0%)

Benchmarks. We chose WatDiv [3] to generate a synthetic benchmark, and FEASIBLE
[23] – a benchmark generation framework which uses query logs – to generate a bench-
mark on real-world data. We used datasets of varied sizes and structures (see Table 2)
by choosing the 1 billion-triple dataset from WatDiv as well as the real datasets En-
glish DBpedia 2015-1011 (681 M triples) and Semantic Web Dog Food SWDF (372 K
triples). We used all query templates for WatDiv.12 The benchmark queries for DBpe-
dia and SWDF were generated by using FEASIBLE on real-world query logs contained
in LSQ [21]. FEASIBLE was configured to generate SELECT queries with BGPs and
optional DISTINCT. Queries with more than 220 results were excluded from all bench-
marks to ensure a fair comparison.13 Statistics on the queries14 used are given in Table 3.
Triple Stores. We chose triple stores that were openly available and supported at least
SELECT queries with or without DISTINCT and BGPs. All triple stores were required
to be able to load the three benchmarking datasets. Triple stores which were not able to
load all experimental datasets had to be excluded from our experiments. The following
triple stores were used in our evaluation: a) TENTRIS 1.0.4, b) Virtuoso Open-Source
Edition 7.2.5.1, c) Fuseki (Jena TDB) 3.14.0, d) Blazegraph v2.1.4, e) GraphDB Free
v9.1.1, f) TripleBit [28],15 which uses matrices to store triples similar to TENTRIS’s

11 We used this version because of query logs being available for FEASIBLE.
12 For each template one query was generated. Additionally, queries not projecting all variables

were included with and without DISTINCT.
13 Virtuoso has a limit of 220 results for queries answered via HTTP (see issue https://github.

com/openlink/virtuoso-opensource/issues/700).
14 All queries can be found in the supplementary material.
15 We extended TripleBit to support entering SPARQL queries via command-line interface di-

rectly. This modification was necessary to use TripleBit with IGUANA. Code available at:
https://github.com/dice-group/TripleBit/releases/tag/2020-03-03
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tensor, g) RDF-3X 0.3.8 [15], which uses many indices similar to the hypertrie used by
TENTRIS, and e) gStore commit 3b4fe58-mod16 which stores all data in-memory like
TENTRIS. All triple stores were allocated the same amount of RAM.
Benchmark Execution. We used two evaluation setups to cater for the lack of HTTP
endpoints in TripleBit and RDF-3X. In the first setup, we executed a HTTP-based
benchmark. Here, five stress tests with 1, 4, 8, 16 and 32 users were executed using the
HTTP SPARQL endpoints of the triple stores TENTRIS, Virtuoso, Fuseki, Blazegraph,
and gStore. For GraphDB we executed only the stress tests with one user because it does
not support more than two parallel users in the free version. The second setup covered
triple stores with a command-line interface (CLI). This benchmark simulated a single
user because CLI does not support multiple concurrent users. The second setup was ex-
ecuted against TENTRIS, RDF3X and TripleBit. Like in previous works [5,22], we set
the runtime of all benchmarks to 60 minutes with a 3-minute timeout. The performance
of each triple store was measured using Queries per Second (QpS) for each client. In
addition, we assessed the overall performance of each triple store by using an average
penalized QpS (avg pQpS) per client: If a triple store failed to answer a query before
the timeout or returned an error, then said query was assigned a runtime of 3 minutes.

7.2 Evaluation of Join Implementation

The performance of TENTRIS depends partially on the approach used to process joins.
In our first series of experiments, we hence compared our default join implementation
(see Section 6.3) with two other possible join implementations: 2-way joins (T2j) and
a random label selection strategy (Tr). We used the HTTP-based benchmarks with one
user. The results of this series of experiments is shown in Figure 7. Our join implemen-
tation based on multi-way joins and label ordering strategy contributes substantially
to the performance of TENTRIS. Our default TENTRIS is the fastest w.r.t. avg pQpS
and median QpS on all datasets. T2j and Tr time out on several queries through the
benchmarks and answer several queries from each benchmark more than an order of
magnitude slower than the default TENTRIS. Hence, we use the default implementation
of TENTRIS throughout the rest of the experiments.

7.3 Comparison with Other Approaches

Figure 4 shows the results of our HTTP evaluation on SWDF, DBpedia and WatDiv. For
each number of clients tested in the HTTP evaluation, two vertically aligned plots are
given: the first shows a boxplot of QpS and the mean QpS for single queries as points,
while the second reflects the avg pQpS. Please note the log-scale of the boxplots. For
a better comparison between the number of clients tested, Figure 5 shows a plot for
each dataset with the avg pQpS depending on the number of clients. Analogous to

16 As IGUANA requires SPARQL Protocol conformance, we fixed the HTTP request handling of
gStore, i.e., parsing requests, naming of parameters, and response content-type. With respect
to benchmark execution, we set the timeout to 3 minutes, and the thread limit to 32 and raised
the total memory limit to 800GB. Code available at: https://github.com/dice-group/gStore-1/
releases/tag/3b4fe58-mod
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Fig. 4. Benchmark results on SWDF (a), DBpedia (b) and WatDiv (c) using HTTP with triple
stores Blazegraph (B), Fuseki (F), GraphDB (G), gStore (S), TENTRIS (T) and Virtuoso (V): For
each dataset, the first row shows boxplots for evaluations with 1, 4, 8, 16 and 32 clients respec-
tively. Each point represents QpS for each single query, or mean QpS for a single query type
for more than one client. For better readability we log-scaled the first line of the graphics. If
queries with 0QpS were present, those values were converted to 5 · 10−4 QpS and the number of
occurrences are shown as values on the bottom line. The second row shows avg pQpS per client.
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Figure 4, Figure 6 provides the results of the CLI evaluation. Figure 7 shows the results
of the comparison of different TENTRIS versions. For a comparison of the time and
space requirements for loading the datasets into the triple stores see the supplementary
material.
HTTP Results. Overall, TENTRIS outperforms all other triple stores for all datasets
clearly with respect to avg pQpS. For a single client, our approach achieves a 1.83 to
2.51 times higher avg pQpS than the second best triple store, i.e., gStore or GraphDB.
The avg pQpS of our approach is even 7.62 to 21.98 times higher than that of the slowest
framework. With multiple users, TENTRIS scales almost linearly with the number of
clients (see Figure 5). TENTRIS is the only triple store in our evaluation that completed
each query of all benchmarks at least once. Virtuoso succeeded on nearly all queries,
with only a single failed query in the DBpedia benchmark with 32 users. The other
triple stores failed on several queries across benchmark configurations.

As shown in Figure 4a, TENTRIS is the fastest triple store for SWDF. It achieves
avg pQpS that are at least 2 times higher than the second best and the median of its QpS
lies above all values of all other stores. TENTRIS scales up the best to 32 users. The
QpS per client drops from 1 to 32 clients by just 39%. Only Virtuoso shows a similar
behavior, with a drop of 41%. The other triple stores are orders of magnitude slower
when queried with multiple clients. Looking further into detail, TENTRIS outperforms
the other stores for small queries which produce less then 5000 results (see Table 3)
and Virtuoso is second best. For the 9% large queries with more than 5000 results,
Blazegraph and gStore are about 1.5 times faster than TENTRIS for 1 client, but do
not not scale with the number of clients; such that TENTRIS is 10 times faster than
Blazegraph and 3 times faster than gStore for 32 clients.

For the DBpedia dataset, TENTRIS is the fastest store w.r.t. the avg pQpS and the
median QpS. The result plots in Figure 4b show that TENTRIS is almost two times faster
than the second best triple store with respect to avg pQpS. It scales at least linearly with
an increasing number of clients. When dividing the queries by small and large results,
TENTRIS is always the fastest for DBpedia on small queries and only outperformed by
gStore on large queries with 1-8 clients. Again, TENTRIS scales better and is fastest for
16-32 clients.
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Like for the real-word datasets SWDF and DBpedia, TENTRIS outperforms the
other triplestores on the synthetic WatDiv dataset by at least 1.8 times w.r.t. the avg
pQpS. It scales at least linearly with an increasing number of clients. TENTRIS is fastest
on the WatDiv dataset for small. For small queries and 1 client, GraphDB is the second
best, while Virtuoso is the second best for multiple clients. For large queries, gStore is
1.5 times faster for 1 client than the second fastest TENTRIS, for 4 and 8 clients TEN-
TRIS and gStore answer queries with roughly the same speed. With 16 to 32 clients,
TENTRIS is the fastest at answering large queries by at least a factor of 2.
CLI Results. The results of the CLI evaluation plotted in Figure 6 show that TENTRIS
clearly outperforms TripleBit and RDF-3X on all datasets. TripleBit and RDF-3X fail
on 38 resp. 5 out of 203 queries for SWDF and 535 resp. 279 out of 557 queries for
DBpedia. For the SWDF dataset, TENTRIS is at least 2.5 times faster with respect to
pQpS. For DBpedia, the margin is even higher with 4.4-48,200 times higher pQpS.
The scatterplot shows that TENTRIS answers more than 75% of the queries faster than
TripleBit answers any query and than RDF-3X answers most queries. For the WatDiv
dataset TENTRIS outperforms TripleBit and RDF-3X by at least 2.3 times w.r.t. pQpS.
Summary. Overall, TENTRIS outperforms all other approaches in the HTTP bench-
marks client w.r.t. the average QpS per client across all datasets. The CLI experiments
lead to a similar picture. While TENTRIS is always best for small queries with up to
5000 results, gStore is faster for large queries with more than 5000 results with up to 8
clients. This difference in performance seems to be due to the current result serialization
of TENTRIS and will be addressed in future versions of the framework. The additional
better scalability of the approach w.r.t. the number of clients suggests that TENTRIS
is a viable alternative to existing solutions for querying RDF knowledge graphs. An
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analysis of our results suggests that the selection of the sequence of operations in the
Einstein summation can be improved further by using heuristics (e.g., star joins vs. path
joins) or by using function approximators ranging from regression-based solutions to
deep learning.

8 Conclusion & Outlook

With TENTRIS, we present a time-efficient triple store for RDF knowledge graphs. We
define a new mapping of RDF and SPARQL to tensors and tensor operations like slic-
ing and Einstein summation. Our experimental results show that TENTRIS outperforms
established triple stores with respect to QpS within experimental settings with up to
32 concurrent users. This improvement is the result of a novel tensor data structure,
called hypertrie, that is designed to store low-rank tensors efficiently and allows the
efficient evaluation of slices and Einstein summation. We show that hypertries allow
for constant time slices on any combination of dimensions. An efficient evaluation of
Einstein summation expressions on hypertries is achieved by an adaption of a worst-
case optimal multi-join algorithm. TENTRIS will be extended in future works to be a
fully-fledged triple store. Further improvements will include the data-driven improve-
ment of the processing order for Einstein summation labels. Moreover, we will develop
domain-specific versions of TENTRIS, e.g., geo-spatial extensions.
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