
Squirrel – Crawling RDF Knowledge Graphs on
the Web

Michael Röder12[0000−0002−8609−8277], Geraldo de Souza
Jr1[0000−0003−3180−0177], and Axel-Cyrille Ngonga Ngomo12[0000−0001−7112−3516]

1 DICE group, Department of Computer Science, Paderborn University
michael.roeder|gsjunior|axel.ngonga@upb.de

2 Institute for Applied Informatics, Leipzig, Germany

Abstract. The increasing number of applications relying on knowledge
graphs from the Web leads to a heightened need for crawlers to gather
such data. Only a limited number of these frameworks are available, and
they often come with severe limitations on the type of data they are
able to crawl. Hence, they are not suited to certain scenarios of prac-
tical relevance. We address this drawback by presenting Squirrel, an
open-source distributed crawler for the RDF knowledge graphs on the
Web, which supports a wide range of RDF serializations and additional
structured and semi-structured data formats. Squirrel is being used
in the extension of national data portals in Germany and is available
at https://github.com/dice-group/squirrel under a permissive open li-
cense.

Keywords: Linked Data· Crawler · Open Data

1 Introduction

The knowledge graphs available on the Web have been growing over recent years
both in number and size [4].3 This development has been accelerated by gov-
ernments publishing public sector data on the web.4 With the awareness of the
power of 5-star linked open data has come the need for these organizations to
(1) make the semantics of their datasets explicit and (2) connect their datasets
with other datasets available on the Web. While the first step has been at-
tended to in a plethora of projects on the semantification of data, the second
goal has remained a challenge, addressed mostly manually. However, a manual
approach to finding and linking datasets is impractical due to the steady growth
of datasets provided by both governments and the public sector in both size and
number.5 Different public services have hence invested millions of Euros into

3 See https://lod-cloud.net/ for an example of the growth.
4 Examples include the European Union at https://ec.europa.eu/

digital-single-market/en/open-data and the German Federal Ministry of Transport
and Digital Infrastructure with data at https://www.mcloud.de/.

5 See, e.g., https://www.mdm-portal.de/, where traffic data from the German Federal
Ministry of Transport and Digital Infrastructure is made available.

https://github.com/dice-group/squirrel
https://lod-cloud.net/
https://ec.europa.eu/digital-single-market/en/open-data
https://ec.europa.eu/digital-single-market/en/open-data
https://www.mcloud.de/
https://www.mdm-portal.de/

2 M. Röder et al.

research projects aiming to automate the connection of government data with
other data sources.6

An indispensable step towards automating the second goal is the automated
and periodic gathering of information about available open data that can be used
for linking to newly published data of the public sector. A necessary technical
solution towards this end is a scalable crawler for the Web of Data. While the
need for such a solution is already dire, it will become even more pressing to
manage the growing amount of data that will be made available each year into
the future. At present, the number of open-source crawlers for the web of data
that can be used for this task is rather small and all come with several limi-
tations. We close this gap by presenting Squirrel—a distributed, open-source
crawler for the web of data.7 Squirrel supports a wide range of RDF serial-
izations, decompression algorithms and formats of structured data. The crawler
is designed to use Docker8 containers to provide a simple build and run archi-
tecture [13]. Squirrel is built using a modular architecture and is based on
the concept of dependency injection. This allows for a further extension of the
crawler and adaptation to different use cases.

The rest of this paper is structured as follows: we describe related work in
Section 2 and the proposed crawler in Section 3. Section 4 presents an evaluation
of the crawler, while Section 5 describes several applications of Squirrel. We
conclude the paper in Section 6.

2 Related work

There are only a small number of open-source Data Web crawlers available that
can be used to crawl RDF datasets. An open-source Linked Data crawler to
crawl data from the web is LDSpider9 [10]. It can make use of several threads
in parallel to improve the crawling speed, and offers two crawling strategies.
The breadth-first strategy follows a classical breadth-first search approach for
which the maximum distance to the seed URI(s) can be defined as termination
criteria. The load-balancing strategy tries to crawl URIs in parallel without
overloading the servers hosting the data. The crawled data can be stored either
in files or can be sent to a SPARQL endpoint. It supports a limited amount of
RDF serialisations (details can be found in Table 1 in Section 3). In addition, it
cannot be deployed in a distributed environment. Another limitation of LDSpider
is the missing functionality to crawl SPARQL endpoints and open data portals.
A detailed comparison of LDSpider and Squirrel can be found in Sections 3
and 4.

A crawler focusing on structured data is presented in [6]. The authors describe
a 5-step pipeline that converts structured data formats like XHTML or RSS into

6 See, e.g., the German mFund funds at http://mfund.de.
7 Our code is available at https://github.com/dice-group/squirrel and the documen-

tation at https://w3id.org/dice-research/squirrel/documentation.
8 https://www.docker.com/
9 https://github.com/ldspider/ldspider

http://mfund.de
https://github.com/dice-group/squirrel
https://w3id.org/dice-research/squirrel/documentation
https://www.docker.com/
https://github.com/ldspider/ldspider

Squirrel – Crawling RDF Knowledge Graphs on the Web 3

RDF. In [8,9], a distributed crawler is described, which is used to index resources
for the Semantic Web Search Engine. To the best of our knowledge, both crawlers
are not available as open-source projects.

In [2], the authors present the LOD Laundromat—a framework that down-
loads, parses, cleans, analyses and republishes RDF datasets. The framework
has the advantage of coming with a robust parsing algorithm for various RDF
serialisations. However, it solely relies on a given list of seed URLs. In contrast
to a crawler, it does not extract new URLs from the fetched data to crawl.

Since web crawling is an established technique, there are several open-source
crawlers. An example of a scalable, general web crawler is presented in [7]. How-
ever, most of these crawlers cannot process RDF data without further adapta-
tion. A web crawler extended for processing RDF data is the open-source crawler
Apache Nutch.10 Table 1 in Section 3 shows the RDF serialisations, compressions
and forms of structured data that are supported by the Apache Nutch plugin.11

However, the plugin stems from 2007, relies on an out-dated crawler version and
failed to work during our tests.12

Overall, the open-source crawlers currently available are either not able to
process RDF data, are limited in the types of data formats they can process, or
are restricted in their scalability.

3 Approach

3.1 Requirements

Web of Data crawler requirements were gathered from nine organisations within
the scope of the projects LIMBO13 and OPAL.14 OPAL aims to create an open
data portal by integrating the available open data of different national and in-
ternational data sources.15 The goal of LIMBO is to collect available mobility
data of the ministry of transport, link them to open knowledge bases and publish
them within a data portal.16

To deliver a robust, distributed, scalable and extensible data web crawler, we
pursue the following goals with Squirrel:

R1: The crawler should be designed to provide a distributed and scalable solution
on crawling structured and semi-structured data.

10 http://nutch.apache.org/
11 The information has been gathered by an analysis of the plugin’s source code.
12 A brief description of the plugin and its source code can be found at https://issues.

apache.org/jira/browse/NUTCH-460.
13 https://www.limbo-project.org/
14 http://projekt-opal.de/projektergebnisse/deliverables/
15 See http://projekt-opal.de/en/welcome-project-opal/ and https://www.bmvi.de/

SharedDocs/DE/Artikel/DG/mfund-projekte/ope-data-portal-germany-opal.html
16 See https://www.limbo-project.org/ and https://www.bmvi.de/SharedDocs/DE/

Artikel/DG/mfund-projekte/linked-data-services-for-mobility-limbo.html

http://nutch.apache.org/
https://issues.apache.org/jira/browse/NUTCH-460
https://issues.apache.org/jira/browse/NUTCH-460
https://www.limbo-project.org/
http://projekt-opal.de/projektergebnisse/deliverables/
http://projekt-opal.de/en/welcome-project-opal/
https://www.bmvi.de/SharedDocs/DE/Artikel/DG/mfund-projekte/ope-data-portal-germany-opal.html
https://www.bmvi.de/SharedDocs/DE/Artikel/DG/mfund-projekte/ope-data-portal-germany-opal.html
https://www.limbo-project.org/
https://www.bmvi.de/SharedDocs/DE/Artikel/DG/mfund-projekte/linked-data-services-for-mobility-limbo.html
https://www.bmvi.de/SharedDocs/DE/Artikel/DG/mfund-projekte/linked-data-services-for-mobility-limbo.html

4 M. Röder et al.

R2: The crawler must exhibit “respectful” behaviour when fetching data from
servers by following the Robots Exclusion Standard Protocol [11]. This re-
duces the chance that a server is overloaded by the crawler’s request and the
chance that the crawler is blocked by a server.

R3: Since not all data is available as structured data, crawlers for the data web
should offer a way to gather semi-structured data.

R4: The project should offer easy addition of further functionality (e.g., novel
serialisations, other types of data, etc.) through a fully extensible architec-
ture.

R5: The crawler should provide metadata about the crawling process, allowing
users to get insights from the crawled data.

In the following, we give an overview of the crawler’s components, before
describing them in more detail.

3.2 Overview

Squirrel comprises two main components: Frontier and Worker (R1). To
achieve a fully extensible architecture, both components rely on the dependency
injection pattern, i.e., they comprise several modules that implement the single
functionalities of the components. These modules can be injected into the com-
ponents, facilitating the addition of more functionalities (R4). To support the
addition of the dependency injection, Squirrel has been implemented based on
the Spring framework.17 Figure 1 illustrates the architecture of Squirrel.

When executed, the crawler has exactly one Frontier and a number of Work-
ers, which can operate in parallel (R1). The Frontier is initialised with a list of
seed URIs. It normalises and filters the URIs, which includes a check of whether
the URIs have been seen before. Thereafter, the URIs are added to the internal
queue. Once the Frontier receives a request from a Worker, it gives a set of URIs
to the Worker. For each given URI, the Worker fetches the URI’s content, analy-
ses the received data, collects new URIs and forwards the data to its sink. When
the Worker is done with the given set of URIs, it sends it back to the Frontier
together with the newly identified URIs. The crawler implements the means for
a periodic re-evaluation of URIs known to have been crawled in past iterations.

3.3 Frontier

The Frontier has the task of organising the crawling. It keeps track of the URIs
to be crawled, and those that have already been crawled. It comprises three main
modules:

1. A Normalizer that preprocesses incoming URIs,
2. a Filter that removes already seen URIs
3. a Queue used to keep track of the URIs to be crawled in the future.

17 https://spring.io/

https://spring.io/

Squirrel – Crawling RDF Knowledge Graphs on the Web 5

Worker

Fetcher

Analyzer

SinkCollector

Worker

Fetcher

Analyzer

SinkCollector

Seed URIs

Worker

AnalyzerAnalyzer

Fetcher

Analyzer

SinkCollector

Frontier

Normalizer

Filter

Queue

URIs

Fig. 1. Squirrel Core Achitecture

3.3.1 Normalizer. The Normalizer preprocesses incoming URIs by trans-
forming them into a normal form. This reduces the number of URIs that are
different but point to the same resources. The URI normalisation comprises the
following actions:

– Removal of default ports, e.g., port 80 for HTTP.
– Removal of percentage-encoding for unreserved characters [3].
– Normalization of the URI path, e.g., by removing punctuations [3].
– Removal of the URIs’ fragment part.
– Alphanumeric sorting of key-value pairs for query parts that contain several

key value pairs.

In addition, the Normalizer tries to find session identifiers or similar parts of the
URI that have no influence on the retrieved content. The strings that mark such
a part of the URI are configurable.

3.3.2 Filter. The Filter module is mainly responsible for filtering URIs that
have already been processed. To achieve this goal, the Frontier makes use of a
NoSQL database (i.e., MongoDB in the current implementation), which is used
to store all crawled URIs in a persistent way. This ensures that a crawler can
be interrupted and restarted later on. Additionally, black or white lists can be
used to narrow the search space of the crawler if necessary.

3.3.3 Queue. The Queue is the module that stores the URIs to be crawled.
It groups and sorts the URIs, which makes it the main module for implementing
crawling strategies. At present, Squirrel offers two queue implementations—
an IP- and a domain-based first-in-first-out (short: FIFO) queue. Both work in
a similar way by grouping URIs based on their IP or their pay-level domain,
respectively. The URI groups are sorted following the FIFO principle. When a
Worker requests a new set of URIs, the next available group is retrieved from the

6 M. Röder et al.

queue and sent to the Worker. Internally, this group is marked as blocked, i.e., it
remains in the queue and new URIs can be added by the Frontier but it cannot
be sent to a different Worker. As soon as the Worker returns the requested URIs,
the group is unblocked and the crawled URIs are removed from it. If the group is
empty, it is removed from the queue. This implements a load-balancing strategy
that aims to crawl the web as fast as possible without overloading single IPs or
pay-level domains.

Like the Filter module, the Queue relies on a persistent MongoDB to store
the URIs. This enables a restart of the Frontier without a loss of its internal
states.

3.4 Worker

The Worker component performs the crawling based on a given set of URIs.
Crawling a single URI is done in four steps:

1. URI content is fetched,
2. fetched content is analysed,
3. new URIs are collected, and
4. the content is stored in a sink.

The modules for these steps are described in the following:

3.4.1 Fetcher. The fetcher module takes a given URI and downloads its con-
tent. Before accessing the given URI, the crawler follows the Robots Exclusion
Standard Protocol [11] and checks the server’s robots.txt file (R2). If the
URI’s resource can be crawled, one of the available fetchers is used to access
it. At present, Squirrel uses four different fetchers. Two general fetchers cover
the HTTP and the FTP protocol, respectively. Two additional fetchers are used
for SPARQL endpoints and CKAN portals, respectively. However, other fetchers
can be added by means of the extensible Squirrel API if necessary.18

The Worker tries to retrieve the content of the URI by using the fetchers, in
the order in which they were defined, until one of them is successful. The fetcher
then stores the data on the disk and adds additional information (like the file’s
MIME type) to the URI’s properties for later usage. Based on the MIME type,
the Worker checks whether the file is a compressed or an archive file format. In
this case, the file is decompressed and extracted for further processing. In its
current release, Squirrel supports the formats Gzip, Zip, Tar, 7z and Bzip2.19

18 Details about implementing a new fetcher can be found at https://dice-group.github.
io/squirrel.github.io/tutorials/fetcher.html

19 Details regarding the compressions can be found at https://pkware.cachefly.
net/Webdocs/APPNOTE/APPNOTE-6.3.5.TXT, https://www.gnu.org/software/
gzip/ and http://sourceware.org/bzip2/, respectively.

https://dice-group.github.io/squirrel.github.io/tutorials/fetcher.html
https://dice-group.github.io/squirrel.github.io/tutorials/fetcher.html
https://pkware.cachefly.net/Webdocs/APPNOTE/APPNOTE-6.3.5.TXT
https://pkware.cachefly.net/Webdocs/APPNOTE/APPNOTE-6.3.5.TXT
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/gzip/
http://sourceware.org/bzip2/

Squirrel – Crawling RDF Knowledge Graphs on the Web 7

Table 1. Comparison of RDF serialisations, compressions, methods to extract data
from HTML and other methods to access data supported by Apache Nutch (including
the RDF plugin), LDSpider and Squirrel.

RDF Serialisations Comp. HTML

R
D

F
/
X

M
L

R
D

F
/
J
S
O

N

T
u
rt

le
N

-T
ri

p
le

s
N

-Q
u
a
d
s

N
o
ta

ti
o
n

3
J
S
O

N
-L

D
T

ri
G

T
ri

X
H

D
T

Z
IP

G
zi

p
b
zi

p
2

7
zi

p
ta

r

R
D

F
a

M
ic

ro
d
a
ta

M
ic

ro
fo

rm
a
t

H
T

M
L

(s
cr

a
p
in

g
)

S
P

A
R

Q
L

C
K

A
N

Apache Nutch X – X X – X – – – – X X – – – X X X – – –
LDSpider X – X X X X X – – – – – – – – X X X – – –
Squirrel X

3.4.2 Analyser. The task of the Analyser module is to process the content
of the fetched file and extract triples from it. The Worker has a set of Analysers
that are able to handle various types of files. Table 1 lists the supported RDF
serialisations, the compression formats and the different ways Squirrel can
extract data from HTML files. It compares the supported formats with the
formats supported by Apache Nutch and LDSpider [10]. Each Analyser offers
an isElegible method that is called with a URI and the URI’s properties to
determine whether it is capable of analysing the fetched data. The first Analyser
that returns true receives the file together with a Sink and a Collector, and starts
to analyse the data.

The following Analysers are available in the current implementation of Squir-
rel:

1. The RDF Analyser handles RDF files and is mainly based on the Apache
Jena project.20 Thus, it supports the following formats: RDF/XML, N-
Triples, N3, N-Quads, Turtle, TRIG, JSON-LD and RDF/JSON.

2. The HDT Analyser is able to process compressed RDF graphs that are avail-
able in the HDT file format [5].

3. The RDFa Analyser processes HTML and XHTML Documents extracting
RDFa data using the Semargl parser.21

4. The scraping Analyser uses the Jsoup framework for parsing HTML pages
and relies on user-defined rules to extract triples from the parsed page.22

This enables the user to use Squirrel to gather not only structured but
also semi-structured data from the web (R3).

5. The CKAN Analyser is used for the JSON line files generated by the CKAN
Fetcher when interacting with the API of a CKAN portal. The analyser

20 https://jena.apache.org
21 https://github.com/semarglproject/semargl
22 https://jsoup.org/

https://jena.apache.org
https://github.com/semarglproject/semargl
https://jsoup.org/

8 M. Röder et al.

transforms the information about datasets in the CKAN portal into RDF
triples using the DCAT ontology [1].

6. The Any23-based Analyser processes HTML pages, searching for Microdata
or Microformat embedded within the page.

7. In contrast to the other Fetchers, the SPARQL-based Fetcher directly per-
forms an analysis of the retrieved triples.

New analysers can be implemented if the default API does not match the
user’s needs.23

3.4.3 Collector. The Collector module collects all URIs from the RDF data.
Squirrel offers an SQL-based collector that makes use of a database to store all
collected URIs. It ensures the scalability of this module for processing large data
dumps. For testing purposes, a simple in-memory collector is provided. As soon
as the Worker has finished crawling the given set of URIs, it sends all collected
URIs to the Frontier and cleans up the collector.

3.4.4 Sink. The Sink has the task to store the crawled data. Currently, a user
can choose from three different sinks that are implemented. First, a file-based
sink is available. This sink stores given triples in files using the Turtle serialisation
for RDF.24 These files can be further compressed using GZip. The second sink
is an extension of the file-based sink and stores triples in the compressed HDT
format [5]. It should be noted that both sinks separate the crawled data by
creating one file for each URI that is crawled. An additional file is used to store
metadata from the crawling process. Both sinks have the disadvantage that each
Worker has a local directory in which the data is stored. The third sink uses
SPARQL update queries to insert the data in a SPARQL store. This store can
be used by several Workers in parallel. For each crawled URI, a graph is created.
Additionally, a metadata graph is used to store the metadata generated by the
Workers. New sinks can be added by making use of the extensible API.25

3.4.5 Activity. The Workers of Squirrel document the crawling process
by writing metadata to a metadata graph (R5). This metadata mainly relies
on the PROV ontology [12] and has been extended where necessary. Figure 2
gives an overview of the generated metadata. The crawling of a single URI is
modelled as an activity. Such an activity comes with data like the start and end
time, the approximate number of triples received, and a status line indicating
whether the crawling was successful. The result graph (or the result file in case
of a file-based sink) is an entity generated by the activity. Both the result graph
and the activity are connected to the URI that has been crawled.

23 Details about implementing a new analyzer can be found at https://dice-group.
github.io/squirrel.github.io/tutorials/analyzer.html

24 https://www.w3.org/TR/turtle/
25 Details about implementing a new sink can be found at https://dice-group.github.

io/squirrel.github.io/tutorials/sink.html

https://dice-group.github.io/squirrel.github.io/tutorials/analyzer.html
https://dice-group.github.io/squirrel.github.io/tutorials/analyzer.html
https://www.w3.org/TR/turtle/
https://dice-group.github.io/squirrel.github.io/tutorials/sink.html
https://dice-group.github.io/squirrel.github.io/tutorials/sink.html

Squirrel – Crawling RDF Knowledge Graphs on the Web 9

prov:startedAtTime

Worker
(prov:Agent)

Graph
(prov:Entity)

xsd:dateTime

xsd:dateTime

prov:endedAtTime

prov:wasGeneratedBy

prov:wasAssociatedWith

Crawled Uri

sq:ContainsDataOf

xsd:String

sq:status

xsd:Long

sq:approxNumberOfTriples

sq:crawled

IP Address

sq:uriHostedOn

Plan
(prov:Plan)

prov:hadPlan

Activity
(prov:Activity)

Fig. 2. Squirrel Activity, extending the PROV ontology

4 Evaluation

4.1 Benchmark

We carried out two experiments to compare Squirrel with the state-of-the-art
Data Web crawler, LDSpider [10]. LDSpider was chosen because it is one of the
most popular crawlers for the linked web, and is widely used in various projects.
All experiments were carried out using the ORCA benchmark for Data Web
crawlers [15].26 ORCA is built upon the HOBBIT benchmarking platform [14]
and ensures repeatable and comparable benchmarking of crawlers for the Data
Web. To this end, it creates a network of servers from which the crawler should
download data. For each server, ORCA generates an RDF dataset with outgoing
links to other servers. This allows the crawler to start with one or more seed URIs
and crawl the complete network. Note, the benchmark ensures that all triples
created for the single servers can be reached by a crawler by traversing the links.
ORCA offers five different types of servers:

1. a dump file server,
2. a SPARQL endpoint,
3. a CKAN portal,
4. a server for HTML with embedded RDFa triples
5. a dereferencing server.

26 https://github.com/dice-group/orca

https://github.com/dice-group/orca

10 M. Röder et al.

The latter can be called via the URI of an RDF resource and answers with the
triples that have the resource as subject. The dereferencing server negotiates
the RDF serialisation with the crawler based on the crawler’s HTTP request.
However, the serialisation of each dump file is randomly chosen to be either
RDF/XML, Turtle, N-Triples or Notation 3. ORCA measures the completeness
of data gathered by the crawler, and its run time.

4.2 Evaluation Setup

We carry out two experiments in which we use ORCA to simulate a network
of servers. The first experiment simulates a real-world Data Web and focuses
on the effectiveness of the two crawlers, i.e., the amount of correct triples they
retrieve. As suggested by the authors of [15], the generated cloud comprises 100
servers with 40% dump file servers, 30% SPARQL servers, 21% dereferencing
servers, 5% CKAN servers and 4% servers that offer RDFa within HTML pages.
The average degree of each node is set to 20 and the data of each node comprises
1000 triples with an average degree of 9 triples per resource. 30% of the dump
file nodes offer their files compressed using zip, gzip or bz2. The results of this
experiment are listed in Table 2.27

The second experiment focuses on the efficiency of the crawler implementa-
tions. We follow the suggestion given in [15] for efficiency experiments and solely
rely on 200 dereferencing servers. These servers have can negotiate the RDF
serialisation with the crawler. Hence, the crawlers are very likely to be able to
crawl the complete graph, which eases a comparison of the crawlers with respect
to their efficiency. The other parameters are the same as in the first experiment.
The results of the second experiment are listed in Table 2.28

For all experiments, we use a cluster of machines. The crawlers are deployed
on 3 machines while the created servers of the ORCA benchmark are hosted
on 3 other machines. Each of the machines has 16 cores with hyperthreading
and 256 GB RAM.29 For both experiments, the usage of robots.txt files is
disabled. We use several configurations of LDSpider and Squirrel. LDSpider
(T1), (T8), (T16) and (T32) use a breadth-first crawling strategy and 1, 8, 16 or
32 threads, respectively. Additionally, we configure LDSpider (T32,LSB), which
makes use of 32 threads and a load-balancing strategy. Further, we configure
Squirrel (W1), (W3), (W9) and (W18) to use 1, 3, 9 or 18 Worker instances,
respectively.

Squirrel – Crawling RDF Knowledge Graphs on the Web 11

Table 2. Results for experiment I and II.

Crawler Experiment I Experiment II

Micro Run time Micro Run time CPU RAM
Recall (in s) Recall (in s) (in s) (in GB)

LDSpider (T1) 0.31 1798 1.00 2 031 320.0 1.2
LDSpider (T8) 0.30 1792 1.00 2 295 265.9 2.8
LDSpider (T16) 0.31 1858 1.00 1 945 345.4 1.6
LDSpider (T32) 0.31 1847 1.00 2 635 11.6 2.6
LDSpider (T32,LBS) 0.03 66 0.54 765 182.1 7.5

Squirrel (W1) 0.98 6 663 1.00 11 821 991.3 3.9
Squirrel (W3) 0.98 2 686 1.00 4 100 681.4 8.6
Squirrel (W9) 0.98 1 412 1.00 1 591 464.8 18.1
Squirrel (W18) 0.97 1 551 1.00 1 091 279.8 22.1

4.3 Discussion

The results of the first experiment show that LDSpider has a lower recall than
Squirrel. This difference is due to several factors. LDSpider does not support
1) the crawling of SPARQL endpoints, 2) the crawling of CKAN portals, nor 3)
the processing of compressed RDF dump files. In comparison, Squirrel comes
with a larger set of supported server types, RDF serialisations and compression
algorithms. Hence, Squirrel was able to crawl nearly all triples. However, not
all triples of all CKAN portals and RDFa nodes could be retrieved, leading to a
micro recall of up to 0.98.

The second experiment shows that the larger set of features offered by Squir-
rel comes with lower efficiency. LDSpider achieves lower run times using a more
economical configuration with respect to consumed CPU time and RAM. With
a higher number of workers, Squirrel achieves lower run times but consumes
much more RAM than LDSpider. At the same time, the experiment reveals that
the load-balancing strategy of LDSpider tends to abort the crawling process very
early and, hence, achieves only a low recall in both experiments.

5 Application

Squirrel is used within several research projects, of which two are of national im-
portance in Germany. The OPAL project creates an integrated portal for open

27 The detailed results can be seen at https://w3id.org/hobbit/experiments#
1585403645660,1584545072279,1585230107697,1584962226404,1584962243223,
1585574894994,1585574924888,1585532668155,1585574716469.

28 Detailed results can be found at https://w3id.org/hobbit/experiments#
1586886425879,1587151926893,1587284972402,1588111671515,1587121394160,
1586886364444,1586424067908,1586374166710,1586374133562.

29 The details of the hardware setup that underlies the HOBBIT platform can be found
at https://hobbit-project.github.io/master#hardware-of-the-cluster.

https://w3id.org/hobbit/experiments#1585403645660,1584545072279,1585230107697,1584962226404,1584962243223,1585574894994,1585574924888,1585532668155,1585574716469
https://w3id.org/hobbit/experiments#1585403645660,1584545072279,1585230107697,1584962226404,1584962243223,1585574894994,1585574924888,1585532668155,1585574716469
https://w3id.org/hobbit/experiments#1585403645660,1584545072279,1585230107697,1584962226404,1584962243223,1585574894994,1585574924888,1585532668155,1585574716469
https://w3id.org/hobbit/experiments#1586886425879,1587151926893,1587284972402,1588111671515,1587121394160,1586886364444,1586424067908,1586374166710,1586374133562
https://w3id.org/hobbit/experiments#1586886425879,1587151926893,1587284972402,1588111671515,1587121394160,1586886364444,1586424067908,1586374166710,1586374133562
https://w3id.org/hobbit/experiments#1586886425879,1587151926893,1587284972402,1588111671515,1587121394160,1586886364444,1586424067908,1586374166710,1586374133562
https://hobbit-project.github.io/master#hardware-of-the-cluster

12 M. Röder et al.

data by integrating datasets from several data sources from all over Europe.30

At the moment, the project focuses on the portals mCLOUD.de, govdata.de and
europeandataportal.eu. In addition, several sources found on OpenDataMonitor.eu

are integrated. Squirrel is used to regularly gather information about avail-
able datasets from these portals. Table 3 lists the number of datasets that are
extracted from the portals, the time the crawler needs to gather them, and the
way the crawler accesses data. It should be noted that the run times include
the delays Squirrel inserts between single requests to ensure that the single
portals are not stressed. The portals evidently use different ways to offer their
data. Two of them are CKAN portals, while mCLOUD.de has to be scraped using
Squirrel’s HTML scraper. Only europeandataportal.eu offers a SPARQL
endpoint to access the dataset’s metadata. The data integrated by OPAL are
to be written back into the mCLOUD.de portal and cater for the needs of private
and public organisations requiring mobility data. Users range from large logistic
companies needing to plan transport of goods, to single persons mapping their
movement with pollen concentration.

Datasets Triples Run time Type

mCLOUD.de 1 394 19 038 25min HTML
govdata.de 34 057 138 669 4h CKAN
europeandataportal.eu 1 008 379 13 404 005 36h SPARQL
OpenDataMonitor.eu 104 361 464 961 7h CKAN

Table 3. Crawling statistics of the OPAL project.

Another project that makes use of Squirrel to collect data from the web is
LIMBO. Its aim is to unify and refine mobility data of the German Federal Min-
istry of Transport and Digital Infrastructure. The refined data is made available
to the general public to create the basis for new, innovative applications. To this
end, Squirrel is used to collect this and related data from different sources.

6 Conclusion

This paper presented Squirrel, a scalable, distributed and extendable crawler
for the Data Web, which provides support for several different protocols and
data serialisations. Other open-source crawlers currently available are either not
able to process RDF data, are limited in the types of data formats they can pro-
cess, or are restricted in their scalability. Squirrel addresses these drawbacks
by providing an extensible architecture adaptable to supporting any format of
choice. Moreover, the framework was implemented for simple deployment both
locally and at a large scale.

30 http://projekt-opal.de/

http://projekt-opal.de/

Squirrel – Crawling RDF Knowledge Graphs on the Web 13

We described the components of the crawler and presented a comparison
with LDSpider. This comparison showed the advantages of Squirrel with re-
spect to the large amount of supported data and server types. Squirrel was
able to crawl data from different sources (HTTP, SPARQL and CKAN) and
compression formats (zip,gzip,bz2), leading to a higher recall than LDSpider. In
addition, we identified Squirrel’s efficiency as a focus for future development
and improvement. Squirrel is already used by several projects and we provide
tutorials for its usage to empower more people to make use of the data available
on the web.31

7 Acknowledgments

This work has been supported by the BMVI (Bundesministerium fr Verkehr und
digitale Infrastruktur) projects LIMBO (GA no. 19F2029C) and OPAL (GA no.
19F2028A).

References

1. Archer, P.: Data catalog vocabulary (dcat) (w3c recommendation). Online (Jan-
uary 2014), https://www.w3.org/TR/vocab-dcat/

2. Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: Lod
laundromat: A uniform way of publishing other people’s dirty data. In: Mika, P.,
Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P.,
Noy, N., Janowicz, K., Goble, C. (eds.) The Semantic Web – ISWC 2014. pp.
213–228. Springer International Publishing, Cham (2014)

3. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifier (URI):
Generic Syntax. Internet Standard, Internet Engineering Task Force (IETF) (Jan-
uary 2005), https://tools.ietf.org/html/rfc3986

4. Fernández, J.D., Beek, W., Mart́ınez-Prieto, M.A., Arias, M.: Lod-a-lot. In:
d’Amato, C., Fernandez, M., Tamma, V., Lecue, F., Cudré-Mauroux, P., Sequeda,
J., Lange, C., Heflin, J. (eds.) The Semantic Web – ISWC 2017. pp. 75–83. Springer
International Publishing, Cham (2017)

5. Fernndez, J.D., Martnez-Prieto, M.A., Gutirrez, C., Polleres, A., Arias, M.: Bi-
nary rdf representation for publication and exchange (hdt). Web Semantics:
Science, Services and Agents on the World Wide Web 19, 2241 (2013), http:
//www.websemanticsjournal.org/index.php/ps/article/view/328

6. Harth, A., Umbrich, J., Decker, S.: Multicrawler: A pipelined architecture for crawl-
ing and indexing semantic web data. In: Cruz, I., Decker, S., Allemang, D., Preist,
C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) The Semantic Web -
ISWC 2006. pp. 258–271. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

7. Heydon, A., Najork, M.: Mercator: A scalable, extensible web crawler. Word Wide
Web (1999)

8. Hogan, A.: Exploiting RDFS and OWL for Integrating Heterogeneous, Large-Scale,
Linked Data Corpora (2011), http://aidanhogan.com/docs/thesis/

31 https://dice-group.github.io/squirrel.github.io/tutorials.html

https://www.w3.org/TR/vocab-dcat/
https://tools.ietf.org/html/rfc3986
http://www.websemanticsjournal.org/index.php/ps/article/view/328
http://www.websemanticsjournal.org/index.php/ps/article/view/328
http://aidanhogan.com/docs/thesis/

14 M. Röder et al.

9. Hogan, A., Harth, A., Umbrich, J., Kinsella, S., Polleres, A., Decker, S.: Searching
and browsing linked data with SWSE: The semantic web search engine. Web Se-
mantics: Science, Services and Agents on the World Wide Web 9(4), 365 – 401
(2011). https://doi.org/http://dx.doi.org/10.1016/j.websem.2011.06.004, http://
www.sciencedirect.com/science/article/pii/S1570826811000473, JWS special issue
on Semantic Search

10. Isele, R., Umbrich, J., Bizer, C., Harth, A.: LDspider: An open-source crawling
framework for the Web of Linked Data. In: Proceedings of the ISWC 2010 Posters
& Demonstrations Track: Collected Abstracts. vol. 658, pp. 29–32. CEUR-WS
(2010)

11. Koster, M., Illyes, G., Zeller, H., Harvey, L.: Robots Exclusion Protocol. Internet-
draft, Internet Engineering Task Force (IETF) (July 2019), https://tools.ietf.org/
html/draft-rep-wg-topic-00

12. Lebo, T., Sahoo, S., McGuinness, D.: PROV-O: The PROV Ontology.
W3C Recommendation, W3C (April 2013), http://www.w3.org/TR/2013/
REC-prov-o-20130430/

13. Merkel, D.: Docker: Lightweight linux containers for consistent development and
deployment. Linux J. 2014(239) (Mar 2014), http://dl.acm.org/citation.cfm?id=
2600239.2600241

14. Röder, M., Kuchelev, D., Ngonga Ngomo, A.C.: HOBBIT: A platform for bench-
marking Big Linked Data. Data Science (2019). https://doi.org/10.3233/DS-
190021

15. Röder, M., de Souza, G., Kuchelev, D., Desouki, A.A., Ngomo, A.C.N.: Orca: a
benchmark for data web crawlers (2019), https://arxiv.org/abs/1912.08026

https://doi.org/http://dx.doi.org/10.1016/j.websem.2011.06.004
http://www.sciencedirect.com/science/article/pii/S1570826811000473
http://www.sciencedirect.com/science/article/pii/S1570826811000473
https://tools.ietf.org/html/draft-rep-wg-topic-00
https://tools.ietf.org/html/draft-rep-wg-topic-00
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://doi.org/10.3233/DS-190021
https://doi.org/10.3233/DS-190021
https://arxiv.org/abs/1912.08026

	Squirrel – Crawling RDF Knowledge Graphs on the Web

